Objective: As consumption of psychoactive substances such as alcohol, drugs and certain medicines are likely to endanger the drivers aptitude and impaired driving is still one of the major causes for road accidents, some active steps have to be taken to reach the goal of a 50% reduction in the number of road deaths in the EU. The objective of DRUID is to give scientific support to the EU transport policy to reach the 2010th road safety target by establishing guidelines and measures to combat impaired driving. DRUID will - conduct reference studies of the impact on fitness to drive for alcohol, illicit drugs and medicines and give new insights to the real degree of impairment caused by psychoactive drugs and their actual impact on road safety - generate recommendations for the definition of analytical and risk thresholds - analyse the prevalence of drugs and medicines in accidents and in general driving, set up a comprehensive and efficient epidemiological database.
BRAHMATWINN will enhance capacity to carry out a harmonised integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs already impacted from climate change, and to establish transfer of professional IWRM expertise, approaches and tools based on case studies carried out in twinning European and Asian river basins. With altogether eleven work packages (WP) the project addresses all important IWRM issues in a balanced way, including conflict resolution in the trans- boundary twinning Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basins (UBRB) in Europe and South Asia respectively. In altogether seventy work tasks of the jointly identified WP social and natural scientists in cooperation with water law experts and local stakeholders will realize the project outcomes: (i) an integrated holistic approach and assessment of the transboundary UDRB and UBRB for sustainable IWRM; (ii) integrated indicators to quantify the natural environment and human dimension, selected to assess IWRM vulnerabilities; (iii) an integrated water resources management system (IWRMS) comprising the DANUBIA hydrological model, the river basin information system (RBIS) and the network analysis, creative modelling decision support system NetSyMod; (iv) a set of what-if scenarios, evaluated using the DPSIR approach, and associated adaptive IWRM options tested by means of the IWRMS to mitigate impacts of likely climate change; and (v) IWRM action plans based on the stakeholder negotiation and the governance assessment. The project consortium of altogether fifteen partners from Europe (10 partner) and Asia (5 partner) shares the financial grant requested proportionally and will guarantee the generation of the necessary synergism required to represent the complex system component interaction and to carry out the required knowledge transfer between Europe and Asia.
MODELKEY comprises a mulitdisciplinary approach aiming at developing interlinked and verified predictive modelling tools as well as state-of-the-art effect-assessment and analytical methods generally applicable to European freshwater and marine ecosystems: 1) to assess, forecast, and mitigate the risks of traditional and recently evolving pollutants on fresh water and marine ecosystems and their biodiversity at a river basin and adjacent marine environment scale, 2) to provide early warning strategies on the basis of sub-lethal effects in vitro and in vivo, 3) to provide a better understanding of cause-effect-relationships between changes in biodiversity and the ecological status, as addressed by the Water Framework Directive, and the impact of environmental pollution as causative factor, 4) to provide methods for state-of-the-art risk assessment and decision support systems for the selection of the most efficient management options to prevent effects on biodiversity and to prioritise contamination sources and contaminated sites, 5) to strengthen the scientific knowledge on an European level in the field of impact assessment of environmental pollution on aquatic eco-systems and their biodiversity by extensive training activities and knowledge dissemination to stakeholders and the scientific community. This goal shall be achieved by combining innovative predictive tools for modelling exposure on a river basin scale including the estuary and the coastal zone, for modelling effects on higher levels of biological organisation with powerful assessment tools for the identification of key modes of action, key toxicants and key parameters determining exposure. The developed tools will be verified in case studies representing European key areas including Mediterranean, Western and Central European river basins. An end-user-directed decision support system will be provided for cost-effective tool selection and appropriate risk and site prioritisation.
Objective: The decoupling of economic growth and the growth of transport represents a major objective within the European transport policy. The major contributor to transport growth has to be seen in the increased transport intensity of value creation. On the supply side, the non-optimal utilisation of transport capacities and modes contributes to the growth of transport, for example in the lack of acceptance of inter-modal transport. This has been a major issue for policy makers for many years. In order to get a better understanding of the interrelation between logistics decisions and transport demand, the EC supported a number of research projects, such as SULOGTRA, EUTRALOG and PROTRANS. As a result, substantial scientific evidence has been produced. However, to achieve the Commission objectives, these findings must be translated into the daily operations of shippers and logistics service providers.
Knowledge of the solar energy resource has been generated over the past years within several European and national projects. Large steps forward have been made for the benefit of research, renewable energy industry, policy making and the environment. Nevertheless, these multiple efforts have led to a fragmentation and uncoordinated access: different sources of information and solar radiation products are now available, but uncertainty about their quality remains. At the same time, communities of users lack common understanding how to exploit the developed knowledge. The project MESoR aims at removing the uncertainty and improving the management of the solar energy resource knowledge. The results of past and present large-scale initiatives in Europe, will be integrated, standardised and disseminated in a harmonised way to facilitate their effective exploitation by stakeholders. This coordination action will contribute to preparation of the future roadmap for R&D and strengthening the European position in the international field. The project includes activities in user guidance (benchmarking of models and data sets; handbook; best practices), unification of access to information (use of advanced information technologies; offering one-stop-access to several databases), connecting to other initiatives (INSPIRE of the EU, POWER of the NASA, SHC and PVPS of the IEA, GMES/GEO) and to related scientific communities (energy, meteorology, geography, medicine, ecology), and dissemination (stakeholders involvement, future R&D, communication).
Objective: In a deregulated EU rail market monitoring of the vehicle and infrastructure interface is mandatory for enhanced availability of operation reducing costs. Especially when a rolling stock is crossing boundaries between independent infrastructure grids, cond ition monitoring becomes crucial. A monitoring tool on OCLs overhead contact lines - for infrastructure managers is needed for an separate measurement of contact force and surface condition of the vehicle current strip. The rolling stock operator needs a complementary device to measure not only the vertical contact force, but moreover the friction force, in order to analyse the vehicle and OCL interface condition. In SMITS a monitoring system for contact force on the interface current collector lt;- gt; c ontact wire has been developed. A sensor technology has been started to explore showing the potential for an extended range of rail monitoring tools. An innovative coherent sensor technology approach shall be investigated and two independent monitoring too ls for vehicle and infrastructure be developed. These shall be validated at new rail tracks specified for TSI interoperable cross boundary transportation: the Ltschberg Basis Tunnel, CH and the HSL Zuid high speed line, NL, both ready for operation in 2007 . Demonstration tests in operation will be performed along the Korridor X infrastructure passing through different countries rail networks. The outcome of the project will enable managers to specify driving conditions for the usage of their infrastructure to avoid excessive wear improving availability. Complementary rolling stock operators can monitor OCL condition giving them an informative argument in case of damage. Condition-dependent user fees as well as threat of penalty will force vehicle and infrast ructure managers to maintain the vehicle and infrastructure interface on a superior level of availability. The operational costs will be reduced and availability of transportation capacity enhanced.
Maritimer Transport ist von enormer Bedeutung für Europa und den Rest der Welt. Über 90% des Außenhandels der Europäischen Union wird per Seetransport abgewickelt. Mehr als eine Milliarde Tonnen an Fracht werden pro Jahr in den Häfen der Mitgliedstaaten auf- und abgeladen. Der Schiffstransport ist gemessen am Volumen die wichtigste Beförderungsart. Mit dem Seetransportgeschäft begann auch der Transport von Organismen im Ballastwasser von Schiffen. Der internationale Transport von drei bis zu zwölf Milliarden Tonnen Ballastwasser jährlich führt zur Ansammlung von ca. 100 Millionen Tonnen von Ablagerungen in den Schiffen. Die Beseitigung des entstandenen Schlamms verursacht enorme Kosten (ca. 30.000 € für ein kleines Frachtschiff). Neben den wirtschaftlichen Aspekten wird das Ballastwasser als hauptsächlicher Verursacher für die Umsiedlung von Aquaspezies über biologisch-geografische Grenzen hinaus verstanden. Schätzungsweise werden täglich 10.000 Pflanzen- sowie Tierarten per Schiff in die ganze Welt transportiert. Aufgrund des wachsenden Welthandels wächst auch die Bedrohung der Ökosysteme durch invasive Lebewesen. Die immer kürzeren Fahrtzeiten erhöhen die Überlebenswahrscheinlichkeit der Bioinvasoren. Die automatische und zuverlässige Reinigung des Ballastwassers im Tank mithilfe einer neuen Hybrid-Technologie (UV, Filter, Elektrolyse), die einen seewasserbetriebenen Generator nutzt, ist das gemeinsame Ziel der Projektpartner. Durch die Produktion von aktiven Substanzen mit der Elektrolyse aus dem Meerwasser wird vermieden, gefährliche und ätzende Chemikalien an Bord mitzuführen.
The scale of influence of global change and the added value of co-ordinating the scientific activities of the EU and North American countries to assess, predict and mitigate the effects on marine ecosystems of the North Atlantic and their services is the justification for the development of the BASIN SSA. An important step towards such a co-ordinated approach is the development of an implementation plan where by jointly funded international projects can be supported. The development of such a plan is the first key goal of BASIN. The second goal of BASIN is to develop an integrated basin-scale North Atlantic research program, for submission to the EU 7th framework program, US NSF and Canadian NSERC for joint funding. Programmatic goals will be achieved in working groups including experts from both the EU and North America as well as delegates from funding organisations. As a prerequisite for the development of the research proposal, this SSA will (1) assess the status of climate related ecosystem research in the North Atlantic basin and associated shelf seas, (2) identify gaps in systematic observations and process understanding of atmospheric and oceanic parameters, (3) identify the potential for consolidation of long-term observations from EU and international databases for modelling and prediction. The BASIN research program will focus on: Resolving the natural variability, potential impacts and feedbacks of global change on the structure, function and dynamics of ecosystems; Improving the understanding of marine ecosystem functioning; Developing ecosystem based management strategies. Hence, BASIN will contribute significantly to the Global Earth Observation System of Systems (GEOSS) 10-Year Implementation Plan via the development of comprehensive, coordinated, and sustained observations of the Earth System, improved monitoring of the state of the Earth, increased understanding of Earth processes, and enhanced prediction.
The proposed regulation concerning the registration, evaluation, authorisation and restriction of chemicals (REACH) requires demonstration of the safe manufacture of chemicals and their safe use throughout the supply chain. There is therefore a strong need to strengthen and advance human and environmental risk assessment knowledge and practices with regard to chemicals, in accord with the precautionary principle. The goal of the project OSIRIS is to develop integrated testing strategies (ITS) fit for REACH that enable to significantly increase the use of non-testing information for regulatory decision making, and thus minimise the need for animal testing. To this end, operational procedures will be developed, tested and disseminated that guide a transparent and scientifically sound evaluation of chemical substances in a risk-driven, context-specific and substance-tailored (RCS) manner. The envisaged decision theory framework includes alternative methods such as chemical and biological read-across, in vitro results, in vivo information on analogues, qualitative and quantitative structure-activity relationships, thresholds of toxicological concern and exposure-based waiving, and takes into account cost-benefit analyses as well as societal risk perception. It is based on the new REACH paradigm to move away from extensive standard testing to a more intelligent, substance-tailored approach. The work will be organised in five interlinked research pillars (chemical domain, biological domain, exposure, integration strategies and tools, case studies), with a particular focus on more complex, long-term and high-cost endpoints. Case studies will demonstrate the feasibility and effectiveness of the new ITS methodologies, and provide guidance in concrete form. To ensure optimal uptake of the results obtained in this project, end-users in industry and regulatory authorities will be closely involved in monitoring and in providing specific technical contributions to this project.
Ketzin ist eine Stadt westlich von Berlin im Land Brandenburg. In ihrer Nähe wurde seit 1960 Erdgas aus Sibirien in unterirdischen Sandsteinschichten zwischengelagert. Diese Erdgasspeicherung wurde vor kurzem eingestellt. Hier soll ein Forschungs- und Entwicklungsprojekt eingerichtet werden, bei dem das Treibhausgas Kohlendioxid (CO2 ) im Untergrund gelagert werden soll. Das Projekt wird vom GeoForschungsZentrum Potsdam koordiniert und von der Europäischen Union mit 8.7 Millionen Euro gefördert. Das Projekt soll helfen, das wissenschaftliche Verständnis der geologischen Speicherung von CO2 weiter zu entwickeln und die im Untergrund ablaufenden Prozesse der CO2 Injektion praktisch zu erforschen. Zunächst werden geologisch-geophysikalisch-geochemische Voruntersuchungen des Standortes und des vorgesehenen Speicherhorizontes sowie eine umfassende Risikoabschätzung vorgenommen um sicherzustellen, dass die Speicherung auch gefahrlos durchgeführt werden kann. Die erforderlichen Bewilligungen des zuständigen Bergamtes, der örtlichen Gemeinde und das Einverständnis der betroffenen Anwohner müssen dazu eingeholt werden. Die künftige Nutzung des Geländes ist Teil eines behördlich bereits genehmigten Bebauungsplans, der auch andere Vorhaben zur Nutzung regenerativer Energie aus Wind, Sonne und Biomasse einschließt. Das CO2 SINK Projekt erlaubt die Weiterverwendung vorhandener Gasspeicher-Infrastrukturen. Geplant ist die unterirdische Injektion von jährlich mehreren 10,000 Tonnen an reinem CO2 für zunächst zwei bis drei Jahre. Das CO2 soll dabei vorwiegend aus regenerativen Biomasse-Energierohstoffen gewonnen werden. Dieses ermöglicht im Prinzip, CO2 aus der Atmosphäre zu entziehen und damit die Treibhausgaskonzentration zu verringern. Unterirdische Erdgasspeicher und geologische Speicher für CO2 in salinen Grundwasserleitern (Aquifere) haben zwei gemeinsame Merkmale: Sie bestehen aus Gestein mit großem Porenraum wie z.B. Sandstein, das von abdichtenden Tonschichten überdeckt ist. Im Untergrundspeicher Ketzin wurde das Erdgas in einer Sandsteinschicht zwischen 250 und 400 Meter Tiefe unter der Erde gelagert. Aus Erkundungsbohrungen und seismischen Messungen weiß man, dass es dort aber noch mindestens eine weitere gut geeignete Speicherschicht in größerer Tiefe gibt. Diese ist rund 80 Meter mächtig und liegt auf einer geologischen Kuppe, die sich bis ungefähr 600 Meter unter der Erdoberfläche aufwölbt. Die Sandsteinschicht fällt nach allen Seiten auf etwa 700 Meter ab und ist von abdichtenden Gips- und Tonschichten überlagert. Um den Untergrund und die bei der CO2 Speicherung darin ablaufenden Prozesse verstehen zu können, ist im Projekt CO2SINK eine umfassende Reihe von wissenschaftlichen Untersuchungen geplant. Usw.
| Origin | Count |
|---|---|
| Bund | 128 |
| Type | Count |
|---|---|
| Förderprogramm | 128 |
| License | Count |
|---|---|
| offen | 128 |
| Language | Count |
|---|---|
| Deutsch | 15 |
| Englisch | 126 |
| Resource type | Count |
|---|---|
| Keine | 67 |
| Webseite | 61 |
| Topic | Count |
|---|---|
| Boden | 95 |
| Lebewesen und Lebensräume | 127 |
| Luft | 91 |
| Mensch und Umwelt | 128 |
| Wasser | 118 |
| Weitere | 128 |