API src

Found 128 results.

Tools for Sustainabiltity Impact Assessment of the Forestry- Wood Chain

The objective of EFORWOOD is to develop a quantitative decision support tool for Sustainability Impact Assessment of the European Forestry-Wood Chain (FWC) and subsets thereof (e.g. regional), covering forestry, industrial manufacturing, consumption and recycling. The objective will be achieved by:a) defining economic, environmental and social sustainability indicators ,b) developing a tool for Sustainability Impact Assessment by integrating a set of models ,c) supplying the tool with real data, aggregated as needed and appropriate,d) testing the tool in a stepwise procedure allowing adjustments to be made according to the experiences gained,e) applying the tool to assess the sustainability of the present European FWC (and subsets thereof) as well the impacts of potential major changes based on scenarios,f) making the adapted versions of the tool available to stakeholder groupings (industrial, political and others).The multi-functionality of the FWC is taken into account by using indicators to assess the sustainability of production processes and by including in the analysis the various products and services of the FWC. Wide stakeholder consultations will be used throughout the process to reach the objective. EFORWOOD will contribute to EU policies connected to the FWC, especially to the Sustainable Development Strategy. It will provide policy-makers, forest owners, the related industries and other stakeholders with a tool to strengthen the forest-based sector's contribution towards a more sustainable Europe, thereby also improving its competitiveness. To achieve this, EFORWOOD gathers a consortium of highest-class experts, including the most representative forest-based sector confederations.EFORWOOD addresses with a high degree of relevance the objectives set out in the 3rd call for proposals addressing Thematic Sub-priority 1.1.6.3 Global Change and Ecosystems, topic V.2.1. Forestry/wood chain for Sustainable Development. Prime Contractor: Stiftelsen Skogsbrukets Forskningsinstitut, Skogforsk; Uppsala; Sweden.

Ash and aerosol related problems in biomass combustion and co-firing (BIOASH)

The project focuses on R&D concerning ash related problems in biomass combustion and co-firing of biomass in coal fired plants. The main objectives of the project will be to investigate the release of ash forming compounds from biomass fuels in fixed-bed and pulverised fuel combustion systems, to determine presently not available thermodynamic data concerning the melting behaviour of Na, Zn and Pb-rich ashes, to further develop simulation tools for aerosol and deposit formation and to develop and test a new technology (an aerosol condenser) for efficient and cost effective aerosol precipitation in small-scale biomass combustion units. The project will also investigate the influence of particulate emissions from biomass combustion and co-firing plants on the regional air quality and parameters influencing health effects caused by these emissions. Comprehensive laboratory, pilot-scale and large-scale test runs at biomass combustion and co-firing plants as well as modelling of relevant mechanisms for aerosol and deposit formation will form the basis of the work performed and will complement each other. By reaching the aims of the project deposit formation in biomass combustion and co-combustion shall be significantly reduced by optimisation of furnace and boiler designs as well as control systems and by a better choice of fuel blends used. Concerning small-scale biomass combustion, aerosol emissions will significantly be reduced by the application of the new precipitation technology. New data concerning the influence of particulate emissions from biomass combustion and co-firing on health risks will be evaluated and form the basis for a recommendation of emission limits. The project results will contribute to a higher energy efficiency and availability of biomass combustion and co-firing plants and to a significant reduction of aerosol emissions from small-scale biomass combustion plants, promoting the increased use of biomass for energy production in Europe.

Integrated small scale solar heating and cooling systems for a sustainable air-conditioning of buildings (SOLERA)

Objective: The project aims to develop highly integrated solar heating and cooling systems for small and medium capacity applications which are easily installed and economically and socially sustainable. The envisioned applications are residential houses, small office buildings and hotels. The goal is to use the excess solar heat in summer to power a thermally driven cooling process in order to provide cooling for air-conditioning. In the heating season the solar system is used to provide direct heating. The proposed project therefore aims to demonstrate the technical feasibility, reliability and cost effectiveness of these systems, specially conceived as integrated systems to be offered on the market as complete packages which will make better use of the available solar radiation as present systems.

Hydrogen for clean urban transport in Europe (HyFleet:CUTE)

The HyFLEET:CUTE project involves the operation of 47 hydrogen powered buses in regular public transport service in 10 cities on three continents. The Project aims to diversify and reduce energy consumption in the transport system by developing new, fuel efficient hydrogen powered bus technology, and clean, efficient and safe ways of producing and distributing hydrogen fuel. Objectives: - Develop hydrogen powered bus technology in order to reduce the consumption of fuel and energy in the whole transportation system. - Develop efficient and environmentally 'friendly' ways to produce hydrogen. - Research the technology and development needs to establish a hydrogen refueling infrastructure. - Inform the community and key decision-makers about the potential advantages of a hydrogen-based transport system and how they can help to develop it.

Marine Carbon Sources and Sinks Assessment (ex MARCASSA) (CARBOOCEAN)

CARBOOCEAN IP aims at an accurate assessment of the marine carbon sources and sinks. Target is to reduce the present uncertainties in the quantification of net annual air-sea CO2 fluxes by a factor of 2 for the world ocean and by a factor of 4 for the Atlantic Ocean. The IP will deliver description, process-oriented understanding and prediction of the marine carbon sources and sinks with special emphasis on the Atlantic and Southern Oceans on a time scale -200 to +200 years from now. Expected breakthroughs by CARBOOCEAN IP will be firm answers to the following as yet unresolved questions: How large are the Atlantic and Southern Ocean CO2 sinks precisely, i.e. how efficient is the downward transport of carbon in the deep-water production areas of the world ocean? What do European rivers and shelf seas contribute to the large scale CO2 sources and sinks pattern of the North Atlantic Ocean in relation to uptake within Western Europe ? What are the key biogeochemical feedbacks that can affect ocean carbon uptake and how do they operate? What is the quantitative global and regional impact of such feedbacks when forced by climatic change in the next 200 years? CARBOOCEAN IP will answer these questions through basic research in a strategic combination of extensive large-scale observations, process studies and advanced computer models focusing on all quantitatively important aspects to the problem. The project is based on three elements - observations, process studies, and integrative modelling - equivalent to description, understanding and prediction: A marine carbon balance for the last 200 years based on high quality observations. A process-based understanding of the marine carbon cycle response to a change in forcing as derived from process studies in the field, in the laboratory, and through modelling. Integrated carbon budgets for the interval -200 to +200 years from now by synthesis of a modelling framework with observations and new feedback. Prime Contractor: University of Bergen, Bjerknes Centre for Climate Research; Bergen; Norway.

Fuel cell power trains and clustering in heavy-duty transports (FELICITAS)

Objective: The FELICITAS consortium proposes an Integrated Project to develop fuel cell (FC) drive trains fuelled with both hydrocarbons and hydrogen. The proposed development work focuses on producing FC systems capable of meeting the exacting demands of heavy-dut y transport for road, rail and marine applications. These systems will be: - Highly efficient, above 60Prozent - Power dense, - Powerful units of 200kW plus, - Durable, robust and reliable. Two of the FC technologies most suitable for heavy-duty transport applic ations are Polymer Electrolyte FuelCells (PEFC) and Solid Oxide Fuel Cells (SOFC). Currently neither technology is capable of meeting the wideranging needs of heavy-duty transport either because of low efficiencies, PEFC, or poor transient performance,SO FC. FELICITAS proposes the development of high power Fuel Cell Clusters (FCC) that group FC systems with other technologies, including batteries, thermal energy and energy recuperation.The FELICITAS consortium will first undertake the definition of the requirements on FC power trains for the different heavy-duty transport modes. This will lead to the development of FC power train concepts, which through the use of advanced multiple simulations, will undertake evaluations of technical parameters, reliab ility and life cycle costs. Alongside the development of appropriate FC power trains the consortium will undertake fundamental research to adapt and improve existing FC and other technologies, including gas turbines, diesel reforming and sensor systems f or their successful deployment in the demanding heavy-duty transport modes. This research work will combine with the FC power trains design and simulation work to provide improved components and systems, together with prototypes and field testing where ap propriate.The FELICITAS consortium approach will substantially improve European FC and associated technology knowledae and know-how in the field of heavv-duty transport.

Compact direct (m)ethanol fuel cell for portable application (MOREPOWER)

Objective: The objective is to develop a low-cost, low temperature, portable direct methanol fuel cell device. It will also offer limited operation on ethanol fuel and will be of compact construction and modular design. The development will include novel proton exchange membranes, anode and cathode electro catalysts and fully optimised multilayer membrane electrode assemblies. New low-cost proton exchange membranes will be developed to reduce the methanol crossover rate through the electrolyte to levels significantly lower than that of currently available materials (e.g. Nafion). New electro catalyst materials will be developed to enhance the low temperature methanol (and ethanol) electro-oxidation activity of the anode. Catalyst development for the cathode will focus on enhancing the oxygen reduction activity of platinum electro catalyst and increasing its selectivity to enhance methanol tolerance. The structure of the electro catalyst and electrode layers will be optimised to promote efficient operation at low temperatures with practical flows and pressures. System optimisation, simplification and miniaturization will be carried out. The final performance objectives will be: single cells operating at 0.5V / cell at 0.2 Acm-2 at 30-60 C (in atmospheric pressure air). Prototypes of 100 and later 500 W stacks, operating at low temperatures with aimed electrical characteristics of 40 A/12.5 V, will be the targets of the project. The effective operation at this low temperature is particularly challenging. Additionally a conceptual study for up-scale will be supplied. A narrow collaboration between research centres and industry will make possible a rapid exploitation of the new components and system developments. A SME will be responsible for the integration and will deliver the prototypes. The potential market for portable fuel cells includes weather stations, medical devices, signal units, auxiliary power units, gas sensors and security cameras.

Towards DNA chip technology as a standard analytical tool for the identification of marine organisms in biodiversity and ecosystem science (FISH & CHIPS)

Sustainable development is a fundamental goal of the European Union and loss of biodiversity is emphasised as one of the main threats to it. However, biodiversity and ecosystems of European Seas are under human impact, such as pollution, eutrophication, and overfishing. Therefore it is necessary to monitor changes in biodiversity and ecosystem functioning. The aim of the project is the development of DNA chips for the identification of marine organisms in European Seas as a cost effective, reliable and efficient technology in biodiversity and ecosystem science. Many marine organisms, such as eggs and larvae of fishes, plankton, and benthic invertebrates, are difficult to identify by morphological characters. The classical methods are extremely time consuming and require a high degree of taxonomie expertise. Consequently, the basic step of identifying such organisms is a major bottleneck in biodiversity and ecosystem science. Therefore, the project seeks to demonstrate that DNA chips can be a new powerful and innovative tool for the identification of marine organisms. Three DNA chips for the identification of fishes, phytoplankton, and invertebrates of European Seas will be developed. These chips will facilitate research on dispersal of ichthyoplankton, monitoring of phytoplankton, and identification of bioindicators as well as prey in gut contents analysis. To achieve this goal a combined biological and technical approach has been initiated: The biological material will be sampled by marine biologists. The next step is the sequencing of suitable molecular markers for probe design. The technical part consists mainly in constructing gene probe libraries and determining their specificity. This will be done by biotech research centres in connection with SMEs engaged in bioinformatics and DNA chip technology. Therefore the project has the potential to bring Europe's marine biotechnology to the forefront of this field.

Low Cost and High Efficiency CO2 Mobile Air Conditioning system for lower segment cars (B-COOL)

Objective: The Project objective is the development of a low cost and high efficiency air-conditioning system based on CO2 (R744) as refrigerant fluid. Methods to assess performance, fuel annual consumption and environmental impact will be identified and they will constitute a first step for EU new standards. The EU, as Greenhouse Gas emission reduction measure, proposed the ban for Mobile Air Conditioning systems of fluids having a Global Warming Potential lower than 50 (i.e. R-134a and R-152a) with complementary measures - e.g. measurement of the MAC fuel consumption - This represents a challenge and an opportunity for OEMs and Mobile A/C Suppliers. The CO2 - R-744 when used as a refrigerant - is the favourite candidate to replace the R-134a. Besides safety, reliability and efficiency, the present estimated additional cost, ranging from 70 up to 150 Euro with reference to the low priced car systems, represents a obstacle. The lower priced vehicles constitute up the 70Prozent of the present EU car market, this number will rise up to the 80Prozent with the EU enlargement. A low cost and high efficiency R 744 MAC will support the EU efforts reducing the resistance to the approval of the HFC ban, allowing a rapid diffusion of the new system with the related environmental benefits and making the EU industries more competitive. The consortium composition - 2 major OEMs, 4 suppliers and three acknowledged excellence centres - makes the risk acceptable assuring an effective exploitation. Finally the Project gathers the most skilled European scientists and engineers in this specific field, so high level scientific and technical know how are expected to be produced as well as scientific advances in the dynamic system modelling. This will contribute to strengthen EU industries position in other domains (e.g. domestic air conditioning). The BCOOL project forms a cluster with the project named TOPMACS,focused on innovative adsorption mobile air conditioning systems...

Remote Sensing and Geo informatio n processing in the assessment and monitoring of land degradation and desertification in support of the UNCCD. State of the art and operational perspectives (DESERTSTOP)

In the past years, the persisting threat of desertification and degradation of natural resources has resulted in a large number of initiatives and research efforts on a global scale, including the United Nations Convention to Combat Desertification. Despite significant progress, knowledge still remains fragmented in many fields, especially with respect to the definition of related indicators or early warning systems. The specific support activity 'Remote Sensing and Geoinformation processing in the assessment and monitoring of land degradation and desertification in support of the UNCCD. State of the art and operational perspectives', intends to serve as a platform to bring together leading scientists working in the fields of remote sensing and geoinformatics with a focus on desertification and land degradation with potential users. A dedicated conference striving for attention on a world wide level will be the core around which various other activities are assembled. Commissioned studies in specific target fields will provide an overview on the state of the art, being complemented through methodological and application studies. Besides taking care of a sound scientific management and logistic organisation of the conference, major efforts will be dedicated towards the international visibility of the event and its results by providing for a high-level dissemination following different pathways (abstract book/CDROM, special issues of scientific journals, printed conference proceedings). A web site will provide further dissemination of the project as well as dynamic elements. Following principles set forth by the Commission under the ENRICH initiative and the quest to strengthen the European Research Area, the project will address renowned scientific experts, and support the participation of experts and stakeholders from third world and developing countries, which are often among the regions most affected from desertification and land degradation.

1 2 3 4 511 12 13