Objective: As consumption of psychoactive substances such as alcohol, drugs and certain medicines are likely to endanger the drivers aptitude and impaired driving is still one of the major causes for road accidents, some active steps have to be taken to reach the goal of a 50% reduction in the number of road deaths in the EU. The objective of DRUID is to give scientific support to the EU transport policy to reach the 2010th road safety target by establishing guidelines and measures to combat impaired driving. DRUID will - conduct reference studies of the impact on fitness to drive for alcohol, illicit drugs and medicines and give new insights to the real degree of impairment caused by psychoactive drugs and their actual impact on road safety - generate recommendations for the definition of analytical and risk thresholds - analyse the prevalence of drugs and medicines in accidents and in general driving, set up a comprehensive and efficient epidemiological database.
Objective: The objective is to develop a low-cost, low temperature, portable direct methanol fuel cell device. It will also offer limited operation on ethanol fuel and will be of compact construction and modular design. The development will include novel proton exchange membranes, anode and cathode electro catalysts and fully optimised multilayer membrane electrode assemblies. New low-cost proton exchange membranes will be developed to reduce the methanol crossover rate through the electrolyte to levels significantly lower than that of currently available materials (e.g. Nafion). New electro catalyst materials will be developed to enhance the low temperature methanol (and ethanol) electro-oxidation activity of the anode. Catalyst development for the cathode will focus on enhancing the oxygen reduction activity of platinum electro catalyst and increasing its selectivity to enhance methanol tolerance. The structure of the electro catalyst and electrode layers will be optimised to promote efficient operation at low temperatures with practical flows and pressures. System optimisation, simplification and miniaturization will be carried out. The final performance objectives will be: single cells operating at 0.5V / cell at 0.2 Acm-2 at 30-60 C (in atmospheric pressure air). Prototypes of 100 and later 500 W stacks, operating at low temperatures with aimed electrical characteristics of 40 A/12.5 V, will be the targets of the project. The effective operation at this low temperature is particularly challenging. Additionally a conceptual study for up-scale will be supplied. A narrow collaboration between research centres and industry will make possible a rapid exploitation of the new components and system developments. A SME will be responsible for the integration and will deliver the prototypes. The potential market for portable fuel cells includes weather stations, medical devices, signal units, auxiliary power units, gas sensors and security cameras.
BRAHMATWINN will enhance capacity to carry out a harmonised integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs already impacted from climate change, and to establish transfer of professional IWRM expertise, approaches and tools based on case studies carried out in twinning European and Asian river basins. With altogether eleven work packages (WP) the project addresses all important IWRM issues in a balanced way, including conflict resolution in the trans- boundary twinning Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basins (UBRB) in Europe and South Asia respectively. In altogether seventy work tasks of the jointly identified WP social and natural scientists in cooperation with water law experts and local stakeholders will realize the project outcomes: (i) an integrated holistic approach and assessment of the transboundary UDRB and UBRB for sustainable IWRM; (ii) integrated indicators to quantify the natural environment and human dimension, selected to assess IWRM vulnerabilities; (iii) an integrated water resources management system (IWRMS) comprising the DANUBIA hydrological model, the river basin information system (RBIS) and the network analysis, creative modelling decision support system NetSyMod; (iv) a set of what-if scenarios, evaluated using the DPSIR approach, and associated adaptive IWRM options tested by means of the IWRMS to mitigate impacts of likely climate change; and (v) IWRM action plans based on the stakeholder negotiation and the governance assessment. The project consortium of altogether fifteen partners from Europe (10 partner) and Asia (5 partner) shares the financial grant requested proportionally and will guarantee the generation of the necessary synergism required to represent the complex system component interaction and to carry out the required knowledge transfer between Europe and Asia.
The share of renewable energy sources in the European energy balance can be increased by a meaningful contribution of geothermal energy. Since the mining cost (exploration and drilling) to access the resources represents over 60 percent of the total investment, a reduction in mining cost would increase the competitiveness of geothermal energy significantly. This goal can be achieved if we had a way to detect the presence of the fluids inside the natural and/or enhanced geothermal systems before any drilling operation. The project I-GET is aimed at developing an innovative geothermal exploration approach based on advanced geophysical methods. The objective is to improve the detection, prior to drilling, of fluid bearing zones in naturally and/or artificially fractured geothermal reservoirs. This new approach will be tested in four European geothermal systems with different geological and thermodynamic reservoir characteristics: two high enthalpy (metamorphic and volcanic rocks), one middle enthalpy geothermal system (deep sedimentary rocks), and one low enthalpy geothermal system (shallow sedimentary rocks). Petrophysical and geomechanical properties of the investigated rocks will be defined by laboratory measurements. With respect to the high enthalpy sites elastic and electric rock properties will be determined at the steam/liquid transition of the pore fillings. The validity of the laboratory and simulation results will be verified by new field experiments. Seismic and magnetotelluric data will be acquired in the test sites, and new acquisition and processing techniques will be developed to solve problems related to the particular target such as high temperatures, anisotropy, phase condition, etc.. The static and dynamic three-dimensional model of geothermal reservoirs will be reconstructed by means of all the data acquired. The input of the results of new geophysical prospecting into reservoir modelling is a crucial test of the quality of the new exploration method.
Objective: The constitution of the common European market is accompanied by continuously increasing cross-border goods and passenger traffic. Road transportation is facing a rapidly increasing congestion whilein the contrary the available capacities in railway transportation as well as inland waterwaytransportation are being underutilised. A redistribution of the carriage of goods is urgently needed, but up to now the most important obstacles consists in the incompatible interfaces between the various carriers and the diversity of loading devices being used in the EU. Main objective of the project is the development of new intermodal loading units including devices (ISO-bulk container and Roll-off container), capable adaptors and mobile fixtures suitable for the trimodal transport of bulk and packaged goods at road, railway and inland waterways. Essential element of the project is the design and integration of innovative adaptors for lifting and shifting operations of the loading units. This will lead to an optimum on intermodal compatibility. The goals are in conformity with the aims of the Specific Programme 'Sustainable Surface Transport', research domain 3.16. 'Development of equipment for fast loading / unloading of intermodal transport units'. By application of the new loading units the logistic chain can be set up without changing the loading unit throughout the whole door-to-door transport process. The transhipping procedures do not require crane technology any more and the costs will be reduced substantially. The uniformity of the specialinternal features as well as the compliance with the ISO-container dimensions will contribute to the harmonisation of loading units. The projects includes the development of containers, adaptors and mobile units, test and demonstration of two prototypes and dissemination and exploitation of the results. The consortium consists of ten partner with six SMEs from five countries (G, HU, CH, A,CR)
Objective: During the past six years two RTD-projects have been performed by a consortium of seven European partners to investigate ice forces on marine structures. The aim of this work has been to establish new methods for ice load predictions. The work has been supported by the EC under the projects LOLEIF and STRICE. The data compiled by these projects are of great importance for the future development of offshore wind energy converters, OWECS, in the ice-covered seas of Europe. Because the ice forces on marine structures are internationally heavily disputed the present design codes for OWECS as well as for all marine structures in ice-infested waters are not been considered reliable. Therefore, the main objective of this project is to contribute to the development of an international standard for the design of marine structures such as OWECS against ice loads with special emphasis on European sub-arctic ice conditions.
Objective: Solar thermal power plants represent today's most economic systems to generate electricity from solar insulation in them-range in regions like the Mediterranean area. By demonstrating the feasibility of direct steam generation in the absorber pipes European industry and research institutions have gained a leading position in this technology area. A key element foray successful market penetration is the availability of storage systems to reduce the dependence on the course of solarinsolation. The most important benefits result from -reduced internal costs due to increased efficiency and extended utilisation of the power block-facilitating the integration of a solar power plant into an electrical grid-adoption of electricity production to the demand thus increasing revenues Efficient storage systems for steam power plants demand transfer of energy during the charging/discharging process at constant temperatures. The DISTOR project focuses on the development of systems using phase change materials (PCM) as storage media. In order to accelerate the development, the DISTOR project is based on parallel research on three different storage concepts. These concepts include innovative aspects like encapsulated PCM, evaporation heat transfer and new design concepts. This parallel approach takes advantage of synergy effects and will enable the identification of the most promising storage concept. A consortium covering the various aspects of design and manufacturing has been formed from manufacturers, engineering companies and research institutions experienced in solar thermal power plants and PCM technology. The project will provide advanced storage material based on PCM for the temperature range of 200-300 C adapted to the needs of Direct Steam generation thus expanding Europe's strong position in solar thermal power plants.
Objective: The Project objective is the development of a low cost and high efficiency air-conditioning system based on CO2 (R744) as refrigerant fluid. Methods to assess performance, fuel annual consumption and environmental impact will be identified and they will constitute a first step for EU new standards. The EU, as Greenhouse Gas emission reduction measure, proposed the ban for Mobile Air Conditioning systems of fluids having a Global Warming Potential lower than 50 (i.e. R-134a and R-152a) with complementary measures - e.g. measurement of the MAC fuel consumption - This represents a challenge and an opportunity for OEMs and Mobile A/C Suppliers. The CO2 - R-744 when used as a refrigerant - is the favourite candidate to replace the R-134a. Besides safety, reliability and efficiency, the present estimated additional cost, ranging from 70 up to 150 Euro with reference to the low priced car systems, represents a obstacle. The lower priced vehicles constitute up the 70Prozent of the present EU car market, this number will rise up to the 80Prozent with the EU enlargement. A low cost and high efficiency R 744 MAC will support the EU efforts reducing the resistance to the approval of the HFC ban, allowing a rapid diffusion of the new system with the related environmental benefits and making the EU industries more competitive. The consortium composition - 2 major OEMs, 4 suppliers and three acknowledged excellence centres - makes the risk acceptable assuring an effective exploitation. Finally the Project gathers the most skilled European scientists and engineers in this specific field, so high level scientific and technical know how are expected to be produced as well as scientific advances in the dynamic system modelling. This will contribute to strengthen EU industries position in other domains (e.g. domestic air conditioning). The BCOOL project forms a cluster with the project named TOPMACS,focused on innovative adsorption mobile air conditioning systems...
Objective: The integration of DER in the European electricity networks has attracted attention of energy producers, network operators, policy makers and R&D community. In some countries it created a number of challenges for the electricity supply system creating barriers for further expansion of DER. Furthermore, there exists a lack of awareness and understanding of the possible benefits and scope of DER in the electricity system, while environmental goals and security of supply issues ask for solutions that DER could give in the future. The SOLID-DER Coordination Action will tackle the barriers for further integration of DER, overcoming the lack of awareness and fragmentation in EU R&D results by consolidating all European DER research activities. In particular awareness of DER solutions and benefits will be raised in the new Member States, thereby addressing the specific issues and barriers faced here. Consequently the key objectives of the project are: Identify and assess the critical developments, innovations and findings in meeting the R&D needs for large-scale integration of DER. It concerns developments in the field of legislation, regulation, DER support policies, market access, technical breakthroughs in DER supply and enabling technologies. To provide an assessment of costs/benefits and concepts of business models for DER and pro-active networks. Raising awareness of benefits of DER and organising dissemination of knowledge and capacity building in the new MS. The assessment and recommendations of RTD activities and its progress on national, regional, and EU levels will be reviewed and commented by the representatives of the electricity business community. This intensive dialogue will lead to an effective achievement of the overall EU energy policy goals and optimising the penetration of DER. At the same time, it will ensure that electricity networks can guarantee sufficient level of reliability of operation...
Objective: The aim of this project is to turn 4 core communities (Germany, Austria, Luxemburg, Poland) with clearly defined system borders and 14 - 20.000 inhabitants each into CONCERTO communities. A mix of different EE and RES demonstrations (including refurbishment of old buildings, eco-buildings and polygeneration, all underpinned with complete business plans) will allow to avoid about 300 GWh/yr end energy from fossil sources, thus avoiding 94.000 tons CO2/yr, and saving 22.9 mio Euro/yr of disbursements for extra-communal electricity and heat deliveries. The application of the Decentralised Energy Management System (DEMS) will allow for local and inter-communal operation, monitoring and control of energy consumption, storage and generation units and grids, including DSM and LCP, thereby exploring a EE potential of at least 5Prozent. The target in RES coverage for 2010 is of resp. 39 to 62Prozent of the then remaining electricity and heat demand. EnerMAS, a low-threshold version of the European environmental management system.
| Origin | Count |
|---|---|
| Bund | 128 |
| Type | Count |
|---|---|
| Förderprogramm | 128 |
| License | Count |
|---|---|
| offen | 128 |
| Language | Count |
|---|---|
| Deutsch | 15 |
| Englisch | 126 |
| Resource type | Count |
|---|---|
| Keine | 67 |
| Webseite | 61 |
| Topic | Count |
|---|---|
| Boden | 95 |
| Lebewesen und Lebensräume | 126 |
| Luft | 92 |
| Mensch und Umwelt | 128 |
| Wasser | 118 |
| Weitere | 128 |