Ziel ist es ein Netzwerk meteorologischer Stationen in der Atacama zu etablieren. Diese Arbeit wird aktiv von unseren Partnern in Chile unterstützt. Gegenwärtig gibt es nur vereinzelt meteorologische Stationen am Küstenstreifen und fast keine im Kern der Atacama Wüste. Ein weiteres Ziel ist die bodengestützten Observationen mit Fernerkundungsdaten zu vereinen. Beide Datensätze werden als Test für die Zuverlässigkeit von Klimamodellen dienen, die das heutige Klima beschreiben. Auf Basis dieser Tests werden Klimamodelle für das Klima in der Vergangenheit entwickelt. Letztere würden mit Klimaproxydaten anderer Teilprojekte verifiziert werden.
Die Strukturbildung auf der Wolkenskala wird mit zwei Methoden untersucht. Zum einen werden hochaufgelöste numerische Wolkensimulationen durchgeführt und die Resultate auf Strukturbildung hin analysiert. Zum anderen werden die grundlegenden Gleichungen mit mathematischen Methoden untersucht, um Strukturbildung zu identifizieren. In einem Syntheseschritt werden beiderlei Resultate verwendet, um Minimalmodelle zur Beschreibung von Wolkenstrukturen zu entwickeln. Diese Modelle werden schließlich zur Bestimmung der Wirkung von Wolkenstrukturen auf größerskalige Prozesse benutzt.
Mithilfe von klimatologischen Daten werden Hitzewellen über Europa definiert und charakterisiert. Die Verbindung zwischen Rossbywellenpaketen in der oberen Troposphäre, dem extratropischen Wellenleiter und Hitzewellen wird mit Hilfe einer Wavelet-Analyse sowie mit einer Diagnostik, die auf linearer Wellentheorie beruht, untersucht. Komplementär dazu wird die Rolle von lokalen Prozessen (zum Beispiel in der Grenzschicht) für das Auftreten und die Stärke von Hitzewellen quantifiziert. Zusammengenommen sollen die Untersuchungen die Frage klären, welche Prozesse und welche Skalen die Vorhersagbarkeit von Hitzewellen am stärksten beeinflussen.
Die Ziele dieses Teilprojektes sind das bessere Verständnis der Ursachen extremere Hochwasserereignisse, die Einschätzung möglicher zukünftiger Hochwasserextremereignisse und die Untersuchung der Vorhersagbarkeit dieser Ereignisse. Dies soll aus der Perspektive der Vielzahl beteiligter atmosphärischer Prozesse und ihrer Skalenvielfalt durchgeführt werden. Daher wird dieses Teilprojekt wichtige Beiträge in der Forschergruppe SPATE liefern. Unter diesen generellen Zielen wollen wir folgende Forschungsfragen adressieren: 1. Was sind die großskaligen atmosphärischen Vorbedingungen für extreme Hochwasserereignisse? 2. Welche Prozesse verstärken den Niederschlag und die Niederschlagswirkung regional/lokal und verursachen dadurch extreme Hochwasserereignisse? 3. Was sind die raumzeitliche Variabilität und die Klimazukunft dieser atmosphärischen Faktoren und was sind ihre Antriebsfaktoren im Klimasystem? Die beiden ersten Fragen sollen in der ersten Phase (PH1, Monate 1 bis 36) der Forschergruppe SPATE bearbeitet werden. Die dritte Frage soll in Phase 2 bearbeitet werden. Zusätzlich sollen atmosphärische Felder, wie beispielsweise Niederschlag, und abgeleitete Indikatorzeitserien für andere Teilprojekte auf Basis einer über 100jährigen Reanalyse, meteorologischer Beobachtungen und Klimasimulation bereitgestellt werden. Der Forschungsplan der ersten Phase besteht aus drei Arbeitspaketen. Bevor die meteorologischen Ursachen extremer Hochwasserereignisse systematisch untersucht werden können, ist die Erstellung einer langzeitlichen (hier über 100-jährigen) vier-dimensionalen meteorologischen Referenz notwendig (Arbeitspaket 0). Die Referenz basiert auf aufbereiteten Niederschlagsdaten, raumzeitlich (mit dem Modell COSMO-CLM) verfeinerten (auf 12 km Gitterdistanz) Reanalysen (ERA-20C ab 1901, NOAA/NCEP 20 CR für den Zeitraum 1851 bis 1900). Diese Referenz erlaubt eine robuste Statistik der Hochwasser-Wetterlagen-Beziehungen und des Verfolgens der Feuchte im atmosphärischen System (Arbeitspaket 1). Regionale und lokale den Niederschlag verstärkende Faktoren (wie Bodenfeuchte-Niederschlagswechselwirkung, frontale/orographische Hebung mit/ohne konvektive Aktivität) werden in Arbeitspaket 2 mit konvektionserlaubenden Simulationen (Gitterdistanzen kleiner als 2 km) mit COSMO-CLM untersucht. In der zweiten Projektphase planen wir zwei Arbeitspakete. Ein Paket wird die klimatologischen Antriebsfaktoren und die multi-skalige Vorhersagbarkeit bearbeiten. In einem weiteren Arbeitspaket wird die Entwicklung von Hochwasserereignissen aus meteorologischer Perspektive bis in das Jahr 2100 betrachtet. Dieses Teilprojekt wird extreme Hochwasserereignisse und deren Eigenschaften den multiskaligen atmosphärischen Prozessen zuordnen und wird außerdem die Zuordnung hydrologischer Prozesse in der Forschergruppe SPATE unterstützen.
Untersucht wird die Auswirkung der Variation von Kenngrößen in Wolkenparameterisierungen sowie von Umgebungsbedingungen auf die Wolkenentwicklung, im dem Hauptaugenmerk auf Eigenschaften, die sich als robust erweisen. Unsicherheiten in den Wolkenparametern werden mit einem Bayesischen Ansatz untersucht. Zur Bestimmung des Einflusses variabler Umgebungsbedingungen werden sich ergänzende inverse Methoden benutzt. In einer Synthese wird zuletzt die Variabilität von Wolken und deren robusten Eigenschaften in Abhängigkeit von den Modellparametern und den Umgebungsbedingungen bestimmt.
Ein wesentlicher Aspekt dieses Projektes ist es, eine verbesserte Darstellung von Bodenkrusten (biotisch uns abiotisch) in Modellen für äolische Erosion und Transportprozesse zu entwickeln. Ziel ist es, die langfristige Wechselwirkung zwischen äolischen, biologischen und Bodenbildungs-Prozessen, beeinflusst von atmosphärischen Parametern wie z.B. Luftfeuchtigkeit, in der Atacama Wüste zu untersuchen. Es besteht ein starker Bezug zu biologischen, boden- und materialkundlichen Teilprojekten des SFB.
Ziel dieses Projektes ist ein verbessertes Verständnis der Prozesse, welche die Vorhersagbarkeit von Niederschlag auf Zeitskalen von Tagen bis Wochen in der Westafrikanischen Monsunregion erhöhen oder reduzieren. Innovative Aspekte und besondere Herausforderungen im Projekt liegen in der Identifikation von geeigneten Metriken zur Definition von rein tropischen, rein extratropischen sowie gemischten Wetterregimen über Westafrika in der Vor-, Haupt- und Nachmonsunzeit sowie in der Anwendung von Nachbearbeitungsverfahren von Ensemblevorhersagen in tropischen anstatt mittleren Breiten.
Dieses Teilprojekt untersucht die Rolle von spontanen Emissionen und die anschließende Anregung von internen Schwerewellen für die interne Dissipation in quasi-balancierten Strömungen unter Bedingungen die charakteristisch für die globale Ozeanzirkulation sind. Wir werden das Thema, mit Hilfe einer Kombination von verbesserter Diagnose, einem Verständnis der Prozesse in idealisierten Modellumgebungen und einer genauen Analyse von Schwerewellenaktivität in einem Ozeanzirkulationsmodell basierend auf den primitiven Gleichungen bearbeiten.
Dieses Projekt zielt auf eine systematische Quantifizierung der Vorhersageunsicherheit für Spitzenböen über Deutschland ab, die im Zusammenhang mit Tiefdruckgebieten während des Winterhalbjahres auftreten. Das allgemeine Vorgehen dabei ist, verschiedene Quellen für Unsicherheit gemäß der angeregten Skalen (synoptisch bis Grenzschichtturbulenz) zu unterscheiden. Dazu werden Modelldaten (z.B. globale und regionale Ensemblevorhersagen, Grobstruktursimulationen) sowie Beobachtungsdaten (z.B. Messungen von neuartigen Doppler-Lidarsystemen, verschiedene Routinebeobachtungen) verwendet.
Der Einfluss dreidimensionaler strahlungsbedingter Erwärmungs- und Abkühlungsraten wird systematisch mit Hilfe eines analytischen Wolkenmodells, eines Grobstrukturmodells und eines numerischen Wettervorhersagemodells untersucht. Neue Parametrisierungen werden für die beiden Skalen entwickelt, um zu quantifizieren, wie diese Prozesse die Wolkenbildung, die Wolkenmikrophysik und schließlich die Dynamik beeinflussen. Diese Untersuchungen werden dazu beitragen, das Verständnis der Strahlungs-Wolken-Wechselwirkung deutlich zu verbessern und die Strahlungsprozesse als diabatische Wärmequelle und -senke in der Atmosphäre zu quantifizieren.
Origin | Count |
---|---|
Bund | 47 |
Wissenschaft | 2 |
Type | Count |
---|---|
Förderprogramm | 47 |
License | Count |
---|---|
offen | 47 |
Language | Count |
---|---|
Deutsch | 46 |
Englisch | 43 |
Resource type | Count |
---|---|
Keine | 29 |
Webseite | 18 |
Topic | Count |
---|---|
Boden | 28 |
Lebewesen & Lebensräume | 28 |
Luft | 42 |
Mensch & Umwelt | 47 |
Wasser | 28 |
Weitere | 47 |