Humanpathogene Bakterien, die Resistenzen gegen mehrere Antibiotikaklassen aufweisen, stellen ein Risiko für die öffentliche Gesundheit dar und werden als eine der größten globalen Herausforderungen des 21. Jahrhunderts betrachtet. Einige der Resistenzgene dieser Bakterien wurden im Boden, der ein großes Reservoir von Antibiotikaresistenzen darstellt, aufgespürt und könnten z.B. über das Grundwasser oder Wildtiere verbreitet werden. In diesem Projekt soll die Dynamik des Antibiotikaresistenzpools im Boden entlang eines breiten Spektrums von Landnutzungstypen und -intensitäten innerhalb der drei Biodiversitäts-Exploratorien untersucht werden. Um eine robuste Abschätzung von Landnutzungseffekten auf die Abundanz von Antibiotikaresistenzgenen zu erlangen, wird Boden-DNA von allen Grünland-EP Und Wald-VIP Plots mittels quantitativer Echtzeit-PCR analysiert. Landnutzungsinduzierte Veränderungen von Gemeinschaftsprofilen antibiotikaresistenter Bodenbakterien werden innerhalb eines Mikrokosmenexperimentes aufgedeckt. Dieses Experiment schließt die Quantifizierung und Erfassung der zeitlichen Dynamik bakterieller Gemeinschaften ein. Ein weiterer Schwerpunkt ist die Erfassung landnutzungsbedingter Variationen des Vorkommens von Plasmiden, da diese mobilen genetischen Elemente eine wesentliche Quelle für Antibiotikaresistenzgene sind und zu deren Verbreitung beitragen. Diesbezüglich wird die Abundanz von IncP-1 Plasmiden, die mehrere Antibiotikaresistenzen kodieren können und Gentransfer zwischen entfernt verwandten Bakterien erlauben, bestimmt. Die Gesamtdiversität Antibiotikaresistenz-vermittelnder zirkulärer Plasmide wird unter Verwendung einer long-read-Sequenzierungstechnologie abgeschätzt. Außerdem wird eine funktions-basierte Durchmusterung von zuvor konstruierten Bodenmetagenombanken vorgenommen. Dadurch werden Unterschiede der Vielfalt von Antibiotikaresistenzgenen und -mechanismen zwischen analysierten Landnutzungsintensitäten enthüllt. Kenntnisse über Antibiotikaresistenz in Böden, die unterschiedlichen Landnutzungstypen und -intensitäten ausgesetzt sind, werden dringend benötigt, um Konsequenzen anthropogener Aktivitäten bzgl. der Ausbreitung von multiresistenten Bakterien vorhersagen zu können. In diesem Projekt werden Auswirkungen von Landnutzung auf das Antibiotikaresistenz-Reservoir und -Transferpotential des Bodens untersucht. Zudem werden Korrelationen zwischen der Antibiotikaresistenz im Boden und abiotischen (z.B. Konzentrationen von Schwermetallen) sowie biotischen Faktoren (z.B. Abundanz pilzlicher Taxa) aufgedeckt.
Unser Wissen zur Ökologie und Bedeutung von Mikroorganismen in Böden ist umfassend. Dies gilt im Gegensatz dazu nicht für die Ökologie der Viren. Erkenntnisse dazu hinken dem Kenntnisstand aus aquatischen Lebensräumen weit hinterher. Böden beherbergen eine große Anzahl an Viren und das Viren - Wirt Verhältnis liegt meist deutlich über jenem in aquatischen Systemen. Unterschiede in den Virenpopulationen können teilweise auf unterschiedliche Bodencharakteristika (pH, Wassergehalt, Anteil an organischem Material) erklärt werden. Dies lässt den Schluss zu, dass Unterschiede in der Landnutzung entsprechend die Virenabundanz als auch Viren - Wirt Interaktionen beeinflussen. In Böden tragen bis zu 68% aller Bakterien induzierbare Prophagen, ein Hinweis darauf, dass die Heterogenität im Boden und die ungleiche Verteilung der Mikroorganismen eine lysogene Vermehrung von Viren selektiert. Dies hat zur Folge, dass der Austausch von genetischer Information zwischen Virus und Wirt vorwiegend durch Transduktion stattfindet. Bis dato analysierte Virenmetagenome aus dem Boden bestanden bis zu 50% aus transduzierten Genen prokaryotischen Ursprungs. Obwohl davon ausgegangen werden kann, dass Viren im Boden, wie für aquatische Lebensräume gezeigt, einen signifikanten Einfluss auf die räumliche und zeitliche Dynamik ihrer Wirte (Killing the Winner Hypothese) und deren kontinuierliche Anpassung (Red Queen Hypothese), wichtige Ökosystemfunktionen und biogeochemische Prozesse haben, kennen wir die Art und Häufigkeit der Interaktionen nicht und empirische Daten fehlen. Wir postulieren, dass Transduktion eine wichtige Rolle für die Resilienz von Böden unter intensiver Landnutzung spielt, da in diesen Böden i) die mikrobielle Diversität vergleichsweise niedrig ist, was zu einer erhöhten Sensitivität gegenüber Veränderungen in den Umweltbedingungen führt. Andererseits, ii) hat die durch Düngung erhöhte spezifische Aktivität von Mikroorganismen eine erhöhte Transduktionsrate zur Folge, da Viren für ihre Vervielfältigung auf metabolisch aktive Wirte angewiesen sind. Um unsere Hypothese zu überprüfen, werden wir an 150 Standorten der Biodiversitäts-Exploratorien und im Detail an einer Auswahl an Grünlandstandorten mit unterschiedlicher Intensität der Bewirtschaftung Untersuchungen durchführen. Analysiert wird die Beziehung zwischen Virenabundanzen und VBRs mit der Bewirtschaftung, der Vegetationsperiode und den vorherrschenden Umweltbedingungen. Zusätzlich untersuchen wir mit Hilfe moderner molekularer Methoden die Zusammensetzung der Virengemeinschaften und ihre Diversität, sowie viren-assoziierte Funktionen prokaryotischen Ursprungs. Experimente zu Virus-Wirt Interaktionen und die Analyse von CRISPR like structures in den prokaryotischen Wirten werden Erkenntnisse zu der Ökologie bakterieller Gemeinschaften liefern. Nicht zuletzt werden wir Viren von abundanten Bodenbakterien (z.B. Pseudomonaden) für vergleichende Genomanalysen und Kreuzinfektionsversuche isolieren.
Äthiopien erhält den Großteil seiner Niederschläge durch Winde aus dem Süden die der Ostafrikanische Sommermonsun in den Nordhemisphärischen Sommermonaten bringt. Die Stärke der Ostafrikanischen Monsunniederschläge variierte jedoch zum Teil erheblich im Verlaufe des Quartärs und auch der Anteil von Niederschlägen durch die Westerlies könnte in der Vergangenheit sehr variabel gewesen sein. Während der vergangenen Jahre entwickelten sich einige neue Biomarker- und Stabilisotopenmethoden zu hochinnovativen und viel versprechenden (semi-)quantitativen Paläoklima-Proxies. Durch die Entwicklung und Anwendung solcher Biomarker- und Stabilisotopenmethoden zielt das beantragte Projekt darauf ab, einen Beitrag zur (semi-)quantitativen Paläoklimarekonstruktion der Bale Mountains in Äthiopien zu leisten. Im Speziellen sollen Temperatur, relative Luftfeuchte, Niederschlagsmenge und Änderungen im Quellgebiet der Niederschläge rekonstruiert werden.Im Rahmen eines der Arbeitspakete wird der rezente Niederschlag räumlich und zeitlich aufgelöst auf seine Isotopensignatur (2H/1H and 18O/16O) untersucht. Diese Daten sollen u.a. helfen die für die Bale Mountains relevanten atmosphärischen Zirkulationssysteme und deren spezifische Isotopensignaturen besser zu verstehen. In einem zweiten Arbeitspaket wird untersucht wie akkurat sich die Isotopensignatur des Niederschlags wie auch die relative Luftfeuchte und Temperatur in den Biomarker- und Stabilisotopensignaturen von Pflanzen und Böden widerspiegeln. Hierzu werden Klimagradienten entlang von Höhentransekten auf die Bale Mountains untersucht. Der methodische Schwerpunkt wird auf der Untersuchung von komponenten-spezifischen 2H-Analysen von Pflanzenwachs-bürtigen n-Alkan- und Fettsäurebiomarkern, auf komponenten-spezifischen 18O-Analysen von Hemizellulose-bürtigen Zuckerbiomarkern und auf Bodenbakterien-bürtigen Glycerol Dialkyl Glycerol Tetraether (GDGT) Lipidbiomarkern liegen. Das dritte Arbeitspaket trägt zur Gewinnung von Sedimentbohrkernen und Aufstellung von dazugehörigen Chronostratigraphien bei. Diese Sedimentbohrkerne werden gemeinsam mit den Teilprojekten P2-Antrosole und P4-Paläoökologie als Archive genutzt um die menschliche Besiedelungsgeschichte wie auch die Spätquartäre Klima- und Landschaftsgeschichte der Bale Mountains zu rekonstruieren. Das Teilprojekt P5-Paläoklimatologie wird hierzu die oben spezifizierten Biomarker- und Stabilisotopenmethoden anwenden.
Die Kopplung zwischen drei dominanten Gruppen von Bodenbakterien (Acidobacteria, Actinobacteria, Alphaproteobacteria), Pflanzen, Bodenbedingungen und Landnutzung soll aufgeklärt werden. Die Untersuchungen konzentrieren sich auf (1) die Dynamik der funktionellen Kopplung zwischen aktiven Rhizosphärenbakterien und Pflanzen, (2) die spezifischen Funktionen von individuellen Bakterien beim Abbau von Wurzelexsudaten, Pflanzenstreu und Tierkadavern/Dung sowie (3) der zeitlichen Stabilität von mikrobiellen Gemeinschaften in der Rhizosphäre und nicht-durchwurzeltem Boden der Exploratorien. Die funktionelle Koppelung der Bakterien über den Kohlenstofffluss soll zeitlich hochaufgelöst mittels 13C-Pulsmarkierung von Wurzelexsudaten durch Captured RNA Isotope Probing (CARIP), sowie durch den Vergleich der Exsudatprofile mit der Zusammensetzung der Bakteriengemeinschaften mittels Hochdurchsatzsequenzierung aufgeklärt werden. Die individuelle funktionelle Rolle der Bakterien wird anhand der Aufnahme 13C-markierter Substrate mit nachfolgender Identifizierung der aktiven Phylotypen durch Stabile Isotopenbeprobung von RNA (SIP) sowie metagenomische und metatranskriptomische Ansätze untersucht. Die kurzfristigen Veränderung in der Zusammensetzung der Rhizosphärenbakterien und die jeweiligen Einflussgrößen werden analysiert. Langfristigere Effekte werden anhand von Hochdurchsatzsequenzierungen von 3 Probensätzen, die einen Zeitraum von 6 Jahren abdecken, ermittelt. Dies bietet die Gelegenheit, langfristigere Trends mit Änderungen in den Umweltparametern und in der Landnutzung zu analysieren.
Ziel des Projektes ist ein Verständnis der Entwicklung mikrobieller Gemeinschaften in Böden, vom ersten Auftreten bis zu komplexen Netzwerken. Mikroorganismen nehmen entscheidenden Einfluss auf die Entwicklung von Böden unter extremen Bedingungen. Veränderungen der Umwelt, etwa Nährstoffzunahme oder Temperaturanstieg, führen unmittelbar zu Veränderungen in den mikrobiellen Gemeinschaften. Antarktische Böden sind wegen ihres sehr geringen Nährstoffgehaltes empfindliche Ökosysteme; sie gelten als sehr gute Zeiger von Umweltveränderungen. Unsere zentrale Arbeitshypothese beinhaltet, dass prokaryotische Mikroorganismen die Entwicklung von Bodenlebensräumen in der Antarktis in Gang setzen und anschließend ein komplexes Netzwerk unterschiedlicher pro- und eukaryotischen Mikroorganismen entsteht, das auf der Basis unterschiedlicher Funktionen innerhalb des Netzwerkes schließlich zur stabilen Etablierung des Bodenhabitats führt. Eukaryotische Algen könnten bereits als Pioniere in frühen Sukzessionsstadien auftreten. Zum Testen der Hypothesen wird das Projekt wird die Expertise von Universität Göttingen und GFZ Potsdam zusammenzuführen. Wir werden bereits vorhandene Sedimentproben aus fünf Transsekten an Gletscherresten arider eisfreier Oasen der Ostantarktis (Larsemann-Berge, Prydz Bucht) untersuchen. Eine umfassende Analyse physiko-chemischer Parameter der Proben ist dabei Voraussetzung, die mikrobielle Diversität in Bezug zu geochemischen Variablen setzen zu können. Aufgrund der extremen Nährstoffarmut und Abgeschiedenheit des Untersuchungsgebietes erwarten wir eine erhebliche Anzahl noch unbekannter Arten in unseren Untersuchungsgebieten, die eine wertvolles Potential für biotechnologischer Anwendungen bergen können. Wir erweitern das Entfernung-steht-für-Zeit-Konzept von Chronosequenzen um den Mikromaßstab durch Vergleiche zwischen extrazellulärer und intrazellulärer DNA von Mikroorganismen. Durch den Einsatz einer neuartigen Methode zur DNA-Extraktion wird eine genaue Unterscheidung zwischen vergangenen (fossilen) und lebenden mikrobiellen Gemeinschaften erreicht. Beide DNA-Pools dienen zum Erfassen der taxonomischen Diversität der mikrobiellen Gemeinschaften auf Artniveau. Durch ultratiefe Sequenzierung (Deep Sequencing; Illumina Miseq) anhand zweier unterschiedlich variabler rRNA Genabschnitte wird eine Auflösung auf dem Artniveau erreicht. Das ist wichtig um für die Entwicklung früher Bodenökosysteme maßgebliche Spezies-gebundene Interaktionen innerhalb mikrobieller Gemeinschaften über die Grenzen taxonomischer Abteilungen und Domänen hinweg aufdecken zu können. Mit Analysen funktioneller Gene werden Struktur- und Funktionsbeziehungen zwischen pro- und eukaryotischen Mikroorganismen in Stoffflüssen des Kohlen- und Stickstoffs erfasst. Schließlich werden nach Abschätzen relativer Abundanzen der einzelnen Organismen- und Funktionsgruppen durch quantitative qPCR Spezies-Interaktionen zur mikrobiellen Produktivität abgeleitet.
<p>Seit den 1970-er Jahren führten zahlreiche politische und technische Anstrengungen zur Reduzierung der Emissionen von Schwefeldioxid, Stickstoffoxiden, flüchtigen organischen Verbindungen ohne Methan sowie von Feinstaub. Dennoch sind die Einträge in Ökosysteme nach wie vor zu hoch.</p><p>Entwicklung seit 2005</p><p>Die Bundesregierung hat sich in der <a href="https://www.bundesregierung.de/breg-de/themen/nachhaltigkeitspolitik/deutsche-nachhaltigkeitsstrategie-318846">Deutschen Nachhaltigkeitsstrategie</a> zum Ziel gesetzt, die Emissionen von Schwefeldioxid (SO2), Stickstoffoxiden (NOx), Ammoniak (NH3), flüchtigen organischen Verbindungen ohne Methan (<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NMVOC#alphabar">NMVOC</a>) und Feinstaub (PM2,5) deutlich zu reduzieren. Deutschland hat sich im Rahmen der neuen <a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a> der EU (siehe weiter unten) zu nationalen Emissionsminderungen für diese Stoffe verpflichtet. Ziel der Deutschen Nachhaltigkeitsstrategie ist es, das ungewichtete, arithmetische Mittel der zugesagten Emissionsminderungen (45 %) zu erreichen. Die Verrechnung der Emissionsentwicklungen zu einem Index ermöglicht es, steigende Emissionen einzelner Schadstoffe durch stärkere Eindämmung des Ausstoßes anderer Schadstoffe zu kompensieren.</p><p>Die Emissionen von Schwefeldioxid sinken am stärksten und zeigen im Jahr 2023 nur noch 46 % des Niveaus des Jahres 2005. Die Emissionen von Stickstoffoxiden und flüchtigen organischen Verbindungen ohne Methan (NMVOC) und Feinstaub zeigen ebenfalls einen stetigen Abwärtstrend und sanken bis 2022 auf etwa 53 % (Stickstoffoxide) bzw. 65 % (NMVOC) und 59 % (Feinstaub PM2.5) des Niveaus von 2005. Die Emissionen von Ammoniak lagen bis 2017 über dem Niveau von 2005 und sinken seitdem sichtbar, die Emissionen im Jahr 2023 liegen aber noch auf 80 % des Jahres 2005. Dadurch fällt der Schadstoff-übergreifende Indikatorwert mit 63 % etwas höher aus (siehe Abb. „Index der Luftschadstoff-Emissionen“).</p><p>Eine Sonderrolle im Trendverlauf nimmt dabei das Jahr 2009 ein, das durch die Effekte der globalen Wirtschaftskrise geprägt war. Die verminderten Aktivitäten führten zu sichtbaren Einbrüchen und Kompensationseffekten im Folgejahr 2010 bei allen Schadstoffen außer Ammoniak (NH3).</p><p>Problematische Stoffe</p><p>Obwohl der Ausstoß von Luftschadstoffen bis heute deutlich verringert wurde, ist er, gemessen an der dauerhaften Belastbarkeit der Ökosysteme, immer noch zu hoch. Dies gilt besonders für versauernde und eutrophierende Luftverunreinigungen (vor allem Stickstoffoxide und Ammoniak). Die über Jahrzehnte erfolgten Einträge von Schwefel und Stickstoff in die Böden hinterlassen noch für lange Zeit eine kritische Altlast. So haben zum Beispiel viele Waldböden erhebliche Anteile basischer Nährstoffe (zum Beispiel Calcium, Magnesium, Kalium) verloren und versauern. Damit geht auch eine Belastung des Sickerwassers einher. Ammoniak wird im Boden durch Bodenbakterien zu Nitrat oxidiert und ausgewaschen. Hohe Ammoniakdepositionen induzieren damit auch eine stärkere Nitratbelastung des Grundwassers und stellen somit eine Gefährdung unseres Trinkwassers dar. Luftverunreinigungen, insbesondere Stickstoffverbindungen, führen auch zum Rückgang der biologischen Vielfalt.</p><p>Internationale Vereinbarungen zur Minderung der Emissionen</p><p>Das Problem des grenzüberschreitenden sauren Regens machte deutlich, dass die Umweltprobleme nur durch internationale Anstrengungen bekämpft werden können. Der <a href="http://www.unece.org/env/lrtap/welcome.html">Genfer Luftreinhaltekonvention</a> der Wirtschaftskommission für Europa der Vereinten Nationen (UNECE) über weiträumige grenzüberschreitende Luftverunreinigungen im Jahr 1979 folgten acht internationale rechtsverbindliche Vereinbarungen (Protokolle) zur Luftreinhaltung.</p><p>Ansätze für weitere Maßnahmen</p><p>Weitere Minderungen der NOx-Emissionen aus dem Straßenverkehr sind vor allem durch anspruchsvolle Abgasstandards für LKW (EURO VI), leichte Nutzfahrzeuge und PKW (EURO 6) sowie durch eine umweltverträgliche Gestaltung des Verkehrs zu erzielen. Selbstverständlich haben Abgasrichtlinien nur eine positive Wirkung, wenn sie nicht nur auf dem Prüfstand, sondern auch auf der Straße eingehalten werden.<br><br>Im Bereich der Lösemittel (<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NMVOC#alphabar">NMVOC</a>) besteht die Möglichkeit der Verwendung lösemittelarmer oder freier Produkte in allen Produktbereichen, die durch zusätzliche europäische Regelungen zur Beschränkung des Lösemittelgehaltes in Produkten gefördert werden soll.<br><br>Potenziale der Luftreinhaltung liegen auch in Energiesparmaßnahmen, der Steigerung der Energieeffizienz (zum Beispiel durch verbrauchsarme Motoren und neue Antriebstechnologien), dem Einsatz von emissionsfreien regenerativen Energien (beziehungsweise weitestgehender Verzicht auf Energieerzeugung aus fossilen Brennstoffen) sowie die Verwendung emissionsarmer Einsatzstoffe und Produkte.</p><p>Die Reduzierung der Ammoniak-Emissionen aus der Landwirtschaft soll durch die Reform der gemeinsamen europäischen Agrarpolitik und durch verschiedene <a href="https://www.bmel.de/DE/themen/landwirtschaft/eu-agrarpolitik-und-foerderung/agrarumwelt-und-klimamassnahmen-aukm/agrarumweltmassnahmen-deutschland.html">nationale Agrarumweltmaßnahmen</a> erreicht werden (siehe <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/ammoniak-emissionen">„Ammoniak-Emissionen“</a>).</p>
Netzwerke von Bodenorganismen und Pflanzen sind die treibende Kraft der biogeochemischen Kreisläufe terrestrischer Ökosysteme. Bodenlebensgemeinschaften aus Pilzen, Bakterien, Archaeen und anderen Einzellern sind wichtig für Funktionen wie die C Speicherung, die Resilienz von Bäumen gegenüber dem Klimawandel und den Stoffumsatz in Waldböden. Es gibt zwar mit der Bodenzustandserhebung im Wald (BZE) ein bundesweites Monitoring der Vitalität der Bäume und des physikochemischen Bodenzustands. Die Bodenbiologie wird dabei allerdings bisher nicht berücksichtigt. Dabei kann ein erweitertes systematisches Monitoring helfen, Zusammenhänge zwischen standörtlichen Gegebenheiten, Bodenorganismen und deren Funktionen zu verstehen. Dieses Projektes hat daher das Ziel, die umfangreichen Daten der BZE mit neu erhobenen Daten über strukturelle und funktionelle Biodiversität von Bodenmikroorganismen zu verknüpfen
| Origin | Count |
|---|---|
| Bund | 84 |
| Land | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 80 |
| Text | 4 |
| unbekannt | 1 |
| License | Count |
|---|---|
| geschlossen | 5 |
| offen | 80 |
| Language | Count |
|---|---|
| Deutsch | 77 |
| Englisch | 20 |
| Resource type | Count |
|---|---|
| Dokument | 1 |
| Keine | 56 |
| Webseite | 28 |
| Topic | Count |
|---|---|
| Boden | 76 |
| Lebewesen und Lebensräume | 77 |
| Luft | 44 |
| Mensch und Umwelt | 85 |
| Wasser | 46 |
| Weitere | 85 |