Der Indikator „Luftschadstoffbelastung“ beschreibt die Einwirkung von Störfaktoren auf die Menschen und die natürliche Umwelt. Besonders hohe Schadstoffwerte entstehenden bei der Energieerzeugung, im Straßenverkehr, in der Landwirt-schaft und in der Industrie. Feinstaub (particulate matter, PM) gilt dabei als besonders gesundheitsschädigend und ist vornehmlich in dicht besiedelten Gebieten eine Belastung. Grenzwerte werden durch die Europäische Union und die Weltgesundheitsorganisation vorgegeben.
Die Motoren von Binnenschiffen gelten allgemein als ineffizient und dreckig - ihr Schadstoffausstoß gilt immer noch als zu hoch. Aber ist diese pauschale Aussage richtig? Die Ladungsmenge auf einem einzelnen Binnenschiff übertrifft diejenige von LKW und Bahn um ein Vielfaches, wodurch der Transport im Allgemeinen sehr effizient ist. Trotzdem ist der Schadstoffausstoß verhältnismäßig hoch, weshalb die Europäische Union die Grenzwerte für ausgestoßene Schadstoffe auch für die Binnenschifffahrt verschärfen wird. Im Rahmen des europäischen Forschungs- und Innovationsprogramms HORIZON2020 beteiligt sich die BAW am Vorhaben PROMINENT (promoting innovation in the inland waterways transport sector; http://www.prominent-iwt.eu/). Das Vorhaben hat zum Ziel, den Treibstoffbedarf und die Luftschadstoffemissionen der Binnenschiffe durch technische Maßnahmen und energieeffiziente Navigation zu reduzieren. Mit der Entwicklung eines Assistenzsystems erhält ein Schiffsführer Hinweise, wie er seinen Zielhafen treibstoffsparend und termingerecht erreichen kann. Dafür werden neben Motor- und Verbrauchsdaten von Schiffen auch Informationen zur Wassertiefe, Strömungsgeschwindigkeit und Wasserspiegellage für den zu befahrenden Flussabschnitt benötigt. Da präzise Peildaten und mehrdimensionale numerische Modelle nicht flächendeckend für alle Wasserstraßen innerhalb der EU verfügbar sind, rüstet die BAW Binnenschiffe mit Messgeräten zur Erfassung von Sohlenhöhen und Strömungsgeschwindigkeiten aus. Dabei werden gleichermaßen die Machbarkeit und der Aufwand für die Installation und den Betrieb der Sensorik bewertet. Die Reederei Deymann Management GmbH und Co. KG mit Sitz in Haren (Ems) unterstützt das Vorhaben, indem sie die Installation der Sensoren auf dem Großmotorgüterschiff (GMS) MONIKA DEYMANN gestattet. Das Schiff wurde im Juli 2016 in den Dienst gestellt. Die BAW hat in der Bauphase den Einbau und die Verkabelung der geplanten Sensoren mit der Reederei sowie der ausführenden Werft abgestimmt und durchgeführt. Das 135 m lange und 14,2 m breite GMS verkehrt derzeit im Liniendienst zwischen Antwerpen und Mainz. Es fährt in der Regel mit drei Lagen Containern, woraus ein mittlerer Tiefgang zwischen 1,8 m und 2,5 m resultiert. Für einen Umlauf Antwerpen - Mainz - Antwerpen werden sieben bis acht Tage benötigt, sodass das Schiff den Mittelrhein rund zweimal pro Woche passiert. Eine besondere Herausforderung ist es, von einem Binnenschiff aus die Strömungsgeschwindigkeiten im laufenden Schiffsbetrieb zu erfassen, da die Strömung im nahen Umfeld des Schiffes durch das Rückströmungsfeld gestört wird. Dessen Größe und Ausdehnung hängt insbesondere vom Gewässerquerschnitt und der Schiffsgeschwindigkeit gegenüber Wasser ab. Bei geringen Wassertiefen kann daher die Geschwindigkeit nicht vertikal unter einem Binnenschiff gemessen werden, wie es bei Messschiffen sonst üblich ist. (Text gekürzt)
Als ultrafeine Partikel werden Teilchen mit Durchmessern kleiner als 100 nm bezeichnet. Die ultrafeinen Partikel entstehen in Verbrennungsprozessen, die unter Sauerstoffmangel stattfinden. Hierbei sind u.a. der Straßenverkehr mit seinen unzähligen instationären Verbrennungen, Industrieprozesse und Hausbrand zu nennen. Partikel dieses Größenbereichs können sehr spezielle chemische oder physikalische Wechselbeziehungen mit der Umgebung eingehen. Man beobachtet bei ultrafeinen Partikeln vorwiegend Diffusion, wogegen sich größere Teilchen eher durch Anlagerung bzw. Sedimentation auszeichnen (Limbach, 2005). In der Europäischen Union gilt seit Januar 2005 ein Grenzwert für Feinstaub, d.h. für Partikel kleiner als 10ìm (PM10), vorgeschrieben. Für ultrafeine Partikel gibt es in Europa bisher keine eigenen Grenzwerte. In einem bis dahin einmaligen Projekt wurde die Entwicklung der Belastung mit ultrafeinen Partikeln in Erfurt über zehn Jahre quantitativ bestimmt. Dabei wurde ein deutlicher Anstieg festgestellt (Krug, 2005). Die Korngrößen des Ultrafeinstaubs können das menschliche Respirationssystem erreichen. Man spricht daher vom inhalierbaren Anteil des Feinstaubs. Partikel kleiner als 100 nm werden als noch gefährlicher eingestuft, da sie lungengängig sind. Wegen ihrer geringen Größe können einzelne ultrafeine Partikel ein Lungenepithel durchqueren. Ein Weitertransport zu Leber, Knochenmark oder Herz ist möglich. Die Ultrafeinpartikel können sich in der Lunge bis zu mehreren Monaten ablagern bzw. verbleiben (WHO,1997). Es sind einige Verfahren entwickelt worden, um die PAK-Belastung auf Menschen zu erfassen und ihre Auswirkungen zu beschreiben. Dabei wurde Benzo(a)Pyren oft als Indikator für die Präsenz von karzinogenen PAK in der Umwelt genutzt. Verbreitet ist zum Beispiel die Bestimmung von PAK in Blut oder Urin und die Untersuchung der Auswirkungen von PAK auf den Metabolismus in Organen wie Niere und Leber (Larsen, 1995). Die Exposition durch NPAK erfolgt hauptsächlich über die Luft. Es gibt bislang wenige Studien, welche die Langzeitwirkung der inhalativen Aufnahme untersuchen. Darüber hinaus gelten auch die Metaboliten der NPAK als kanzerogen (Uhl, 2007). Laut WHO gibt es erheblichen Forschungsbedarf hinsichtlich der Exposition der Menschen und der Wirkungen von NPAK auf die menschliche Gesundheit (IPCS 2003). Obwohl die NPAK nur einen Bruchteil (1 bis 10Prozent) der PAK ausmachen (Nielsen, 1984), ist spezielle Aufmerksamkeit wegen ihrer hohen biologischen Aktivität notwendig. Zahlreiche NPAK wirkten in Tierversuchen deutlich mutagen und kanzerogen (Fiedler et.al, 1990). Über ihr Verhalten und ihre Anreicherung in Boden und Staub ist bis jetzt noch sehr wenig bekannt. Ebenso wenig wie über deren Metabolismus und Akkumulation in biologischem Gewebe (Fiedler et al., 1991, Fieder und Mücke 1990). (...)
Der Indikator „Luftschadstoffbelastung“ beschreibt die Einwirkung von Störfaktoren auf die Menschen und die natürliche Umwelt. Besonders hohe Schadstoffwerte entstehenden bei der Energieerzeugung, im Straßenverkehr, in der Landwirt-schaft und in der Industrie. Feinstaub (particulate matter, PM) gilt dabei als besonders gesundheitsschädigend und ist vornehmlich in dicht besiedelten Gebieten eine Belastung. Grenzwerte werden durch die Europäische Union und die Weltgesundheitsorganisation vorgegeben.
Dieser Datensatz stellt die Ergebnisse einer Greenpeace-Recherche von 2025 zu gefährlichen Chemikalien in verschiedenen Textilprodukten von SHEIN-Plattformen dar. Die Recherche wurde im Rahmen der Greenpeace-Kampagne gegen Fast Fashion in der Modeindustrie durchgeführt, in der SHEIN der größte Anbieter ist. 2022 hat Greenpeace bereits eine ähnliche Recherche zu SHEIN-Textilprodukten durchgeführt, die in der EU verkauft wurden, und dabei Werte von gefährlichen Chemikalien festgestellt, die über den EU-Grenzwerten lagen. Der aktuelle Datensatz stellt die Ergebnisse der Follow-up Recherche von 2025 vor, um zu beurteilen, ob der Fast-Fashion- Konzern seine Chemikalien Managementpraktiken verbessert hat.
Die Luftqualität in Berlin hat sich in den letzten Jahrzehnten stark verbessert. Seit 2020 werden die aktuell geltenden Grenz- und Zielwerte für Luftschadstoffe stadtweit eingehalten – ein Erfolg für Umwelt und Gesundheit. Grundlage für den Rückgang der Luftbelastung sind die schrittweisen Verschärfungen von Grenzwerten zum Schadstoffausstoß von Kraftwerken, Industrie, Kleinfeuerungsanlagen und Fahrzeugen, die auf europäischer und nationaler Ebene festgelegt wurden und werden. Zusätzlich beigetragen haben Maßnahmen aus den Berliner Luftreinhalteplänen . Die Luftqualität in Berlin wird seit Mitte der 1970er Jahren kontinuierlich überwacht, um die Immissionsbelastung durch Luftschadstoffe zu dokumentieren. Seit 2002 erfolgen die Messungen gemäß den Vorschriften der Europäischen Luftqualitätsrichtlinien. Zur besseren Einordnung der Messwerte werden drei Belastungsregime unterschieden: Verkehr : Messstationen an Hauptverkehrsstraßen mit hoher Belastung Innerstädtischer Hintergrund : Messstationen in innerstädtischen Wohngebieten mit geringem direktem Verkehrseinfluss Stadtrand : Messstationen am Stadtrand zeigen die quellferne Belastungssituation und erlauben zudem auch die Beurteilung über den Eintrag von Luftschadstoffen von außerhalb des Stadtgebietes Die folgenden Abbildungen zeigen den langjährigen Verlauf der mittleren Luftbelastung einzelner Schadstoffe in diesen Belastungsregimen. Für Stickstoffdioxid NO₂, Feinstaub PM₁₀, PM₂ꓹ₅ und Ozon O₃ werden die langfristigen Entwicklungen basierend auf einem Differenzenmodell ermittelt, wie im Jahresbericht 2019 (PDF, 4,2 MB) beschrieben. Im Kern werden dabei die Differenzen der Jahresmittelwerte von einem zum darauffolgenden Jahr verwendet. Werte für die einzelnen Stationen nach Schadstoffen und sind verfügbar unter: Darstellung von Luftmessdaten | Berliner Luftgütemessnetz Ab 2030 müssen deutlich strengere EU-Grenzwerte gemäß der EU-Richtlinie 2024/2881 eingehalten werden, unter anderem für die Jahresmittelwerte von Stickstoffdioxid (20 statt 40 µg/m³), Partikel PM₁₀ (20 statt 40 µg/m³) und Partikel PM₂,₅ (10 statt 25 µg/m³). Diese künftigen Grenzwerte sind in den Abbildungen zusätzlich zu den derzeit geltenden Grenzwerten eingezeichnet. Stickstoffdioxid Schwebstaub / Partikel PM 10 Partikel PM 2,5 Ozon Polyzyklische aromatische Kohlenwasserstoffe (PAK) Schwefeldioxid Benzol Kohlenmonoxid Entwicklung der NO₂-Belastung in Berlin (1990 bis 2024) Die NO₂-Konzentrationen in Berlin sind in den vergangenen Jahrzehnten insgesamt deutlich zurückgegangen, wenn auch mit zeitweiligen Stagnationen. Seit 2020 werden die Grenzwerte an allen Stationen eingehalten. Die nebenstehende Grafik zeigt die langjährige Entwicklung der NO₂-Belastung der automatischen Messstellen sowie der acht beurteilungsrelevanten Passivsammlerstandorte (Passivsammler = PS). Die sehr kleinen Passivsammler befinden sich überwiegend an Straßen mit einer engen Randbebauung, in denen die Abgase der Fahrzeuge schlechter verdünnt werden. Daher liegt der Mittelwert über diese Passivsammler höher als der Mittelwert über die kontinuierlich messenden Verkehrsstationen. Hohe Stickstoffdioxidkonzentrationen werden überwiegend vom Straßenverkehr verursacht. Die höchsten NO₂-Werte treten an Hauptverkehrsstraßen auf. Dort waren die NO₂-Jahresmittelwerte bis 2019 etwa doppelt so hoch wie im städtischen Hintergrund und liegen heute im Mittel immer noch etwa ein Drittel höher als im städtischen Hintergrund. Überschreitungen der seit 2020 geltenden Grenzwerte traten daher nur an Hauptverkehrsstraßen auf. Der langfristige Verlauf zeigt: In den 1990er- bis 2010er-Jahren kam es zu einem Rückgang der NO₂-Belastung infolge technischer Maßnahmen, wie dem Einsatz von Katalysatoren in Otto-Pkw und die Ausrüstung von Kraftwerken mit Entstickungsanlagen. Auch die Einführung der Berliner Umweltzone – in zwei Stufen 2008 und 2010 – trug zur Verbesserung der Luftqualität bei. Insbesondere reduzierte sie die Zahl der Otto-Fahrzeuge ohne Katalysator im innerstädtischen Verkehr. Zwischen 2000 und 2015 blieben die NO₂-Jahresmittelwerte auf einem annähernd gleichbleibenden Niveau. Dabei kamen zwei Gründe zusammen. Zum einen stieg der Anteil an Diesel-Pkw mit hohen Stickoxidausstoß zulasten der Otto-Pkw mit Katalysator. Zum anderen wurde bei Diesel-Pkw der reale Stickoxidausstoß nicht im gesetzlich vorgeschriebenen Maße vermindert (Dieselabgasskandal von 2015). Erst mit der Einführung neuer Abgasvorschriften (Euro 6d-TEMP und Euro 6d) mit Abgasprüfungen im realen Straßenverkehr sowie Software-Updates und Nachrüstung von Diesel-Fahrzeugen konnte in den folgenden Jahren eine deutliche Reduzierung des Schadstoffausstoßes von Diesel-Pkw erreicht werden. Auffällig sind die erhöhten Jahresmittelwerte von 2006. Vor allem für die Straßenmessstellen zeigen diese hohen Jahresmittelwerte eindrucksvoll den Einfluss von meteorologischen Bedingungen auf die Konzentration von Luftschadstoffen. Denn das Jahr 2006 war geprägt durch eine hohe Anzahl windschwacher Hochdruckwetterlagen und ungünstigen meteorologischen Ausbreitungsbedingungen. Seit 2016 sind die NO₂-Werte insbesondere durch die verschärften Abgasvorschriften Kraftfahrzeuge in allen Belastungsbereichen wieder deutlich gesunken. Konkrete Messdaten belegen: An Hauptverkehrsstraßen gingen die NO₂-Werte zwischen 2016 und 2024 um etwa 55 % zurück. Der stärkste Rückgang wurde zwischen 2019 und 2020 beobachtet – begünstigt auch durch Maßnahmen der Berliner Luftreinhalteplanung wie die Nachrüstung und Modernisierung von Dieselbussen und Einführung von Elektro-Bussen durch die BVG , Tempo 30 auf hoch belasteten Hauptverkehrsstraßen , Ausweitung der Parkraumbewirtschaftung , sowie die Förderung des Umweltverbunds aus öffentlichem Nahverkehr , Rad- und Fußverkehr . Zusätzlich führten Lock-Down-Phasen während der Corona-Pandemie 2020-2022 zu Rückgängen des Verkehrs und verstärkten die Abnahme der NO₂-Belastung. Daraus resultiert weiterhin ein höherer Anteil von Home-Office mit einem dämpfenden Effekt auf den Berufsverkehr. 2023 und 2024 lagen die NO₂-Mittelwerte im Berliner Luftgüte-Messnetz (BLUME) je nach Standort zwischen 8 und 20 µg/m³, während Passivsammler 2024 im Mittel 28 µg/m³ zeigten Der zukünftige EU-Grenzwert von 20 µg/m³, der ab 2030 einzuhalten ist, wird noch an einigen hoch belasteten Straßen überschritten. Es besteht also weiterhin Handlungsbedarf, vor allem in der Verkehrsplanung, beim Umstieg auf emissionsarme Fahrzeuge und der Förderung nachhaltiger Mobilität. Auch die Umsetzung der Berliner Wärmestrategie trägt durch den schrittweisen Ersatz fossiler Heizsysteme zur Reduktion von Feinstaub- und Stickoxid-Emissionen bei. Weitere Informationen zur Definition und Messung von NO₂ bietet das Umweltbundesamt . Entwicklung der TSP- und PM₁₀-Belastung in Berlin (1987 bis 2024) Ende der 1990er Jahre wurde mit der Messung von Partikeln PM₁₀, also von einatembaren Teilchen kleiner als 10 Mikrometer (µm), begonnen. Sie ersetzte die Gesamtstaubmessung (TSP – total suspended particles), bei der auch grobe Teilchen > 10 µm erfasst wurden. Deshalb sind beide Reihen nicht direkt miteinander vergleichbar. Der sehr starke Rückgang der Gesamtstaubbelastung zwischen 1987 und 1997 beruht im Wesentlichen auf dem Umstieg von Kohleeinzelraumfeuerungen („Kachelöfen“) auf Gasheizungen und Fernwärme sowie der Modernisierung oder Stilllegung von Kraftwerken in den Gebieten der ehemaligen DDR. Die langfristige Entwicklung zeigt einen deutlichen Rückgang der PM₁₀-Konzentrationen in Berlin: Seit 2000 sanken die Werte an verkehrsnahen Standorten um ca. 40 %, in Wohngebieten und am Stadtrand um rund 30 %. Seit 2004 wird der gesetzliche Jahresmittelgrenzwert von 40 µg/m³ an allen Messstationen eingehalten. Die Zahl der Tage mit Überschreitungen des Tagesmittelgrenzwerts von 50 µg/m³ ist ebenfalls deutlich rückläufig. Die letzte Überschreitung der zulässigen Anzahl von 35 Überschreitungstagen wurde 2015 registriert (Station MC174 an der Frankfurter Allee mit 36 Tagen). Die Feinstaubbelastung ist stark witterungsabhängig: Kalte Winter mit hohem Heizbedarf führen häufig zu höheren Werten. Hochdruckwetterlagen mit geringen Windgeschwindigkeiten und Inversionswetter verhindern den Abtransport von Schadstoffen. Ferntransporte (z. B. großräumige Verfrachtung von Schadstoffen aus Kraftwerken und Holzfeuerungen, der Landwirtschaft oder Saharastaub ) können zusätzlich zur Belastung beitragen. Beispiele: Günstige Wetterjahre wie 2007, 2012, 2017, 2019, 2020, 2022, 2023 führten zu vergleichsweise niedrigen PM₁₀-Konzentrationen, ungünstige Wetterbedingungen in den Jahren 2003, 2006, 2010, 2011, 2014 und 2018 zu höheren Belastungen. Der langjährig rückläufige Trend der PM₁₀-Belastung ist auf gezielte Maßnahmen zurückzuführen: Rauchgasreinigung bei Kraftwerken und Abfallverbrennung, Ersatz von Kohleheizungen, Partikelfilter für Diesel-Fahrzeuge und Baumaschinen , sowie Förderung des Umweltverbunds aus öffentlichem Nahverkehr und Rad- und Fußverkehr und Tempo 30 auf hoch belasteten Hauptverkehrsstraßen. Der verkehrsbedingte Anteil an der PM₁₀-Belastung wurde seit den späten 1990er Jahren um rund 70 % reduziert. Ab 2030 gelten in der EU strengere Grenzwerte : Der Jahresmittelwert wird auf 20 µg/m³ gesenkt, ein Tagesmittelgrenzwert von 45 µg/m³ darf an höchstens 18 Tagen pro Jahr überschritten werden (bisher: 35 Tage mit 50 µg/m³). An vielen Berliner Messstationen werden diese Werte bereits eingehalten, an verkehrsnahen Standorten jedoch teils noch überschritten. Es besteht somit weiterer Handlungsbedarf – insbesondere im Straßenverkehr und bei häuslichen Emissionen. Weitere Informationen zur Definition und Messung von PM₁₀ bietet das Umweltbundesamt . Entwicklung der PM₂,₅-Belastung in Berlin (2004 bis 2024) Als Partikel PM₂ꓹ₅ werden sehr kleine Partikel bezeichnet, deren aerodynamischer Durchmesser kleiner als 2,5 µm ist. Sie können nachhaltig die Lunge schädigen, da sie tief in die Atemwege eindringen und länger dort verweilen. Außerdem können hohe PM₂ꓹ₅-Belastungen zu Herz- und Kreislauferkrankungen führen. Der enthaltene Ruß gilt als krebserregend. In den vergangenen zwei Jahrzehnten ist die PM₂,₅-Belastung in Berlin deutlich gesunken: An verkehrsnahen Messstationen um rund 45 %, im innerstädtischen Hintergrund um etwa 40 %. Der gesetzliche Jahresmittelgrenzwert von 25 µg/m³ wird seit seiner Einführung im Jahr 2015 an allen Berliner Messstellen zuverlässig eingehalten. Auch der gleitende Drei-Jahres-Mittelwert im städtischen Hintergrund liegt seit Jahren unter dem Zielwert von 20 µg/m³. Die PM₂,₅-Konzentrationen unterliegen jedoch starken witterungsbedingten Schwankungen. Kalte Winter mit erhöhtem Heizbedarf führen zu mehr Emissionen. Inversionslagen verhindern den Luftaustausch, sodass sich Schadstoffe anreichern. Ferntransporte – etwa Abgase aus Kraftwerken, Industrie oder Holzfeuerungen, Saharastaub oder landwirtschaftliche Quellen – tragen zusätzlich zur Belastung bei. Auch die sekundäre Partikelbildung – z. B. aus Stickoxiden, Schwefeldioxid oder Ammoniak – ist wetterabhängig. Günstige Wetterjahre mit viel Wind und Regen wie 2012, 2017, 2019, 2020, 2022 und 2023 führten zu niedrigeren PM₂,₅-Werten. In ungünstigen Jahren wie 2006, 2010, 2014, 2018 und 2024 wurden dagegen teils erhöhte Belastungen gemessen. Der Rückgang der PM₂,₅-Belastung ist auf eine Vielzahl von Luftreinhaltemaßnahmen zurückzuführen: strengere EU-Abgasnormen, der verstärkte Einsatz von Partikelfiltern für Dieselfahrzeuge, u.a. durch die Einführung der Berliner Umweltzone ab 2008, die Modernisierung veralteter Heizungsanlagen, der Umstieg auf emissionsärmere Energieträger und die Reduktion gasförmiger Vorläuferstoffe. Seit 2023 ergänzt die Informationskampagne „Richtig Heizen mit Holz“ das Berliner Maßnahmenpaket. Ab 2030 gelten in der EU deutlich strengere Grenzwerte : Der Jahresmittelgrenzwert für PM₂,₅ wird von 25 µg/m³ auf 10 µg/m³ gesenkt. Dieser Wert wird derzeit an Verkehrsmessstationen und teilweise auch im städtischen Hintergrund nicht eingehalten. Zudem wird ein neuer Tagesmittelgrenzwert von 25 µg/m³ eingeführt, der an höchstens 18 Tagen pro Jahr überschritten werden darf. Zusätzlich gilt ab 2030 eine Minderungsverpflichtung für die PM₂ꓹ₅-Belastung im städtischen Hintergrund. Zur Einhaltung der künftigen Grenzwerte sind zusätzliche Maßnahmen nötig – vor allem in den Bereichen Verkehrsplanung, emissionsarme Wärmeversorgung und umweltfreundliche Stadtentwicklung. Da circa 60 bis 70 % der in Berlin gemessenen Partikeln aus Quellen außerhalb Berlins stammen, muss die Partikelbelastung europaweit gesenkt werden. Weitere Informationen zur Definition und Messung von PM₂ꓹ₅ bietet das Umweltbundesamt . Dieser dreiatomige Sauerstoff ist ein natürlicher Bestandteil der Luft und wird nur selten direkt emittiert. Die Bildung von bodennahem Ozon geschieht über chemische Reaktionen aus Vorläuferstoffe unter dem Einfluss von UV-Strahlung. Der wichtigste Vorläuferstoff ist Stickstoffdioxid (NO₂). Aber auch flüchtige organische Verbindungen (VOC, volatile organic compounds) sind für die Ozonbildung von Bedeutung, da diese zur Umwandlung von Stickstoffmonoxid (NO) zum Ozonvorläuferstoff NO₂ beitragen. Abgebaut wird Ozon wiederum durch NO. Die höchsten Ozonkonzentrationen treten im Sommer während sonnigen Schönwetterperioden auf. Denn dann ist die UV-Einstrahlung hoch und zudem werden von der Vegetation bei hohen Temperaturen mehr VOCs freigesetzt. Entwicklung der O₃-Belastung in Berlin (1988 bis 2024) Die langfristige Entwicklung der Jahresmittelwerte zeigt zwei gegensätzliche Trends je nach Standorttyp: Im innerstädtischen Hintergrund ist seit Ende der 1980er Jahre ein nahezu kontinuierlicher Anstieg der mittleren Ozonkonzentrationen zu beobachten. Eine Regressionsanalyse ergibt eine Zunahme von etwa 0,4 µg/m³ pro Jahr. Am Stadtrand hingegen ist nach einem Rückgang Anfang der 1990er Jahre eine geringere Zunahme um rund 0,1 µg/m³ pro Jahr festzustellen. Die mittlere Ozonbelastung ist damit inzwischen im städtischen Hintergrund genauso hoch wie am Stadtrand. Für die verkehrsnahe Station MC174 liegen seit 2020 eigene Ozon-Messdaten vor, die deutlich niedrigere Werte zeigen – beispielsweise 42 µg/m³ im Jahr 2019, 43 µg/m³ 2020 und 47 µg/m³ 2024. Ursache dafür ist der direkte NO-Ausstoß aus dem Straßenverkehr, der Ozon effektiv reduziert. Die Jahresmittelwerte unterliegen darüber hinaus starken witterungsbedingten Schwankungen. Unterschiede von bis zu 7 µg/m³ zwischen zwei aufeinanderfolgenden Jahren sind nicht ungewöhnlich. Besonders hohe Ozonwerte wurden in den Jahren 2018 und 2019 gemessen – bedingt durch heiße, sonnige Sommer mit stabilen Hochdruckwetterlagen. Die Jahre 2023 und 2024 wiesen mit jeweils 52 bis 53 µg/m³ im innerstädtischen Hintergrund die höchsten je gemessenen Mittelwerte auf und bestätigen damit den langfristigen Trend. Der beobachtete Anstieg der mittleren Ozonwerte lässt sich vor allem auf die Reduktion der NO-Konzentrationen zurückführen, insbesondere im Sommer. Weniger NO bedeutet eine geringere Abbaurate von Ozon, wodurch sich O₃ länger in der Atmosphäre hält. Weitere Einflussfaktoren sind die Trockenheit und der Hitzestress der Vegetation – wie in den Jahren 2018 und 2019. Dies führt zu geringeren VOC-Emissionen, wodurch insbesondere die Bildung extremer Ozonspitzen reduziert wird. Zudem haben Emissionseinsparungen bei den Ozonvorläufern NOₓ und VOCs aus Verkehr, Industrie und privatem Gebrauch (etwa Farben, Lacke, Lösungsmittel) die Häufigkeit hoher Kurzzeitbelastungen deutlich reduziert. Kurzzeitige O₃-Belastungsspitzen sind gesundheitlich besonders relevant, da erhöhte Ozon-Konzentrationen zu Reizerscheinungen der Augen und Schleimhäute sowie Lungenschäden führen können. Deshalb wurden zum Zweck des Gesundheitsschutzes die Informationsschwelle von 180 µg/m³ und die Alarmschwelle von 240 µg/m³, jeweils als Mittelwert über eine Stunde, festgelegt. Diese Belastungsspitzen sind jedoch im Gegensatz zur mittleren O₃-Belastung seit Jahren rückläufig, selbst in Jahren mit eigentlich günstigen Bedingungen für Ozonbildung. So zeigen 2018, 2019, 2023 und 2024: Trotz hoher Temperaturen kam es nicht zu extremen Ozonspitzen, vermutlich infolge niedriger NO₂-Werte und verringerter VOC-Emissionen durch Trockenheit. Weitere Informationen zur Definition und Messung von Ozon bietet das Umweltbundesamt . Ein Zukunftsausblick: Für Ozon gibt es bislang keine EU-Grenzwerte für Jahresmittelwerte, aber die Einhaltung der Informations- und Alarmschwellen bleibt essenziell. Mit dem Klimawandel – mehr Hitzetage und längere Trockenperioden – wird die Bedeutung der Ozonbelastung weiter zunehmen. Eine wirksame Reduktion von Vorläuferstoffen bleibt daher entscheidend, um Gesundheit und Umwelt langfristig zu schützen. Entwicklung der Benz[a]pyren-Belastung in Berlin (1993 bis 2022) Polyzyklische aromatische Kohlenwasserstoffe (PAK) gelten als krebserregende organische Verbindungen. Diese Stoffe entstehen überwiegend bei schlechter (unvollständiger) Verbrennung von Öl, Kohle oder Holz. Wichtige Quellen sind in Berlin Holzverbrennung in Kleinfeuerungsanlagen und Dieselmotoren ohne Filter. Als wichtigste Messgröße wird dabei Benzo(a)pyren (B(a)P) verwendet. Bereits Mitte der 1990er Jahre gab es erste orientierende Messungen von Benzo(a)pyren an der Messstelle Nansenstraße in Neukölln. Seit 2006 werden regelmäßige Messungen an vier verschiedenen Standorten (Hauptverkehrsstraßen, Wohngebiete und städtischer Hintergrund) durchgeführt. Damit wird die Einhaltung des gesetzlich festgelegten Zielwerts für Benzo(a)pyren von 1 ng/m³ als Jahresmittelwert überwacht. Ein Blick auf die langfristige Entwicklung zeigt: Im städtischen Wohngebiet ist die Belastung seit den 1990er Jahren um den Faktor fünf gesunken. In den Jahren 2006 und 2010 wurde an der Messstation im innerstädtischen Wohngebiet Neukölln sowie an der Hauptverkehrsstraße Schildhornstraße der Grenzwert von 1 ng/m³ erreicht. Dieser Anstieg wird unter anderem auf besonders kalte Winter und den damit einhergehenden erhöhten Verbrauch von Kohle und Holz in privaten Feuerungsanlagen zurückgeführt – wie Kohleheizungen, Holzöfen und Kaminen. Seit 2012 liegen die gemessenen PAK-Konzentrationen an allen Messstellen nahe beieinander und deutlich unter dem Grenzwert. Zwischen 2012 und 2021 bewegten sich die Jahresmittelwerte an allen Stationen zwischen etwa 0,3 und 0,5 ng/m³, 2022 sank die Belastung auf den niedrigsten bisher gemessenen Wert von 0,1 ng/m³. Entwicklung der SO₂-Belastung in Berlin (1988 bis 2019) Die Luftbelastung durch die meisten direkt emittierten Schadstoffe ist in den letzten 20 Jahren stark gesunken. Beim Schwefeldioxid, das hauptsächlich aus Kraftwerken, Industrie und Kohleöfen stammte, ist dieser Rückgang am deutlichsten. Die Entwicklung der SO₂-Belastung in Berlin ist in der Abbildung für den Zeitraum von 1976 bis 2019 dargestellt. Die blau gestrichelte Linie beruht auf Daten, welche bis 2000 im Jahresbericht des BLUME (Senatsverwaltung für Stadtentwicklung, 2001) als SO₂-Gebietsmittel veröffentlicht wurden, jedoch nicht in digitaler Form vorliegen. Seit 1989 liegen die als Punkte dargestellten Jahresmittelwerte der einzelnen Messstationen in digitaler Form in der Datenbank des BLUME vor. Auf Grundlage dieser Daten wurde unter Anwendung der Differenzenmethode der mittlere Verlauf der SO₂-Entwicklung aller Messstationen (rote Linie) und der Messstationen des städtischen Raums (innerstädtischer Hintergrund und Verkehr, gelbe Linie) berechnet. Die Emissionen sind durch die Sanierung oder Stilllegung von Industrieanlagen und die Installation von Rauchgasentschwefelungsanlagen in Kraftwerken Ende der 80er Jahre in West-Berlin und nach 1990 auch in den neuen Bundesländern und osteuropäischen Nachbarländern stark gesunken. Auch der fast vollständige Ersatz von Kohleheizungen durch Gasheizungen oder Fernwärme und der Einsatz von schwefelarmem Kraftstoff haben zur Verbesserung der Luftqualität beigetragen. Zwischen 2004 und 2014 lag die Schwefeldioxidimmission im gesamten Stadtgebiet, sowohl in der Innenstadt als auch in den Außenbezirken auf Jahresmittelwerte zwischen 1-4 µg/m³ . Seit 2015 liegt sie im Bereich von 1-2 µg/m³. Damit ist die Konzentration von Schwefeldioxid im Vergleich zu 1989 um fast 99 % zurückgegangen. Das heutige Konzentrationsniveau liegt mit Tagesmittelwerten von maximal 6 µg/m³ an drei Tagen im Jahr 2019 weit unterhalb der unteren Beurteilungsschwelle der 39. BImSchV von 50 µg/m³ an höchstens drei Tagen im Jahr. Die Messungen wurden daher im Jahr 2020 eingestellt. Entwicklung der Benzol-Belastung in Berlin (1993/94 bis 2022) Benzol gehört zu den krebserregenden Stoffen und kann Leukämie (Blutkrebs) verursachen. Benzol wird vorwiegend von Pkw mit Ottomotor emittiert. Durch den Einsatz des geregelten Katalysators, verbesserter Motortechnik, besserer Kraftstoffe und den Einsatz von Gaspendelsystemen an Tankstellen sowie in Tanklagern konnte die Emission dieses Schadstoffes in den letzten Jahren deutlich verringert werden. Entsprechend hat auch die Immissionsbelastung durch Benzol in den vergangenen Jahren in Berlin stark abgenommen. Die Benzolwerte im Jahr 2010 waren an den Hauptverkehrsstraßen nur ein Fünftel und im innerstädtischen Hintergrund nur noch ein Drittel so hoch wie 1993. Zwischen 2010 und 2022 hat sich die Belastung an der Verkehrsmessstation noch mal halbiert. Der seit 2010 einzuhaltende Grenzwert von 5 µg/m³ wird bereits seit dem Jahr 2000 unterschritten. In den letzten drei Jahren lag auch die straßennahe Benzolkonzentration im Jahresmittel unter 2 µg/m³. Ab 2030 gilt für Benzol ein Grenzwert von 3,4 µg/m³. Auch dieser Wert wird bereits deutlich unterschritten. Kohlenmonoxid (CO) entsteht bei der unvollständigen Verbrennung von kohlenstoffhaltigen Brennstoffen, insbesondere in Kleinfeuerungsanlagen (Holz, Kohle), schlecht eingestellten Ölheizungen und Verbrennungsmotoren. In den letzten drei Jahrzehnten nahm die Kohlenmonoxid-Belastung an den Hauptverkehrsstraßen und im innerstädtischen Hintergrund um jeweils ca. 80 % ab. Der starke Rückgang der Kohlenmonoxid-Belastung beruht zum einen auf der Einführung des geregelten Katalysators und effizienterer Motoren in Kraftfahrzeugen. Zum anderen hat auch der fast vollständige Ersatz von Kohleheizungen durch Gasheizungen oder Fernwärme dazu beigetragen. Dadurch wurde auch der seit 2005 einzuhaltende Kohlenmonoxid-Grenzwert zum Schutz der menschlichen Gesundheit von 10 mg/m³ als höchster 8-Stunden-Mittelwert eines Tages an allen Messstationen nie überschritten.
<p>Die wichtigsten Fakten</p><p><ul><li>Zwischen 2010 und 2023 ging der Anteil der Bevölkerung, der <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>-Konzentrationen oberhalb des <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>-Richtwerts von 15 µg/m³ im Jahresmittel ausgesetzt war, von 90,5 % auf 1,1 % zurück.</li><li>Seit 2019 lag der Bevölkerungsanteil mit einer Feinstaubbelastung oberhalb des EU Grenzwerts von 20 µg/m³ im Jahresmittel (verbindlich einzuhalten ab 2030) bei weniger als 0,5 %, im Jahr 2023 sogar bei 0 %.</li><li>Die aktuell geltenden Maßnahmen sollten weiter beibehalten und gegebenenfalls erweitert werden, um das Ziel der WHO Empfehlung im Hilblick auf die Belastung der Bevölkerung mit PM10 in 2030 erreichen zu können.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Feinstaub in der Atemluft ist gesundheitsschädlich. Die Feinstaubpartikel werden über die Atmung aufgenommen und können, je nach Größe, unterschiedlich tief in die Atemwege eindringen. Besonders kleine Partikel können über das Lungengewebe bis ins Blut gelangen. Feinstaub gilt als Auslöser für diverse Krankheiten (siehe <a href="https://www.umweltbundesamt.de/themen/luft/luftschadstoffe-im-ueberblick/feinstaub">„Feinstaub“</a>).</p><p>Feinstaub entsteht vorwiegend durch menschliche Aktivitäten, wie beispielsweise bei Verbrennungsprozessen oder durch mechanische Prozesse (z.B. Reifen- und Bremsabrieb bei Kraftfahrzeugen). Ein Teil des Feinstaubs entsteht in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> durch chemische Reaktionen gasförmiger Luftschadstoffe (wie Stickoxide und Ammoniak) und wird daher als „sekundärer“ Feinstaub bezeichnet.</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> erfasst die durchschnittliche jährliche <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>-Belastung in Deutschland basierend auf Messstationsdaten im ländlichen und städtischen Hintergrund. Vergleichsweise höher belastete Messstellen an Straßen mit hohem <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verkehrsaufkommen#alphabar">Verkehrsaufkommen</a> oder in der Nähe von großen Industrieanlagen werden nicht mit einbezogen. Daher könnte der Indikator die Belastungssituation in Deutschland tendenziell leicht unterschätzen.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Im gesamten Betrachtungszeitraum war ein nennenswerter Teil der Bevölkerung Deutschlands Feinstaub-Konzentrationen oberhalb des <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>-Richtwerts für die <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>-Fraktion von ausgesetzt. Dieser beträgt 15 µg/m³ im Jahresmittel. Die Anzahl der in Deutschland betroffenen Menschen weist von 2010 zu 2023 einen deutlichen Rückgang von rund 74 Mio. auf 0,9 Mio. Personen vor. Gleichzeitig nahm der Anteil der Bevölkerung mit einer PM10-<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Exposition#alphabar">Exposition</a> oberhalb des ab 2030 verbindlich geltenden EU-Grenzwerts (20 µg/m³ im Jahresmittel) von 34,7 Mio. in 2010 auf 0,0 Mio. Personen in 2023 ab. Seit 2019 lag der Bevölkerungsanteil bereits unter 0,5 %. Dies belegt, dass Maßnahmen zur Emissionsminderung während der letzten Jahre bereits zu einer deutlichen Reduktion der Feinstaubbelastung (PM10) in Deutschland geführt haben. Ein weiterer Rückgang der Belastung bis 2030 ist durch die Emissionsreduktionsverpflichtungen der <a href="https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32016L2284">NEC-Richtlinie</a> zu erwarten. Bei Umsetzung der Maßnahmen aus den nationalen Luftreinhalteprogrammen (in <a href="https://www.umweltbundesamt.de/themen/luft/regelungen-strategien/nationales-luftreinhalteprogramm#die-emissionshochstmengen-der-alten-nec-richtlinie">Deutschland</a> u. a. der „Kohleausstieg“, die Verringerung der Ammoniak-Emissionen aus der Landwirtschaft und die Verkehrswende (E-Mobilität)) können die Emissionen von Feinstaub und seinen Vorläufergasen bis 2030 weiter reduziert werden. Zum Schutz der Gesundheit und zur Erreichung des Ziels, dass 2030 der von der WHO empfohlene Richtwert nicht überschritten wird, ist die Aufrechterhaltung und Intensivierung von Maßnahmen auch auf europäischer Ebene erforderlich.</p><p>Im Dezember 2024 ist die überarbeitete europäische Luftqualitätsrichtlinie in Kraft getreten. Mit dieser wird ab dem Jahr 2030 die Einhaltung strengerer Grenz- und Zielwerte europaweit gesetzlich festgeschrieben. Für PM10 wird der neue verbindlich einzuhaltende EU-Grenzwert ab 2030 von 40 auf 20 µg/m³ im Jahresmittel gesenkt, der dem Zwischenziel 4 der WHO Empfehlungen entspricht.</p><p>Wie wird der Indikator berechnet?</p><p>Für den <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> werden Daten des chemischen Transportmodells REM-CALGRID mit <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM10#alphabar">PM10</a>-Messdaten der Immissionsmessnetze der Bundesländer und des <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> kombiniert und auf die Fläche Deutschlands übertragen. Dabei werden nur die Messstationen berücksichtigt, die keinem direkten Feinstaubausstoß z.B. aus dem Verkehr ausgesetzt sind. Die PM10-Daten werden anschließend mit räumlichen Informationen zur Bevölkerungsverteilung kombiniert. Der methodische Ansatz ist im Fachartikel <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/artikel_5_dnk.pdf">Kienzler et al. 2024</a> beschrieben.</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel „<a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-feinstaub">Bedeutung der Feinstaubbelastung für die Gesundheit</a>“.</strong></p>
<p>Die wichtigsten Fakten</p><p><ul><li>Der Anteil der Bevölkerung mit einer <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>-Belastung oberhalb von 10 µg/m³ im Jahresmittel (EU-Grenzwert verbindlich einzuhalten ab 2030) ist in Deutschland seit 2010 deutlich zurückgegangen.</li><li>Jedoch war zwischen 2010 und 2023 nahezu die gesamte Bevölkerung einer Feinstaubbelastung oberhalb des aktuellen <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>-Richtwerts für PM2,5 (5 µg/m³ im Jahresmittel) ausgesetzt.</li><li>Für einen verbesserten Gesundheitsschutz sind weitere Maßnahmen zur Reduktion der Feinstaubbelastung erforderlich.</li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Feinstaub in der Atemluft ist gesundheitsschädlich. Die Feinstaubpartikel werden über die Atmung aufgenommen und können, je nach Größe, unterschiedlich tief in die Atemwege eindringen. Besonders kleine Partikel können über das Lungengewebe bis ins Blut gelangen. Feinstaub gilt als Auslöser für diverse Krankheiten (siehe <a href="https://www.umweltbundesamt.de/themen/luft/luftschadstoffe-im-ueberblick/feinstaub">„Feinstaub“</a>).</p><p>Feinstaub entsteht vorwiegend durch menschliche Aktivitäten, wie beispielsweise bei Verbrennungsprozessen oder durch mechanische Prozesse (z.B. Reifen- und Bremsabrieb bei Kraftfahrzeugen). Ein Teil des Feinstaubs entsteht in der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> durch chemische Reaktionen gasförmiger Luftschadstoffe (wie Stickoxide und Ammoniak) und wird daher als „sekundärer“ Feinstaub bezeichnet.</p><p>Der <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> erfasst die durchschnittliche jährliche <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>-Belastung in Deutschland basierend auf Messstationsdaten im ländlichen und städtischen Hintergrund. Vergleichsweise höher belastete Messstellen an Straßen mit hohem <a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verkehrsaufkommen#alphabar">Verkehrsaufkommen</a> oder in der Nähe von großen Industrieanlagen werden nicht mit einbezogen. Daher könnte der Indikator die Belastungssituation in Deutschland tendenziell leicht unterschätzen.</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Zwischen 2010 und 2023 war nahezu die gesamte Bevölkerung Deutschlands Feinstaub-Konzentrationen oberhalb des aktuellen <a href="https://www.umweltbundesamt.de/service/glossar/w?tag=WHO#alphabar">WHO</a>-Richtwerts für <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a> (5 µg/m³ im Jahresmittel) ausgesetzt. Die Anzahl der in Deutschland betroffenen Menschen ist in dieser Zeit von 81,7 Mio. auf 83,1 Mio. Personen angestiegen, bedingt durch das Bevölkerungswachstum im selben Zeitraum. Gleichzeitig ging der Anteil der Bevölkerung mit einer PM2,5-<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Exposition#alphabar">Exposition</a> oberhalb des ab 2030 verbindlich geltenden EU-Grenzwerts (10 µg/m³ im Jahresmittel) von 81,7 Mio. in 2010 auf 0,1 Mio. Personen in 2023 zurück (entsprechend ca. 0,1 % der Bevölkerung). Dies belegt, dass Maßnahmen zur Emissionsminderung während der letzten Jahre bereits zu einer deutlichen Reduktion der Feinstaubbelastung in Deutschland geführt haben.</p><p>Ein weiterer Rückgang der Belastung bis 2030 ist durch die Emissionsreduktionsverpflichtungen der <a href="https://eur-lex.europa.eu/legal-content/DE/TXT/PDF/?uri=CELEX:32016L2284">NEC-Richtlinie</a> zu erwarten. Bei Umsetzung der Maßnahmen aus den nationalen Luftreinhalteprogrammen (in <a href="https://www.umweltbundesamt.de/themen/luft/regelungen-strategien/nationales-luftreinhalteprogramm#https://www.umweltbundesamt.de/themen/luft/regelungen-strategien/nationales-luftreinhalteprogramm#die-emissionshochstmengen-der-alten-nec-richtlinie">Deutschland</a> u. a. der „Kohleausstieg“, die Verringerung der Ammoniak-Emissionen aus der Landwirtschaft und die Verkehrswende (E-Mobilität), können die Emissionen von Feinstaub und seinen Vorläufergasen bis 2030 weiter reduziert werden. Zum Schutz der Gesundheit sind allerdings noch weitreichendere Maßnahmen auch auf europäischer Ebene erforderlich, um die Feinstaubbelastung weiter abzusenken.</p><p>Im Dezember 2024 ist die überarbeitete europäische Luftqualitätsrichtlinie in Kraft getreten. Mit dieser wird ab dem Jahr 2030 die Einhaltung strengerer Grenz- und Zielwerte europaweit gesetzlich festgeschrieben. Für PM2,5 wird der neue verbindlich einzuhaltende EU-Grenzwert ab 2030 von 25 auf 10 µg/m³ im Jahresmittel gesenkt, was dem Zwischenziel 4 der WHO Empfehlungen entspricht.</p><p>Wie wird der Indikator berechnet?</p><p>Für den <a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a> werden Daten des chemischen Transportmodells REM-CALGRID mit <a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PM25#alphabar">PM2,5</a>-Messdaten der Immissionsmessnetze der Bundesländer und des <a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a> kombiniert und auf die Fläche Deutschlands übertragen. Dabei werden nur die Messstationen berücksichtigt, die keinem direkten Feinstaubausstoß z.B. aus dem Verkehr ausgesetzt sind. Die PM2,5-Daten werden anschließend mit räumlichen Informationen zur Bevölkerungsverteilung kombiniert. Der methodische Ansatz ist im Fachartikel <a href="https://www.umweltbundesamt.de/sites/default/files/medien/4031/publikationen/artikel_5_dnk.pdf">Kienzler et al. 2024</a> beschrieben.</p><p><strong>Ausführliche Informationen zum Thema finden Sie im Daten-Artikel </strong>„<a href="https://www.umweltbundesamt.de/daten/umwelt-gesundheit/gesundheitsrisiken-durch-feinstaub">Bedeutung der Feinstaubbelastung für die Gesundheit</a>“<strong>.</strong></p>
Unter www.badeseen.rlp.de sind im „Badegewässeratlas“ alle Messwerte der rheinland-pfälzischen Badeseen veröffentlicht „Dieses Frühjahr war eins der trockensten und wärmsten seit 1881. Je wärmer und trockener es ist, desto eher kippen Gewässer um und desto eher können sich gesundheitsgefährliche Blaualgen ausbreiten. Der Klimawandel kann also schnell den Badespaß trüben. Deshalb ist es wichtig, die Situation in den Badegewässern regelmäßig zu überprüfen. Im Moment gibt es grünes Licht für fast alle der 66 EU-Badeseen in Rheinland-Pfalz. Das haben Ergebnisse des Landesamtes für Umwelt gezeigt“, sagte Umwelt- und Klimaschutzministerin Katrin Eder anlässlich der Veröffentlichung des EU-Badegewässerberichts 2024. Die konkreten Messergebnisse für alle Badeseen in Rheinland-Pfalz sind im „Badegewässeratlas“ ( www.badeseen.rlp.de ) öffentlich einsehbar. Fast alle Badegewässer in Rheinland-Pfalz halten die aktuellen mikrobiologischen EU-Grenzwerte ein. Auf Grundlage von Werten der vergangenen vier Jahre sind bis auf ein Badegewässer alle anderen Badeseen mit „Ausgezeichnet“ und „Gut“ bewertet worden. Der Germersheimer See wurde mit „Ausreichend“ eingestuft. In diesem Jahr zum ersten Mal in die EU-Bewertung aufgenommen wurde der Triolago-Riol bei Trier, der mit „ausgezeichnet“ klassifiziert wurde. Neben den Messergebnissen zur Wasserqualität enthält der Badegewässeratlas auch Informationen zu Liegemöglichkeiten, sanitären Anlagen und Restauration an den Seen. Der Inhalt wird vom Landesamt für Umwelt (LfU) verantwortlich gestaltet und die Messwerte zeitnah eingestellt. „Hier können sich Badegäste bereits vor der Anreise informieren, ob die Wasserqualität in den einzelnen Badewässern einwandfrei ist oder sie vor Ort mit Einschränkungen rechnen müssen. Zudem können über ein Kontaktformular eigene Beobachtungen vor Ort und dokumentierende Fotos schnell und unbürokratisch an das Landesamt für Umwelt übermittelt werden“, erläuterte Dr. Jochen Fischer, Abteilungsleiter für Gewässerschutz im LfU. Zusätzlich zu den Untersuchungen vor Ort wird die Überwachung durch Methoden der Fernerkundung unterstützt, um Algenmassenentwicklungen frühzeitig zu erkennen. Die potenziell toxinbildenden Cyanobakterien, sogenannte „Blaualgen“, können bei einer Massenvermehrung Gesundheitsgefahren für Badende darstellen. Über die Ergebnisse informieren das Landesamt und die vor Ort zuständigen Stellen, die bei Bedarf entsprechende Einschränkungen für die Badegäste aussprechen. Bei einer Massenentwicklung dieser Blaualgen nimmt die Sichttiefe deutlich ab und das Wasser verfärbt sich grünlich. „Alle Badegewässer sind Lebensräume für Tiere und Pflanzen. Darum ist es wichtig, dass Badegäste ihren Abfall ordnungsgemäß entsorgen und Fische oder Wasservögel nicht füttern“, so Katrin Eder. Die Hinweise der vor Ort jeweilig zuständigen Kreisverwaltungen sowie die Hygienekonzepte der Betreiber der jeweiligen Badegewässer sind zu befolgen. Schwimmen ist nur an den ausgewiesenen Badestellen zugelassen. Das Baden in größeren Fließgewässern birgt Risiken durch Strömungen und nicht auszuschließende Infektionsgefahr. Daher ist in Rheinland-Pfalz kein Fluss oder größerer Bach als Badegewässer ausgewiesen „Für ein unbeschwertes Badevergnügen sollte man in einen unserer untersuchten Badeseen hüpfen“, sagte Katrin Eder. Hintergrund Zu den offiziellen Badeseen in Rheinland-Pfalz zählen zahlreiche kleinere Stehgewässer, aber auch der 331 Hektar große Laacher See. Weiträumige Naherholungsgebiete mit mehreren Baggerseen befinden sich entlang des Rheins. Die EU-Badegewässer werden in vier Kategorien (ausgezeichnet, gut, ausreichend, mangelhaft) eingestuft. Vor und während der Badesaison werden die EU-Badegewässer jedes Jahr von den Gesundheitsämtern der Kreisverwaltungen und dem Landesamt für Umwelt (LfU) untersucht. Die Überwachung der Gewässer erfolgt durch Besichtigungen, Probenahmen und Analysen der Proben. In Ausnahmesituationen und bei unerwartet hohen Einzelwerten der mikrobiologischen Parameter werden Maßnahmen, wie z.B. ein befristetes Badeverbot, erlassen. Zusätzlich zu den Keimbelastungen kontrolliert das LfU die Badegewässer auf Algenblüten. Insbesondere Cyanobakterien (Blaualgen) stehen hierbei im Fokus, da sie beispielsweise Hautreizungen oder Durchfall auslösen können. Gewässer mit einem großen Potenzial für das Auftreten von Blaualgenblüten werden regelmäßig vom LfU untersucht, um Gesundheitsrisiken frühzeitig zu erkennen. Hierzu empfehlen wir das eigens zu dieser Thematik vom LfU erstellte YouTube Video „Kein Badespaß ohne Wassertest“: https://youtu.be/GjxA45PdbCE . Entsprechende Informationen und Warnhinweise vor Ort sind unbedingt zu beachten. Übersichtskarten, Steckbriefe, aktuelle Messwerte und etwaige Warnhinweise zu den rheinland-pfälzischen Badegewässern finden Sie im „Badegewässeratlas“ unter www.badeseen.rlp.de
Unter www.badeseen.rlp.de sind im „Badegewässeratlas“ alle Messwerte der rheinland-pfälzischen Badeseen veröffentlicht „Dieses Frühjahr war eins der trockensten und wärmsten seit 1881. Je wärmer und trockener es ist, desto eher kippen Gewässer um und desto eher können sich gesundheitsgefährliche Blaualgen ausbreiten. Der Klimawandel kann also schnell den Badespaß trüben. Deshalb ist es wichtig, die Situation in den Badegewässern regelmäßig zu überprüfen. Im Moment gibt es grünes Licht für fast alle der 66 EU-Badeseen in Rheinland-Pfalz. Das haben Ergebnisse des Landesamtes für Umwelt gezeigt“, sagte Umwelt- und Klimaschutzministerin Katrin Eder anlässlich der Veröffentlichung des EU-Badegewässerberichts 2024. Die konkreten Messergebnisse für alle Badeseen in Rheinland-Pfalz sind im „Badegewässeratlas“ ( www.badeseen.rlp.de ) öffentlich einsehbar. Fast alle Badegewässer in Rheinland-Pfalz halten die aktuellen mikrobiologischen EU-Grenzwerte ein. Auf Grundlage von Werten der vergangenen vier Jahre sind bis auf ein Badegewässer alle anderen Badeseen mit „Ausgezeichnet“ und „Gut“ bewertet worden. Der Germersheimer See wurde mit „Ausreichend“ eingestuft. In diesem Jahr zum ersten Mal in die EU-Bewertung aufgenommen wurde der Triolago-Riol bei Trier, der mit „ausgezeichnet“ klassifiziert wurde. Neben den Messergebnissen zur Wasserqualität enthält der Badegewässeratlas auch Informationen zu Liegemöglichkeiten, sanitären Anlagen und Restauration an den Seen. Der Inhalt wird vom Landesamt für Umwelt (LfU) verantwortlich gestaltet und die Messwerte zeitnah eingestellt. „Hier können sich Badegäste bereits vor der Anreise informieren, ob die Wasserqualität in den einzelnen Badewässern einwandfrei ist oder sie vor Ort mit Einschränkungen rechnen müssen. Zudem können über ein Kontaktformular eigene Beobachtungen vor Ort und dokumentierende Fotos schnell und unbürokratisch an das Landesamt für Umwelt übermittelt werden“, erläuterte Dr. Jochen Fischer, Abteilungsleiter für Gewässerschutz im LfU. Zusätzlich zu den Untersuchungen vor Ort wird die Überwachung durch Methoden der Fernerkundung unterstützt, um Algenmassenentwicklungen frühzeitig zu erkennen. Die potenziell toxinbildenden Cyanobakterien, sogenannte „Blaualgen“, können bei einer Massenvermehrung Gesundheitsgefahren für Badende darstellen. Über die Ergebnisse informieren das Landesamt und die vor Ort zuständigen Stellen, die bei Bedarf entsprechende Einschränkungen für die Badegäste aussprechen. Bei einer Massenentwicklung dieser Blaualgen nimmt die Sichttiefe deutlich ab und das Wasser verfärbt sich grünlich. „Alle Badegewässer sind Lebensräume für Tiere und Pflanzen. Darum ist es wichtig, dass Badegäste ihren Abfall ordnungsgemäß entsorgen und Fische oder Wasservögel nicht füttern“, so Katrin Eder. Die Hinweise der vor Ort jeweilig zuständigen Kreisverwaltungen sowie die Hygienekonzepte der Betreiber der jeweiligen Badegewässer seien zu befolgen. Schwimmen wird nur an den ausgewiesenen Badestellen empfohlen. "Das Baden in größeren Fließgewässern birgt Risiken durch Strömungen und nicht auszuschließende Infektionsgefahr. Daher ist in Rheinland-Pfalz kein Fluss oder größerer Bach als Badegewässer ausgewiesen „Für ein unbeschwertes Badevergnügen sollte man in einen unserer untersuchten Badeseen hüpfen“, sagte Katrin Eder. Hintergrund: Zu den offiziellen Badeseen in Rheinland-Pfalz zählen zahlreiche kleinere Stehgewässer, aber auch der 331 Hektar große Laacher See. Weiträumige Naherholungsgebiete mit mehreren Baggerseen befinden sich entlang des Rheins. Die EU-Badegewässer werden in vier Kategorien (ausgezeichnet, gut, ausreichend, mangelhaft) eingestuft. Vor und während der Badesaison werden die EU-Badegewässer jedes Jahr von den Gesundheitsämtern der Kreisverwaltungen und dem Landesamt für Umwelt (LfU) untersucht. Die Überwachung der Gewässer erfolgt durch Besichtigungen, Probenahmen und Analysen der Proben. In Ausnahmesituationen und bei unerwartet hohen Einzelwerten der mikrobiologischen Parameter werden Maßnahmen, wie z.B. ein befristetes Badeverbot, erlassen. Zusätzlich zu den Keimbelastungen kontrolliert das LfU die Badegewässer auf Algenblüten. Insbesondere Cyanobakterien (Blaualgen) stehen hierbei im Fokus, da sie beispielsweise Hautreizungen oder Durchfall auslösen können. Gewässer mit einem großen Potenzial für das Auftreten von Blaualgenblüten werden regelmäßig vom LfU untersucht, um Gesundheitsrisiken frühzeitig zu erkennen. Hierzu empfehlen wir das eigens zu dieser Thematik vom LfU erstellte YouTube Video „Kein Badespaß ohne Wassertest“: https://youtu.be/GjxA45PdbCE . Entsprechende Informationen und Warnhinweise vor Ort sind unbedingt zu beachten. Übersichtskarten, Steckbriefe, aktuelle Messwerte und etwaige Warnhinweise zu den rheinland-pfälzischen Badegewässern finden Sie im „Badegewässeratlas“ unter www.badeseen.rlp.de Quelle: Ministerium für Klimaschutz, Umwelt, Energie und Mobilität vom 11.06.25
| Origin | Count |
|---|---|
| Bund | 48 |
| Kommune | 1 |
| Land | 36 |
| Zivilgesellschaft | 6 |
| Type | Count |
|---|---|
| Ereignis | 6 |
| Förderprogramm | 13 |
| Text | 54 |
| unbekannt | 16 |
| License | Count |
|---|---|
| geschlossen | 54 |
| offen | 33 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 86 |
| Englisch | 12 |
| Resource type | Count |
|---|---|
| Bild | 2 |
| Datei | 19 |
| Dokument | 28 |
| Keine | 22 |
| Multimedia | 1 |
| Webseite | 49 |
| Topic | Count |
|---|---|
| Boden | 76 |
| Lebewesen und Lebensräume | 77 |
| Luft | 78 |
| Mensch und Umwelt | 89 |
| Wasser | 81 |
| Weitere | 86 |