API src

Found 31 results.

Related terms

MV Princess of Stars hatte Pestizide an Bord

Die während des Taifuns Fengshen am 21. Juni 2008 vor den Philippinen gesunkene Fähre Princess of the Stars hatte neben anderen Chemikalien zehn Tonnen von dem hochgiftigen Pestizid Endosulfan an Bord.

Fischsterben im Rhein

Unbekannte Täter kippen bei Bingen hochgiftiges Thiodan in den Rhein. In der Folge sterben flussabwärts bis nach Holland mindestens 40 Millionen Weißfische und Aale.

Auf Vorschlag der EU wird Endosulfan als POP in das Stockholmer Übereinkommen aufgenommen

Für den chemischen Wirkstoff Endosulfan wird ein weltweites Herstellungs- und Anwendungsverbot in Pflanzenschutzmitteln eingeführt. Das beschloss die fünfte Vertragsstaatenkonferenz zum Stockholmer Übereinkommen über persistente organische Schadstoffe, kurz POPs, die vom 25. bis 29. April 2011 in Genf stattfand. Das Verbot tritt mit mehrjährigen Übergangsfristen in Kraft. Bisher wird Endosulfan für die Schädlingsbekämpfung verwendet, insbesondere beim Anbau von Tee, Kaffee, Soja und Baumwolle. Endosulfan ist die Nummer 22 auf der Liste der Schadstoffe der Stockholmer Konvention.

Endosulfan wird „dreckige Nummer 22“

Auf Vorschlag der EU wird Endosulfan als POP in das Stockholmer Übereinkommen aufgenommen Für den chemischen Wirkstoff Endosulfan wird ein weltweites Herstellungs- und Anwendungsverbot in Pflanzenschutzmitteln eingeführt. Das beschloss die fünfte Vertragsstaatenkonferenz zum Stockholmer Übereinkommen über persistente organische Schadstoffe, kurz POPs. Der Präsident des Umweltbundesamtes, Jochen Flasbarth: „Der lange Atem unserer Fachleute hat sich ausgezahlt. Mit dieser Entscheidung verhindern wir, dass die Chemikalie weiteren Schaden für die menschliche Gesundheit und in der Umwelt anrichten kann.“ Endosulfan ist bereits in über 80 Ländern verboten. Geeignete, umweltverträgliche Ersatzstoffe sind vorhanden. Die fünfte Vertragsstaatenkonferenz zum ⁠ Stockholmer Übereinkommen ⁠ über persistente organische Schadstoffe hat der Aufnahme von Endosulfan in die POPs-Liste zugestimmt. Der Wirkstoff darf demnach nicht mehr für den Pflanzenschutz eingesetzt werden. Das Verbot tritt mit mehrjährigen Übergangsfristen in Kraft. Bisher wird Endosulfan für die Schädlingsbekämpfung verwendet, insbesondere beim Anbau von Tee, Kaffee, Soja und Baumwolle. Endosulfan ist ein nervenschädigender Wirkstoff in Schädlingsbekämpfungsmitteln, das in der Umwelt nur schwer abgebaut wird, sich im Fettgewebe, in der Leber und den Nieren von Menschen und Tieren anreichert und die Gesundheit schädigt. Es wird in der ⁠ Atmosphäre ⁠ in weit entfernte Gebiete transportiert. So findet man Endosulfan zum Beispiel in der Arktis. Dass Endosulfan weltweit für Mensch und Umwelt ein Problem darstellt, ist lange bekannt. Verboten haben den Einsatz der Chemikalie darum bereits über 80 Länder - darunter viele Entwicklungsländer. In der EU darf der ⁠ Stoff ⁠ seit 2005 nicht mehr für den Pflanzenschutz verwendet werden. Der ehemals deutsche Hersteller - Bayer CropScience - hat die Produktion von Endosulfan im Jahre 2007 eingestellt.

Endosulfan, Alachlor und Aldicarb im Anhang III des Rotterdamer Übereinkommens aufgenommen

Im Rahmen der fünften Vertragsstaatenkonferenz des Rotterdamer Übereinkommens wurde am 24. Juni 2011 die Liste der Chemikalien erweitert, deren internationaler Handel zukünftig die Zustimmung des Empfängerlandes zum Import voraussetzt. Dem jeweiligen Importland müssen bei diesem so genannten "Prior Informed Consent"-Verfahren zudem Informationen über die Risiken für die menschliche Gesundheit und die Umwelt bereitgestellt werden, um einen verantwortlichen Umgang sicherzustellen. Diese Regeln des Rotterdamer Übereinkommens gelten jetzt auch für den Handel mit den Chemikalien Endosulfan, Alachlor sowie Aldicarb.

Höchstgehalte an Pestizidrückständen

Die EU-Kommission hat die Grenzwerte für Rückstände von Aldicarb, Bromopropylat, Chlorfenvinphos, Endosulfan, EPTC, Ethion, Fenthion, Fomesafen, Methabenzthiazuron, Methidathion, Simazin, Tetradifon und Triforin in oder auf bestimmten Erzeugnissen herabgesetzt. Nach neuen wissenschaftlichen Erkenntnissen sind demnach die bisherigen Obergrenzen für die giftigen Stoffe zu hoch, um Sicherheit für Umwelt und Gesundheit zu gewährleisten. Am 1. April 2011 wurden die Änderungen der Anhänge II und III der Verordnung (EG) Nr. 396/2005 im Amtsblatt der Europäischen Union veröffentlicht. Die strengeren Grenzwerte, treten am 21. Oktober 2011 in Kraft.

Sandoz-Großbrand 1986: Ausgangspunkt für konsequenten Gewässerschutz am Rhein

null Sandoz-Großbrand 1986: Ausgangspunkt für konsequenten Gewässerschutz am Rhein Gemeinsame Pressemitteilung der LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg, des Landesamtes für Umwelt Rheinland-Pfalz und des Hessischen Landesamtes für Naturschutz, Umwelt und Geologie Eine der größten Umweltkatastrophen in Mitteleuropa jährt sich am 1. November 2016 zum dreißigsten Mal: der Großbrand auf dem Gelände des Pharmaunternehmens Sandoz in Schweizerhalle bei Basel mit verheerenden Folgen für den Rhein. Eine Lagerhalle, in der rund 1350 Tonnen hochgiftige Chemikalien lagern, brennt nahe dem Rheinufer ab. Mehr als 20 Tonnen Gift fließen mit dem Löschwasser ungehindert in den Rhein. Die Trinkwasserversorgung aus dem Rhein muss fast für 2 Wochen eingestellt werden. Auf einer Länge von über 400 km stirbt nahezu alles Leben. Der gesamte Aalbestand ist ausgelöscht. Die Bilder verendeter Fische gehen um die Welt. Nach Tschernobyl erschüttert eine weitere enorme Umweltkatastrophe im Jahr 1986 die Bevölkerung. „Allen Verantwortlichen war bewusst, dass die Herkulesaufgabe der Regeneration des Rheins nur gelingen kann, wenn das Rheinwasser konsequent und langfristig über nationale Grenzen hinweg vor weiteren giftigen Einträgen geschützt wird“, so Margareta Barth, Präsidentin der LUBW Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg. Langfristig betrachtet war das Unglück die Initialzündung für eine internationale und verbindliche Zusammenarbeit für einen sauberen Rhein. Hierin sind sich die Präsidenten des Landesamtes für Umwelt Rheinland-Pfalz, Dr. Stefan Hill, und des Hessischen Landesamtes für Naturschutz, Umwelt und Geologie, Professor Dr. Thomas Schmid sowie die Präsidentin der LUBW einig. Internationale Kommission zum Schutz des Rheines (IKSR) wird gestärkt „Der öffentliche Druck hat damals der Internationalen Kommission zum Schutz des Rheines und damit dem Gewässerschutz zu mehr Einfluss verholfen“, erläutert Dr. Hill. Bereits eineinhalb Monate nach dem Unfall verabschiedet die Rheinministerkonferenz am 19. Dezember 1986 in Rotterdam das Aktionsprogramm Rhein und überträgt die Koordinierung und Erfolgskontrolle an die IKSR. Ziel ist es, die gute Wasserqualität und ein intaktes Ökosystem bis zum Jahr 2000 wiederherzustellen. Um in Zukunft schneller auf Verunreinigungen reagieren zu können, etablieren die Rheinanliegerstaaten ein vernetztes Mess- und Frühwarnsystem für den Rhein. Die Qualität des Rheinwassers wird heute mithilfe von 13 Messstationen entlang des Rheins überwacht. 7 internationale Hauptwarnzentralen (IHWZ) koordinieren im Schadensfall das Vorgehen entlang des Rheins. Auch die Nebenflüsse werden intensiver kontrolliert. Baden-Württemberg „Heute melden Unternehmen Verunreinigungen und deren Ursachen meist sofort“, so Barth. Sie erinnert daran, dass damals die Mannschaft des LUBW-Messschiffes Max Honsell noch rund 36 Stunden nach dem Unfall nicht wusste, welchen gefährlichen Cocktail an Chemikalien sie beproben. „Wir waren zum Zeitpunkt des Vorfalls mit der Max Honsell auf dem Neckar bei Stuttgart unterwegs“, erinnert sich Schiffführer Karlheinz Sommer. „Nach rund eineinhalb Tagen, in denen wir ohne Halt nach Basel fuhren und an den zahlreichen Neckarschleusen ‚vorschleusen‘ durften, konnten wir die ersten Wasserproben aus dem Rhein entnehmen. Dass es nicht ganz ungefährlich war, wurde uns erst bewusst, als uns der Wachschutz von Sandoz vom Ufer aus zurief, wir sollten aus der Fahne fahren und uns vom Betriebsarzt untersuchen lassen. Zum Glück hatte unser Vorgehen keine gesundheitlichen Konsequenzen.“ Erst am 18. November berichtet Sandoz erstmals, dass das Lager auch 1,9 Tonnen des hochgiftigen Insektizids Endosulfan enthalten habe. Unmittelbar nach dem Sandoz-Unfall begann die LUBW in Baden-Württemberg (zu diesem Zeitpunkt noch als LfU, Landesanstalt für Umwelt) mit einer intensiven Überwachung wirbelloser Tiere (Makrozoobenthos) im Rhein. Als direkt nachfolgende Unteranlieger waren Baden-Württemberg und Frankreich von den Vergiftungen des Rheinwassers am stärksten betroffen. 15 Jahre nach dem Sandoz-Unglück waren Flora und Fauna des Rheins in einem besseren Zustand als davor. „Das wäre ohne die konsequenten gemeinsamen internationalen Anstrengungen als Folge auf den Sandoz-Schock in diesem Zeitraum sonst wahrscheinlich nicht geschehen“, so Barth. Alle Rheinanliegerstaaten erweitern in den Folgejahren ihre Abwasserreinigung. Grenzwerte für Schadstoffe werden eingeführt und immer wieder neuen Erkenntnissen angepasst. Rheinland-Pfalz In Rheinland-Pfalz war Sandoz Anlass eine „Wasserwirtschaftliche Sonderkommission Chemische Industrie“ einzusetzen. In eineinhalb Jahren überprüfte Rheinland-Pfalz in rund 270 Einzelbetrieben den Abwasseranfall, die -behandlung und -ableitung sowie den Umgang mit wassergefährdenden Stoffen. Zum ersten Mal wurden die Abwasserverhältnisse der betreffenden Einleiter in diesem Umfang und in dieser Tiefe betrachtet. Die Ergebnisse wurden in einem Abschlussbericht zusammengefasst. Er bildete die Grundlage für das weitere wasserwirtschaftliche Handeln etwa bei der Emissionsminderung und der Verbesserung der Anlagensicherheit. Hessen Die hessische Wasserwirtschaftsverwaltung hat zeitnah Sonderarbeitsgruppen eingerichtet, die bei der chemischen Großindustrie in Südhessen mit der Anpassung und Fortentwicklung des anlagenbezogenen Gewässerschutzes und der Verminderung der Abwasserbelastung in Main und Rhein beauftragt wurden. In Kooperation mit der Industrie wurden zunächst Sofortmaßnahmen wie die Absicherung der direkt in die Flüsse einleitenden Kühl- und Regenwasserkanäle sowie der Bau zentraler Rückhalteeinrichtungen umgesetzt, die bei weiteren Betriebsstörung in den 90er Jahren erheblich zum Gewässerschutz beigetragen haben. In weiteren Schritten wurden alle Gewerbebetriebe, die schädliche Stoffe in Gewässer freisetzen können, anhand des landesweiten Gesamtkonzeptes „Betriebliche Gewässerschutzinspektion (BGI)“ in Hinblick auf den Gewässerschutz systematisch bewertet und überprüft. Die dabei gewonnenen Erfahrungen sind Grundlage der heutigen Anforderungen des vorsorgenden Gewässerschutzes, die zum Beispiel in Abwasserverordnung (AbwV), Anlagenverordnung (VAwS, AwSV) und den Technische Regeln wassergefährdender Stoffe (TRwS) verbindlich festgelegt sind. Zusammenarbeit der Rheinanliegerstaaten zeigen Erfolge „Heute ist der Rhein sauberer als vor 50 Jahren“, so Professor Schmid. Der ökologische Zustand sowie die Wasserqualität des Rheins und seiner Nebenflüsse haben sich seit dem Chemieunfall Mitte der 1980er Jahre deutlich verbessert. Die Rheinanliegerstaaten Deutschland, Schweiz, Frankreich und Niederlande haben ihren Katastrophenschutz und die Kommunikation enger vernetzt. Die Flusssysteme werden nun in Europa gesamtheitlich über nationale Grenzen hinweg betrachtet und ihr Zustand bewertet. Basis hierfür ist die Europäische Wasserrahmenrichtlinie, die im Dezember 2000 verabschiedet wurde. Die IKSR wurde zu einem Vorbild für den Umwelt- und Gewässerschutz. So hat sich auch für andere internationale Flussgebiete wie Elbe, Donau und Bodensee die Schutzlage aufgrund der verbesserter Zusammenarbeit positiv entwickelt. Aufgaben der Zukunft: Hochwasserschutz und Mikroverunreinigungen „Wenngleich die Länder schon viele Etappenziele erreicht haben, gibt es jedoch noch weiteren Handlungsbedarf“, resümiert Professor Schmid. „Die Aufgaben der Zukunft lauten nun: Mikroverunreinigungen in den Gewässern zurückzudrängen und für vermehrte Hochwasser gerüstet zu sein. Auch hier arbeiten die Rheinanliegerstaaten bereits eng zusammen.“ Hintergrundinformationen Der Internationale Warn- und Alarmplan Rhein (WAP) Findet trotz aller Vorsorgemaßnahmen ein Störfall statt oder fließen Schadstoffe in erheblichen Mengen in den Rhein, greift der internationale Warn und Alarmplan Rhein (WAP) , der alle Rheinanliegerstaaten und vor allem die Unterlieger warnt. Der WAP unterscheidet Warnungen, Informationen, Suchmeldungen und Entwarnungen. Für die Erstmeldung ist die Internationale Hauptwarnzentrale (IHWZ) zuständig, auf deren Gebiet sich der Unfall ereignet hat oder die Verunreinigung festgestellt wurde. Sie informiert schnellstmöglich die unterliegenden internationalen Hauptwarnzentralen. Die Funktion der IHWZ erfüllen folgende unterschiedliche Länderinstitutionen entlang des Rheins: • Amt für Umwelt und Energie, Basel-Stadt, Schweiz • Préfecture du Bas-Rhin, Strasbourg, Frankreich • Polizeipräsidium Einsatz Göppingen, Baden-Württemberg • Wasserschutzpolizei Wiesbaden, Hessen • Innenministerium Mainz, Rheinland-Pfalz • Bezirksregierung Düsseldorf, Nordrhein-Westfalen • Rijkswaterstaat, Arnhem, Niederlande In Baden-Württemberg nimmt beispielsweise die Landespolizeidirektion Göppingen die Aufgabe der IHWZ wahr. Sie koordiniert das Vorgehen und wird dabei von der LUBW beraten. Die LUBW bewertet bei Schadstoffeinträgen Stoffeigenschaften sowie deren mögliche Auswirkungen auf das aquatische System und berechnet eine eventuelle Schadstoffwelle. Dabei empfiehlt die LUBW, ob eine Information, Warnung oder Suchmeldung herausgegeben werden soll. Das von der IKSR gemeinsam mit der Kommission für die Hydrologie des Rheingebietes entwickelte Rhein-Alarmmodell berechnet, wie Schadstoffwellen voraussichtlich verlaufen. Mit dem WAP, dem Rhein-Alarmmodell und den Messstationen können Gewässerverunreinigungen zeitnah erkannt und deren Verlauf prognostiziert werden. Das ermöglicht den Behörden, schneller die Ursache der Einleitung festzustellen, den Eintrag zu unterbinden und die Unterlieger frühzeitig zu informieren oder zu warnen. Rheinmessstationen 13 Messstellen am Hauptstrom, davon sind 9 internationale Hauptmessstellen, und 44 Messstellen an den Nebenflüssen, Küsten- und Übergangsgewässern überwachen heute die Qualität rund um das Rheinwasser. In Baden-Württemberg wird das Rheinwasser regelmäßig auf eine große Zahl bekannter Verbindungen untersucht, je nach Station alle 2 oder 4 Wochen. Zusätzlich wird an einigen Messstationen eine tägliche Überwachung des Rheinwassers durchgeführt. Dabei werden zusätzlich auch neue, bisher unbekannte Verunreinigungen gesucht. An der Hauptmessstation in Karlsruhe untersucht die LUBW das Rheinwasser jeden Tag auf organische Mikroverunreinigungen. Ein weiterer Schwerpunkt liegt auf der Rheinüberwachung bei Basel mit den dortigen Chemieunternehmen. Zusammen mit der Schweiz betreibt die LUBW die Messstation Weil, gemeinsam mit Hessen und Rheinland-Pfalz die Rheingütemessstation in Worms. In Rheinland-Pfalz wurde die Wormser Rheingütestation (RGS) im Jahr 1995 in Betrieb genommen. Die Rheinwasseruntersuchungsstation (RUSt) an der Mainzer Theodor-Heuss-Brücke ist bereits seit 1976 im Dienst. Messschiffe „MS Burgund“ und „Max Honsell“ Das LUBW-Messschiff „Max Honsell“ entnimmt im baden-württembergischen Rhein und im Neckar Wasser-, Sediment- sowie biologische Proben. Für die Überwachung des Bodensees ist das Forschungsschiff „Kormoran“ des Instituts für Seenforschung der LUBW verantwortlich. Der Bodensee ist der größte Trinkwasserspeicher in Europa und versorgt rund 5 Millionen Menschen mit Trinkwasser. Rheinland-Pfalz überwacht seine größeren Fließgewässer seit 1966 mit Hilfe eines Messschiffes. Das Mess- und Untersuchungsschiff „MS Burgund“ wurde 1988 in Betrieb genommen und löste damit das Vorgängerschiff „Oskar“ ab. Mit einer nautischen Besatzung und einer Fachkraft im Labor führt die "Burgund" auf dem Rhein - inklusive der schiffbaren Altrheine - an Mosel und Saar chemische, physikalische und biologische Untersuchungsprogramme durch, wird aber auch als „schwimmendes Klassenzimmer“ im Bereich der Umweltbildung und der Öffentlichkeitsarbeit eingesetzt. Foto: LUBW-Messschiff Max Honsell heute. Quelle: LUBW

Schadstoffe, Abfälle, Industriebranchen

Nach der europäischen PRTR-Verordnung ( E-PRTR-Verordnung ) müssen Betriebe über zu 91 Schadstoffe und Schadstoffgruppen berichten. Dabei wird unterschieden zwischen Freisetzungen in Luft, Gewässer und Boden, wobei unterschiedliche Schwellenwerte gelten. Diese Schwellenwerte geben an, ab welcher Menge an freigesetzten Schadstoffen ein Betrieb tatsächlich seine Daten an die zuständigen Behörden berichten muss, ab wann er also berichtspflichtig wird – sie haben nichts mit einer potentiellen Gefährlichkeit des Stoffes zu tun. Dies soll dazu dienen, kleine Betriebe nicht unnötig zu belasten. Die Schwellenwerte sollen so gesetzt sein, dass ca. 90% der Freisetzungen damit erfasst werden. Verordnung (EG) Nr. 166/2006 des Europäischen Parlaments und des Rates vom 18. Januar 2006 – Anhang II Nr. CAS-Nummer Schadstoff (1) Schwellenwerte für die Freisetzung in die Luft (Spalte 1a) kg/Jahr in Gewässer (Spalte 1b) kg/Jahr in den Boden (Spalte 1c) kg/Jahr 1 74-82-8 Methan (CH 4 ) 100.000 — (2) — 2 630-08-0 Kohlenmonoxid (CO) 500.000 — — 3 124-38-9 Kohlendioxid (CO 2 ) 100 Mio. — — 4 Teilfluorierte Kohlenwasserstoffe (HFKWs) (3) 100 — — 5 10024-97-2 Distickoxid (N 2 O) 10.000 — — 6 7664-41-7 Ammoniak (NH 3 ) 10.000 — — 7 Flüchtige organische Verbindungen ohne Methan (NMVOC) 100.000 — — 8 Stickoxide (NO x /NO 2 ) 100.000 — — 9 Perfluorierte Kohlenwasserstoffe (PFKWs) (4) 100 — — 10 2551-62-4 Schwefelhexafluorid (SF 6 ) 50 — — 11 Schwefeloxide (SO x /SO 2 ) 150.000 — — 12 Gesamtstickstoff — 50.000 50.000 13 Gesamtphosphor — 5.000 5.000 14 Teilhalogenierte Fluorchlorkohlenwasserstoffe (HFCKW) (5) 1 — — 15 Fluorchlorkohlenwasserstoffe (FCKWs) (6) 1 — — 16 Halone (7) 1 — — 17 Arsen und Verbindungen (als As) (8) 20 5 5 18 Cadmium und Verbindungen (als Cd) (8) 10 5 5 19 Chrom und Verbindungen (als Cr) (8) 100 50 50 20 Kupfer und Verbindungen (als Cu) (8) 100 50 50 21 Quecksilber und Verbindungen (als Hg) (8) 10 1 1 22 Nickel und Verbindungen (als Ni) (8) 50 20 20 23 Blei und Verbindungen (als Pb) (8) 200 20 20 24 Zink und Verbindungen (als Zn) (8) 200 100 100 25 15972-60-8 Alachlor — 1 1 26 309-00-2 Aldrin 1 1 1 27 1912-24-9 Atrazin — 1 1 28 57-74-9 Chlordan 1 1 1 29 143-50-0 Chlordecon 1 1 1 30 470-90-6 Chlorfenvinphos — 1 1 31 85535-84-8 Chloralkane, C 10 – C 13 — 1 1 32 2921-88-2 Chlorpyrifos — 1 1 33 50-29-3 DDT 1 1 1 34 107-06-2 1,2-Dichlorethan (EDC) 1.000 10 10 35 75-09-2 Dichlormethan (DCM) 1.000 10 10 36 60-57-1 Dieldrin 1 1 1 37 330-54-1 Diuron — 1 1 38 115-29-7 Endosulfan — 1 1 39 72-20-8 Endrin 1 1 1 40 Halogenierte organische Verbindungen (als AOX) (9) — 1.000 1.000 41 76-44-8 Heptachlor 1 1 1 42 118-74-1 Hexachlorbenzol (HCB) 10 1 1 43 87-68-3 Hexachlorbutadien (HCBD) — 1 1 44 608-73-1 1,2,3,4,5,6- Hexachlorcyclohexan (HCH) 10 1 1 45 58-89-9 Lindan 1 1 1 46 2385-85-5 Mirex 1 1 1 47 PCDD + PCDF (Dioxine + Furane) (als Teq) (10) 0,0001 0,0001 0,0001 48 608-93-5 Pentachlorbenzol 1 1 1 49 87-86-5 Pentachlorphenol (PCP) 10 1 1 50 1336-36-3 Polychlorierte Biphenyle (PCBs) 0,1 0,1 0,1 51 122-34-9 Simazin — 1 1 52 127-18-4 Tetrachlorethen (PER) 2.000 10 — 53 56- 23-5 Tetrachlormethan (TCM) 100 1 — 54 12002-48-1 Trichlorbenzole (TCB) (alle Isomere) 10 1 — 55 71-55-6 1,1,1-Trichlorethan 100 — — 56 79-34-5 1,1,2,2- Tetrachlorethan 50 — — 57 79-01-6 Trichlorethylen 2.000 10 — 58 67-66-3 Trichlormethan 500 10 — 59 8001- 35-2 Toxaphen 1 1 1 60 75-01-4 Vinylchlorid 1.000 10 10 61 120 -12-7 Anthracen 50 1 1 62 71-43-2 Benzol 1.000 200 (als BTEX) (11) 200 (als BTEX) (11) 63 Bromierte Diphenylether (PBDE) (12) — 1 1 64 Nonylphenol und Nonylphenolethoxylate (NP/NPEs) — 1 1 65 100-41-4 Ethylbenzol — 200 (als BTEX) (11) 200 (als BTEX) (11) 66 75-21-8 Ethylenoxid 1.000 10 10 67 34123-59-6 Isoproturon — 1 1 68 91-20-3 Naphthalin 100 10 10 69 Zinnorganische Verbindungen (als Gesamt-Sn) — 50 50 70 117-81-7 Di-(2-ethylhexyl)phtalat (DEHP) 10 1 1 71 108-95-2 Phenole (als Gesamt-C) (13) — 20 20 72 polyzyklische aromatische Kohlenwasserstoffe (PAK) (14) 50 5 5 73 108-88-3 Toluol — 200 (als BTEX) (11) 200 (als BTEX) (11) 74 Tributylzinn und Verbindungen (15) — 1 1 75 Triphenylzinn und Verbindungen (16) — 1 1 76 Gesamter organischer Kohlenstoff (TOC) (als Gesamt-C oder CSB/3) — 50.000 — 77 1582-09-8 Trifluralin — 1 1 78 1330-20-7 Xylole (17) — 200 (als BTEX) (11) 200 (als BTEX) (11) 79 Chloride (als Gesamt-Cl) — 2 Mio. 2 Mio. 80 Chlor und anorganische Verbindungen (als HCl) 10.000 — — 81 1332-21-4 Asbest 1 1 1 82 Cyanide (als Gesamt-CN) — 50 50 83 Fluoride (als Gesamt-F) — 2.000 2.000 84 Fluor und anorganische Verbindungen (als HF) 5.000 — — 85 74-90-8 Cyanwasserstoff (HCN) 200 — — 86 Feinstaub (PM 10 ) 50.000 — — 87 1806-26-4 Octylphenole und Octylphenolethoxylate — 1 — 88 206-44-0 Fluoranthen — 1 — 89 465-73-6 Isodrin — 1 — 90 36335-1-8 Hexabrombiphenyl 0,1 0,1 0,1 91 191-24-2 Benzo (g,h,i)perylen — 1 — (1) Sofern nicht anders festgelegt, wird jeder in Anhang II aufgeführte Schadstoff als Gesamtmenge gemeldet oder, falls der Schadstoff aus einer Stoffgruppe besteht, als Gesamtmenge dieser Gruppe. (2) Ein (—) bedeutet, dass der fragliche Parameter und das betreffende Medium keine Berichtspflicht zur Folge haben. (3) Gesamtmenge der Teilfluorierten Kohlenwasserstoffe: Summe von HFKW 23, HFKW 32, HFKW 41, HFKW 4310mee, HFKW 125, HFKW 134, HFKW 134a, HFKW 152a, HFKW 143, HFKW 143a, HFKW 227ea, HFKW 236fa, HFKW 245ca und HFKW 365mfc. (4) Gesamtmenge der Perfluorierten Kohlenwassestoffe: Summe von CF 4 , C 2 F 6 , C 3 F 8 , C 4 F 10 , c- C 4 F 8 , C 5 F 12 und C 6 F 14 . (5) Gesamtmenge der Stoffe, die in der Gruppe VIII des Anhangs I der Verordnung (EG) Nr. 2037/2000 des Europäischen Parlaments und des Rates vom 29. Juni 2000 über Stoffe, die zum Abbau der Ozonschicht führen (ABl. L 244 vom 29.9.2000, S. 1) aufgelistet sind, einschließlich ihrer Isomere. Geändert durch die Verordnung (EG) Nr. 1804/2003 (ABl. L 265 vom 16.10.2003, S. 1). (6) Gesamtmenge der Stoffe, die in den Gruppen I und II des Anhangs I der Verordnung (EG) Nr. 2037/2000 aufgelistet sind, einschließlich ihrer Isomere. (7) Gesamtmenge der Stoffe, die in den Gruppen III und VI des Anhangs I der Verordnung (EG) Nr. 2037/2000 aufgelistet sind, einschließlich ihrer Isomere. (8) Sämtliche Metalle werden als Gesamtmenge des Elements in allen chemischen Formen, die in der Freisetzung enthalten sind, gemeldet. (9) Halogenierte organische Verbindungen, die von Aktivkohle adsorbiert werden können, ausgedrückt als Chlorid. (10) Ausgedrückt als I-TEQ. (11) Einzelne Schadstoffe sind mitzuteilen, wenn der Schwellenwert für BTEX (d. h. der Summenparameter von Benzol, Toluol, Ethylbenzol und Xylol) überschritten wird. (12) Gesamtmenge der folgenden bromierten Diphenylether: Penta-BDE, Octa-BDE und Deca-BDE. (13) Gesamtmenge der Phenole und substituierten einfachen Phenole, ausgedrückt als Gesamtkohlenstoff. (14) Polyzyklische aromatische Kohlenwasserstoffe (PAK) sind für die Berichterstattung über Freisetzungen in die Luft als Benzo (a)pyren (50-32-8), Benzo(b)fluoranthen (205-99-2), Benzo(k)fluoranthen (207-08-9), Indeno(1,2,3-cd)pyren (193-39-5) zu messen (hergeleitet aus der Verordnung (EG) Nr. 850/2004 des Europäischen Parlaments und des Rates vom 29. April 2004 über persistente organische Schadstoffe (ABl. L 229 vom 29.6.2004, S. 5)). (15) Gesamtmenge der Tributylzinn-Verbindungen, ausgedrückt als Tributylzinn-Menge. (16) Gesamtmenge der Triphenylzinn-Verbindungen, ausgedrückt als Triphenylzinn-Menge. (17) Gesamtmenge der Xylene (Ortho-Xylene, Meta-Xylene, Para-Xylene).

Untersuchungen zum Einfluss von Pflanzenschutzmassnahmen im (Winter)Raps auf das Auftreten bzw. die Hoehe von Rueckstaenden im Honig, im Wachs und an/in Honigbienen

Das Projekt "Untersuchungen zum Einfluss von Pflanzenschutzmassnahmen im (Winter)Raps auf das Auftreten bzw. die Hoehe von Rueckstaenden im Honig, im Wachs und an/in Honigbienen" wird vom Umweltbundesamt gefördert und von Pflanzenschutzamt Schleswig-Holstein durchgeführt. ...Waehrend der Bluetezeit des Rapses besteht jedoch auch die Notwendigkeit, Schadinsekten und Schadpilze zur Vermeidung wirtschaftlich bedeutsamer Verluste mit chemischen Mitteln zu bekaempfen... Ermittlung der durchschnittlichen Belastung von Rapshonig auf der Handelsstufe mit Rueckstaenden von zugelassenen Pflanzenbehandlungsmitteln, die an bluehendem Winterraps angewendet werden (landesweite Statuserhebung); Ermittlung des Einflusses der Praeparat-Aufwandmenge auf die Hoehe der Rueckstaende im Honig; Ermittlung des Einflusses der Ausbringungstechnik (Bodengeraet; Hubschrauber) auf die Hoehe der Rueckstaende im Honig; Ermittlung der Direktkontamination von Flugbienen mit Wirkstoffanteilen; Versuche, diese Direktkontamination durch Unterbindung des Flug-betrie-bes waehrend der Ausbringung und bis mind. 2 h danach zu vermeiden/verringern; Einfluss der Sammelzeitdauer auf die Rueckstandshoehe bei Veraenderung des Abstandes zwischen Ausbringungs- und Schleuder-zeitpunkt; Untersuchung von Bienenwachs desselben Programms auf PSM-Rueckstaende; Zusaetzliche Ermittlung von Tierarzneimittel-Rueckstaenden nach Behandlung von parasitaerer Bienenkrankheiten im Stock (Var-roatose) (Brompropylat, 4,4 -Dibrombenzophenon (Pyrolyseprodukt)) in Bienenwachs; Erarbeitung der erforderlichen Rueckstandsanalysenmethoden (Kapillar-Gaschromatographie; Bestaetigung der Befunde (Massenspektrometrie)). Lebensmittelrechtliche und hygienisch-toxikologische Bewertung der Rueckstaende...Anwendungsempfehlungen... Ergebnisse: In 4 Proben (von 56) der Ernte 1984 wurden keine Rueckstaende ermittelt; in 10 Proben konnte ein Wirkstoff nachgewiesen werden, waehrend in 32 Proben zwei, in 9 Proben drei und in einer Probe vier Wirkstoffe detektiert wurden. In 52 Proben wurden die Wirkstoffe... Vinclozolin, Dialifos, Methoxychlor, Endosulfan und Procymidon festgestellt. Brompropylat und 4,4 -Dibrombenzophenon, Phosalon und Endo-sulfan-sulfat konnten in keiner Probe nachgewiesen werden...In demselben Programm wurden auch 60 Bienenwachsproben gezogen und nach Erarbeitung einer geeigneten gaschromatographischen Methode rueckstandsanalytisch untersucht (Wiederfindungsraten 47 - 70 Prozent; zugesetzte Wirkstoffgehalte zwischen 0,1 und 1,0 mg/kg). Ergebnisse: Neun Proben waren rueckstands-frei. In 47 Proben konnte ein Wirkstoff nachgewiesen werden; waehrend in zwei Proben zwei bzw. drei Verbin-dungen gefunden werden. In 51 Proben wurden die Wirkstoffe... Vinclozolin, Brompropylat, 4.4-Dibrombenzophenon, Procymidon festgestellt... Angesichts der ausgepraegten Lipophilie einiger der untersuchten Verbindungen, der mehr-fachen Wiederverwendung kontaminierter Wachs-Chargen in der Imkerei und der Bedeutung von Bienen-wachs fuer die kosmetische und pharmazeutische Industrie muss bei der Verwendung dieser Stoffe beson-ders sorgfaeltig umgegangen werden.

Untersuchung ueber das Rueckstandsverhalten von Endosulfan auf und in Kopfsalat nach einer Bekaempfung von beissenden und saugenden Insekten (II CH-D-17 76)

Das Projekt "Untersuchung ueber das Rueckstandsverhalten von Endosulfan auf und in Kopfsalat nach einer Bekaempfung von beissenden und saugenden Insekten (II CH-D-17 76)" wird vom Umweltbundesamt gefördert und von Biologische Bundesanstalt für Land- und Forstwirtschaft durchgeführt. a) Gewinnung zusaetzlicher Informationen ueber das Rueckstandsverhalten des Pflanzenbehandlungsmittel, die ueber jene vom Antragsteller vorgelegten hinausgehen.b) Freilandversuche in verschiedenen Teilen der Bundesrepublik Deutschland. Bekaempfung von beissenden und saugenden Insekten mit dem Pflanzenbehandlungsmittel an Kopfsalat (Frueh- und spaete Sommerkultur). (3 Anwendungen 0,15-prozentig, letzte Anwendung 14 Tage vor Haupternte). Probenahme 0, 7, 14 und 21 Tage nach letzter Anwendung und Untersuchung der Proben auf Rueckstaende des Pflanzenbehandlungsmittels.

1 2 3 4