API src

Found 128 results.

Network of DER laboratories and pre-standardisation (DER-LAB)

Objective: The main objective of the proposed Network of Excellence (NoE) DER-Lab is to support the sustainable integration of renewable energy sources (RES) and distributed energy resources (DER) in the electricity supply by developing common requirements, quality criteria, as well as proposing test and certification procedures concerning connection, safety, operation and communication of DER-components and systems. DER-Lab intends to strengthen the EC domestic market and to protect European interests on the international standardisation level. A major objective is to establish a durable European DER-Lab Network that will be a world player in this field. The NoE will bring together a group of organisations for the development of certification procedures for DER- components for electricity grids. The NoE will act as a platform to exchange the current state of knowledge between the different European institutes and other groups. The scattered, but high quality research and test facilities will be combined with great benefit for the European research infrastructure DER-Lab will contribute by developing new concepts for control and supervision of electricity supply and distribution and will bundle at European level specific aspects concerning the integration of RES technologies. The absence of European and international standards for the quality and certification of components and systems for DER is a hindrance to the growth of the European market and for European penetration of the world market. It is within the aims of the proposed NoE to reduce these barriers and to work towards common certification procedures for DER components that will be accepted throughout Europe and the world. Obviously this work cannot be done on a national basis. The results of the project and afterwards the output of the network will be a significant contribution to the European standardisation activities and will contribute to the harmonisation of the different national standards.

Compact direct (m)ethanol fuel cell for portable application (MOREPOWER)

Objective: The objective is to develop a low-cost, low temperature, portable direct methanol fuel cell device. It will also offer limited operation on ethanol fuel and will be of compact construction and modular design. The development will include novel proton exchange membranes, anode and cathode electro catalysts and fully optimised multilayer membrane electrode assemblies. New low-cost proton exchange membranes will be developed to reduce the methanol crossover rate through the electrolyte to levels significantly lower than that of currently available materials (e.g. Nafion). New electro catalyst materials will be developed to enhance the low temperature methanol (and ethanol) electro-oxidation activity of the anode. Catalyst development for the cathode will focus on enhancing the oxygen reduction activity of platinum electro catalyst and increasing its selectivity to enhance methanol tolerance. The structure of the electro catalyst and electrode layers will be optimised to promote efficient operation at low temperatures with practical flows and pressures. System optimisation, simplification and miniaturization will be carried out. The final performance objectives will be: single cells operating at 0.5V / cell at 0.2 Acm-2 at 30-60 C (in atmospheric pressure air). Prototypes of 100 and later 500 W stacks, operating at low temperatures with aimed electrical characteristics of 40 A/12.5 V, will be the targets of the project. The effective operation at this low temperature is particularly challenging. Additionally a conceptual study for up-scale will be supplied. A narrow collaboration between research centres and industry will make possible a rapid exploitation of the new components and system developments. A SME will be responsible for the integration and will deliver the prototypes. The potential market for portable fuel cells includes weather stations, medical devices, signal units, auxiliary power units, gas sensors and security cameras.

Thermally OPerated Mobile Air Conditioning Systems (TOPMACS)

Objective: The goal of this project is to develop mobile air conditioning systems with a reduced impact on the environment, both direct and indirect.Two new technologies will be explored:Metal Hydride, either powered by waste heat or by electric energySorption Cooling, powered by waste heatNeither of these technologies uses HCFCs, and so they do not have a direct impact on GWP. The key point is to develop systems that will have also lower indirect impact with respect to state of the art of mobile air conditioning systems. Both technologies has the potential for pre-cooling and pre-warming of the vehicle cabin. In addition to that, the advantages arising from the integration of a near zero Auxiliary Power Unit (APU) based on a Rankine cycle and able to provide electric power and heat (that can be modulated independently) will be evaluated so to study innovative architecture for the energy management of the overall vehicle.Two applications will be considered: Passenger carsLight and heavy trucksThe objective is to set up at least two prototypes: a truck and a car. Benefits for the environment will be quantified by means of calculations and tests in a climatic chamber and on the road. A methodology to evaluate at the same time thermal comfort and the associated energy performance will be developed.

European Concentrated Solar Thermal Road-Mapping (ECOSTAR)

Objective: The European Union has adopted the potential of Concentrating Solar Thermal Power (CSP) to contribute significantly to the achievement of a truly sustainable energy system in the medium-to-long term in Europe. Thus, the EC currently supports the implementation of three pilot solar thermal power plants. Besides continuous implementation of this technology, cost targeted innovation approaches are needed to achieve cost-competitiveness of this technology in the medium-to-long term. Up to now a variety of different and competing approaches have been promoted by the fragmented research base in Europe. The major objectives of the ECOSTAR co-ordinating action are: - to identify the European innovation potential with the highest impact on CSP-cost reduction, - to focus the European research activities and the national research programs of the partners involved onto common goals and priorities, - and to broaden its basis of industrial and research excellence, capable to solve the multidisciplinary CSP specific problems. High level commitment of six large research centres from Germany (DLR), Israel (WIS), France (CNRS-IMP),Spain (CIEMAT), Switzerland (ETH) and Russia (IVTAN) each with long-year experience in the subject and most of them conducting a significant program on concentrating solar technologies and operating their own facilities express the readiness to combine their national expertise to achieve these goals. This group has teamed-up with the international association of power and heat generation (VGB Powerless),which includes many of the European players in the power sector, to ensure by an independent industry assessment, that the identified innovation pathways are feasible from an industry perspective, to disseminate them to the power sector, and to support the identification of further expertise needed.

Scenarios for the transport system and energy supply and their potential effects (STEPS)

Objective: To achieve the tasks of Research Domain 1.10, the proposed project STEPS has the following overall objective:to develop, compare and assess possible scenarios for the transport system and energy supply of the future taking into account the state of the art of relevant research within and outside of the 6th RTD Framework and such criteria as the autonomy and security of energy supply, effects on the environment and economic, technical and industrial viability including the impact of potential cost internalisation and the interactions between transport and land use.To achieve this overall objective, STEPS has chosen a two-way approach. As the task description mentions research and assessment, modelling and forecasting activities on the one hand and co-ordination, comparison and dissemination activities on the other, the consortium has come up with a work plan consisting of two main activity 'lines': A Co-ordination activities (clustering meetings, dissemination, publications etc.); B Supporting research activities (scenario development, evaluation and assessment). These two lines of activities are closely related and constantly influencing each other. In all phases of the project,the interlinking of the two 'paths' will ensure a fruitful cross-fertilisation. Moreover, the chosen approach offers an added value to a project plan strictly confined to one of the two activities (research and co-ordination/dissemination).To achieve the project's goals, a well-balanced consortium of renowned research institutes, experienced in the fields of scenario-building and modelling, transport research and energy has been composed. Together with external experts, representatives of governments and other relevant authorities, market parties and transport and energy organisations, this consortium will make the possible consequences on the transport systems and energy supply of the future of the implementation of transport innovations, or the lack thereof, clear'.

Sustainable energy management systems (SEMS)

Objective: The aim of this project is to turn 4 core communities (Germany, Austria, Luxemburg, Poland) with clearly defined system borders and 14 - 20.000 inhabitants each into CONCERTO communities. A mix of different EE and RES demonstrations (including refurbishment of old buildings, eco-buildings and polygeneration, all underpinned with complete business plans) will allow to avoid about 300 GWh/yr end energy from fossil sources, thus avoiding 94.000 tons CO2/yr, and saving 22.9 mio Euro/yr of disbursements for extra-communal electricity and heat deliveries. The application of the Decentralised Energy Management System (DEMS) will allow for local and inter-communal operation, monitoring and control of energy consumption, storage and generation units and grids, including DSM and LCP, thereby exploring a EE potential of at least 5Prozent. The target in RES coverage for 2010 is of resp. 39 to 62Prozent of the then remaining electricity and heat demand. EnerMAS, a low-threshold version of the European environmental management system.

Integrated small scale solar heating and cooling systems for a sustainable air-conditioning of buildings (SOLERA)

Objective: The project aims to develop highly integrated solar heating and cooling systems for small and medium capacity applications which are easily installed and economically and socially sustainable. The envisioned applications are residential houses, small office buildings and hotels. The goal is to use the excess solar heat in summer to power a thermally driven cooling process in order to provide cooling for air-conditioning. In the heating season the solar system is used to provide direct heating. The proposed project therefore aims to demonstrate the technical feasibility, reliability and cost effectiveness of these systems, specially conceived as integrated systems to be offered on the market as complete packages which will make better use of the available solar radiation as present systems.

POLYCITY - europäische Energieforschung für Kommunen

Die Projektgebiete liegen in Deutschland, Italien und Spanien. Deutschland: Scharnhauser Park: In Ostfildern am südlichen Rand von Stuttgart entsteht auf einem ehemaligen amerikanischen Militärgelände der Stadtteil Scharnhauser Park für rund 10.000 Bewohner und mit etwa 2.500 Arbeitsplätzen. Zu rund 80 Prozent soll der Energiebedarf aus erneuerbarer Energie gedeckt werden. Kern des Energiekonzeptes für den Stadtteil ist ein Biomasse-Blockheizkraftwerk mit 1 MW elektrischer und 6 MW thermischer Leistung. Die Anlage wird optimiert, eine Ist-Analyse ist bereits erstellt worden. Mit der im Sommer ungenutzten Wärmeenergie soll künftig Kälte für die Klimatisierung von Gewerbebauten erzeugt werden. Neben der ganzjährigen Nutzung erneuerbarer Energien für die Kraft-Wärme-Kältekopplung ist auch Energiespeicherung (zentral und dezentral) und ein kommunales Energiemanagementsystem auf der Basis modernster Informationstechnologien vorgesehen. Das zafh.net liefert Know-how der simulationsgestützten Regelung von Anlagen und setzt betriebsbegleitende Simulationen ein. In Echtzeit soll aus den klimatischen Randbedingungen der optimale Betriebszustand berechnet und mit den real gemessenen Werten verglichen werden. Als Basis ist ein Geoinformationssystem entwickelt worden, mit dem die Energiedaten der Gebäude erfasst und ausgewertet werden können. Die Gebäude unterliegen einem hohen Dämmstandard (25 Prozent unter den in der Wärmeschutzverordnung 1995 geforderten Werten). Bei den im Projekt neu dazukommenden Wohn- und Gewerbebauten wird der Transmissionswärmeverlust um weitere 20-30 Prozent gesenkt. Die ersten Wohnbauten wurden im Herbst 2005 vom Siedlungswerk Stuttgart erstellt. Mit Argon gefüllte Fenster mit erhöhter Rahmendämmungund Kunststoff-Abstandhaltern erreichen einen Gesamt-Wärmedurchgangskoeffizienten von 1,1 W m-2 K-1. In diesem ersten Bauabschnitt sind reine Abluftanlagen ohne Wärmerückgewinnung installiert worden, in späteren Bauabschnitten sollen Anlagen mit Wärmerückgewinnung einer Vergleichsanalyseunterzogen werden. Die Gebäudedichtigkeit wird mit Blower-Door-Tests experimentell untersucht. Der Energiestandard wird bei allen Bauten dokumentiert. Messgeräte für die Fernauslese und Auswertung (Smartbox) sind bereits installiert. ImGewerbegebiet wird im März 2006 ein erstes Demoprojekt zur innovativen Gebäudetechnologie (Heizung, Lüftung, Klima) mit etwa 4.000 m2 Nutzfläche erstellt. In der Ausführungsplanung enthalten sind: thermische Kühlung, Erdreichwärmetauscher, Betonkernaktivierung (zur Kühlung) ein Unterflurkonvektions-Heiz- und Kühlsystem, ein Tageslicht-Lenksystem. Nicht nur das Biomassekraftwerk liefert Strom, sondern auch gebäudeintegrierte PV-Anlagen. Ziel ist eine Leistung von insgesamt 70 kWp. Zudem wird die kinetische Energie des Wassers genutzt: Das aus den Hochbehältern ins Netz abfließende Trinkwasser treibt eine 80-kW-Entspannungsturbine an.

Demonstration of a sustainable CHP concept using residues from olive oil production (OLIVEPOWER)

Objective: The project focuses on the demonstration of an innovative and sustainable CHP concept using residues from olive oil production (olive wastes) as fuel. A first plant based on the new concept will be realised in Greece. The main objective of the project is to demonstrate a closed cycle concept able to reduce landfill problems and emissions and to promote the use of renewable electricity production in Southern Europe. The project will be based on an approach integrating the whole chain (fuel logistics and preparation, energy production, by-product utilisation). An optimised fuel logistic concept will guarantee for a secured fuel supply over the whole year. The fuel will not only be dewatered and dried but also a marketable by-product will be produced. By this means a better fuel quality can be achieved and solid wastes as well as waste- water can be omitted. The development and design of the combustion unit focuses on a technology tailored to the special characteristics of the olive waste.

Optimized Strategies for Risk Assessment of Chemicals based on Intelligent Testing (OSIRIS)

The proposed regulation concerning the registration, evaluation, authorisation and restriction of chemicals (REACH) requires demonstration of the safe manufacture of chemicals and their safe use throughout the supply chain. There is therefore a strong need to strengthen and advance human and environmental risk assessment knowledge and practices with regard to chemicals, in accord with the precautionary principle. The goal of the project OSIRIS is to develop integrated testing strategies (ITS) fit for REACH that enable to significantly increase the use of non-testing information for regulatory decision making, and thus minimise the need for animal testing. To this end, operational procedures will be developed, tested and disseminated that guide a transparent and scientifically sound evaluation of chemical substances in a risk-driven, context-specific and substance-tailored (RCS) manner. The envisaged decision theory framework includes alternative methods such as chemical and biological read-across, in vitro results, in vivo information on analogues, qualitative and quantitative structure-activity relationships, thresholds of toxicological concern and exposure-based waiving, and takes into account cost-benefit analyses as well as societal risk perception. It is based on the new REACH paradigm to move away from extensive standard testing to a more intelligent, substance-tailored approach. The work will be organised in five interlinked research pillars (chemical domain, biological domain, exposure, integration strategies and tools, case studies), with a particular focus on more complex, long-term and high-cost endpoints. Case studies will demonstrate the feasibility and effectiveness of the new ITS methodologies, and provide guidance in concrete form. To ensure optimal uptake of the results obtained in this project, end-users in industry and regulatory authorities will be closely involved in monitoring and in providing specific technical contributions to this project.

1 2 3 4 511 12 13