API src

Found 128 results.

Catenary Interface Monitoring Coherent sensing technology for electrical railway infrastructure and rolling stock for interoperable cross boundary transportation (CATIEMON)

Objective: In a deregulated EU rail market monitoring of the vehicle and infrastructure interface is mandatory for enhanced availability of operation reducing costs. Especially when a rolling stock is crossing boundaries between independent infrastructure grids, cond ition monitoring becomes crucial. A monitoring tool on OCLs overhead contact lines - for infrastructure managers is needed for an separate measurement of contact force and surface condition of the vehicle current strip. The rolling stock operator needs a complementary device to measure not only the vertical contact force, but moreover the friction force, in order to analyse the vehicle and OCL interface condition. In SMITS a monitoring system for contact force on the interface current collector lt;- gt; c ontact wire has been developed. A sensor technology has been started to explore showing the potential for an extended range of rail monitoring tools. An innovative coherent sensor technology approach shall be investigated and two independent monitoring too ls for vehicle and infrastructure be developed. These shall be validated at new rail tracks specified for TSI interoperable cross boundary transportation: the Ltschberg Basis Tunnel, CH and the HSL Zuid high speed line, NL, both ready for operation in 2007 . Demonstration tests in operation will be performed along the Korridor X infrastructure passing through different countries rail networks. The outcome of the project will enable managers to specify driving conditions for the usage of their infrastructure to avoid excessive wear improving availability. Complementary rolling stock operators can monitor OCL condition giving them an informative argument in case of damage. Condition-dependent user fees as well as threat of penalty will force vehicle and infrast ructure managers to maintain the vehicle and infrastructure interface on a superior level of availability. The operational costs will be reduced and availability of transportation capacity enhanced.

NextGenCell - The next generation of stationary fuel cells (NEXTGENCELL)

Objective: Designed as a joint EU and US collaborative effort in the framework of the EU-US Cooperation Agreement on fuel cells, NextGenCell aims to bring domestic fuel cell microCHP (1-5kWel) next step towards commercialisation. In FP5 Vaillant, Plug Power, and othe r European partners have demonstrated low temperature PEM fuel cell microCHP systems. Three major hurdles were identified: 1. Costs must be reduced significantly, 2. Reliability must be improved via system simplification, 3. System temperature must be increased. High Temperature (HT) PEM MEA technology at 160-180 C has the potential to overcome those hurdles. R&D on MEA, Fuel Cell System, components development and integration will lead to a developed and tested 1-5kW HT PEM fuel cell prototype microCH P system with modular design for global markets. Specific objectives relevant to TP 6.1 at production volumes are: 1. Total system costs less than 400 EUR/kW: - Significant system simplification (no CO clean-up and water management) - Increase mechanical stability of MEA - Reduction of system costs (e.g. of Balance of Plant, fuel processor, maintenance/recycling) and low cost bi-directional inverter development 2. Modular system design: - modular system design for different market applications (CHP and future tri-generation) - Increase electrical efficiency up to 35Prozent with 85Prozent total efficiency 3. Durability greater than 40.000 hours: - MEA Development with more stable cathode material and corrosion -resistant cathodes 4. Electronic control systems for optimal heat and power management and reduced costs; - CHP hydraulics concept Development (system scalability 1-5kW) - Embedded controller with 70Prozent less cost - microCHP Controls optimisation in a Virtual Power Plant. The team is based on strong industrial and scientifically partnership, includes a SME and participants from Acceding Country Bulgaria and Slovenia as one of the new member states. Five participants have expressed to join the Joint Technology Platform (JTI).

MESoR - Management and Exploitation of Solar Resource Knowledge

Knowledge of the solar energy resource has been generated over the past years within several European and national projects. Large steps forward have been made for the benefit of research, renewable energy industry, policy making and the environment. Nevertheless, these multiple efforts have led to a fragmentation and uncoordinated access: different sources of information and solar radiation products are now available, but uncertainty about their quality remains. At the same time, communities of users lack common understanding how to exploit the developed knowledge. The project MESoR aims at removing the uncertainty and improving the management of the solar energy resource knowledge. The results of past and present large-scale initiatives in Europe, will be integrated, standardised and disseminated in a harmonised way to facilitate their effective exploitation by stakeholders. This coordination action will contribute to preparation of the future roadmap for R&D and strengthening the European position in the international field. The project includes activities in user guidance (benchmarking of models and data sets; handbook; best practices), unification of access to information (use of advanced information technologies; offering one-stop-access to several databases), connecting to other initiatives (INSPIRE of the EU, POWER of the NASA, SHC and PVPS of the IEA, GMES/GEO) and to related scientific communities (energy, meteorology, geography, medicine, ecology), and dissemination (stakeholders involvement, future R&D, communication).

Expressed Sequence Tags (ESTS) of Toxic Algae (ESTTAL)

Harmful algal blooms (HABs) are caused by local proliferation of algae, with deleterious consequences, particularly in coastal waters throughout the world. Negative environmental effects include toxicity to human consumers of seafood, marine faunal mortalities or morbidity, habitat damage, disruption of marine food webs and economic losses to fishing, aquaculture, and tourism. In Europe, socio-economic factors and human health risk have led to comprehensive surveillance programmes for harmful microalgae and their toxins. Among harmful microalgae and cyanobacteria in European marine and brackish waters, many produce potent neurotoxins, ichthyotoxins or hepatotoxins. Although structural elucidation of many of these groups of toxins has advanced, much less is known about biosynthetic pathways and gene regulation in toxigenic species. We propose a limited genomic study of expressed sequence tags (ESTs) for toxigenic representatives of major eukaryotic microalgal groups, including dinoflagellates, raphidophytes, prymnesiophytes and diatoms, and cyanobacteria. Cultures will be grown under various environmental conditions to investigate the effects of external forcing functions on gene expression linked to toxicity and growth. After cloning of cDNA of toxigenic strains pooled from cultures grown under these different conditions into plasmid vectors, about 10,000 clones from each taxon will be randomly sequenced for ESTs. Our approach is to annotate the ESTs and attempt to identify genes associated with toxin production. DNA microarrays will be developed for screening of toxigenic and non-toxigenic strains. In addition, the sequence data will be analysed to identify other genes that may be involved in cell regulation or growth, cell cycle events, stress response and the induction of sexuality. Cultures will be grown under various environmental conditions to investigate the effects of external forcing functions on gene expression linked to toxicity and growth. Successful completion of this project will yield new information on microalgal and cyanobacterial genomic sequences for a diversity of taxa and will assist in the diagnosis of genes related to toxin biosynthesis and the formation of toxic blooms.

Environmental risk assessment of pharmaceuticals (ERAPHARM)

The overall objective of ERAP harm is to improve and complement existing knowledge and procedures for the environmental risk assessment (ERA) of human and veterinary pharmaceuticals. Based on EU regulatory frameworks on the ERA of pharmaceuticals and on the outcome of previous projects ERAP harm will address the following aspects: It will investigate previously unstudied major routes leading to exposure of the terrestrial and aquatic environment and subsequent fate of pharmaceuticals in surface water and sediment. Factors and processes affecting the behavior of pharmaceuticals in the environment will be studied on the laboratory, semi-field and fieldscale. A scenario-based exposure assessment system will be developed for predicting concentrations of pharmaceuticals in soils, surface waters and sediments and leaching to groundwater. It will be investigated if environmentally relevant concentrations of pharmaceuticals pose a risk to aquatic and terrestrial organisms. Pharmaceuticals and selected transformation products will be screened using in vitro and low complexity bioanalytical tests in order to provide a first hazard characterization and to target higher tier testing. Higher tier test methods will be improved and applied for detecting the effects of long-term, low-level exposure to pharmaceuticals on aquatic and terrestrial invertebrates and fish. It will be evaluated if information on pharmaco- and toxicodynamics in mammalian species can be used to predict effects of pharmaceuticals on environmental organisms. Moreover, the effects of antibiotics on microbial communities will be studied with a main focus on the spread of genetically encoded resistance. Based on the developed approaches recommendations will be provided on how to improve the ERA procedures for pharmaceuticals. A guidance document will be compiled that will be made available to regulators, industry and the scientific community.

Realising Reliable, Durable Energy Efficient and Cost Effective SOFC Systems (Real-SOFC), Realising Reliable, Durable, Energy Efficient and Cost Effective SOFC Systems (REAL-SOFC)

Objective: The aim of the proposed Integrated Project is to solve the persisting generic problems with planar Solid Oxide Fuel Cells (SOFC) in a concerted action of the European fuel cell industry and research institutions. Main topics addressed include decreased ageing, cost effective materials, low cost components and manufacturing processes, highest electricity generation efficiency in pressurised operation and waste heat utilisation. In close co-operation between industry and research institutions the following steps are accomplished: *improved understanding of ageing in planar SOFC stacks considering all modes of operation, including pressurised, long-term testing over 10.000 hrs., thermal cycling up to 100 cycles, and the influences of fuel composition; these results will flow into *adaptation of materials and protective coatings in order to reduce ageing to well below 0,5Prozent/1000 hrs., introduction of requirements from pressurised operation to materials and cell development; the modified materials then are used in *manufacturing of improved components under commercial conditions and subsequent characterisation in long- term and cycling tests. Two proofs-of-concept including laboratory equipment tests will address * the pressurised operation of stacks coupled with gas turbines (including pressurised stack development in the 5 and 50 kW range) and *the utilisation of the high-value waste heat for industrial processes , namely sorption cooling. The project addresses the topics of Life Cycle Analysis as an essential tool for assessing the environmental impact and recycling of the materials used, industrial standardisation as a means of lowering costs, and training and dissemination as a tool of human resource management and gender equality. The structure of the project is similar to the U.S. American SECA programme targeted at decisive cost reductions in SOFC systems.

Biomass Fuell Cell Utility System (BIOCELLUS)

Objective: Energy from Biomass needs highly efficient small-scale energy systems in order to achieve cost effective solutions for decentralized generation especially in Mediterranean and Southern areas, and for applications without adequate heat consumer. Thus fuel cells are an attractive option for decentralized generation from biomass and agricultural residues but they have to meet at least two outstanding challenges: 1. Fuel cell materials and the gas cleaning technologies have to treat high dust loads of the fuel gas and pollutants like tars, alkalines and heavy metals. 2. The system integration has to allow efficiencies of at least 40-50 percent even within a power range of few tens or hundreds of kW. This proposal addresses in particular these two aims. Hence the first part of the project will focus on the investigation of the impact of these pollutants on degradation and performance characteristics of SOFC fuel cells in order to specify the requirements for appropriate gas cleaning system (WP 1-2). These tests will be performed at six existing gasification sites, which represent the most common and applicable gasification technologies. WP 3 will finally test and demonstrate the selected gas cleaning technologies in order to verify the specifications obtained from the gasification tests. The results will be used for the development, installation and testing of an innovative SOFC - Gasification concept, which will especially match the particular requirements of fuel cell systems for the conversion of biomass feedstock. The innovative concept comprises to heat an allothermal gasifier with the exhaust heat of the fuel cell by means of liquid metal heat pipes. Internal cooling of the stack and the recirculation of waste heat increases the system efficiency significantly. This so-called TopCycle concept promises electrical efficiencies of above 50 percent even for small-scale systems without any combined processes.

Reduktion des Verkehrslärms in städtischen Ballungsregionen

SILENCE ist ein integriertes Projekt im 6. EU Rahmenprogramm und basiert auf einer Kooperation von 45 Partnern aus den Bereichen Straßen- und Schienenverkehr sowie Städteplanung. Ziel ist die Entwicklung eines integrierten Systems von Methoden und Technologien für eine effiziente Reduktion der Belastung durch Verkehrslärm unter Berücksichtigung von Individualverkehr (Straße), Massentransport (Straße und Schiene) und Städteplanung. Teilprojekte: A Lärmwirkung B Computersimulation C Wechselwirkung Reifen-Straße D Schallemission Straßenfahrzeuge E Schallemission Schienenfahrzeuge F Oberflächen von Straßen G Schieneninfrastruktur H Verkehrslenkung Straßenverkehr I Städteplanung J Migration der Projektergebnisse in die Anwendung. Das gesamte Projektbudget beträgt 15.8 Millionen Euro bei einer EU-Förderung von 8.9 Millionen Euro. Die DB AG ist an den Teilprojekten E und G beteiligt mit den Schwerpunkten: 1. Reduktion des von der Schiene abgestrahlten, - Luftschalls 2. Reduktion der Luftschallemission von, - Güterwagenrädern.

Sustainable energy management systems (SEMS)

Objective: The aim of this project is to turn 4 core communities (Germany, Austria, Luxemburg, Poland) with clearly defined system borders and 14 - 20.000 inhabitants each into CONCERTO communities. A mix of different EE and RES demonstrations (including refurbishment of old buildings, eco-buildings and polygeneration, all underpinned with complete business plans) will allow to avoid about 300 GWh/yr end energy from fossil sources, thus avoiding 94.000 tons CO2/yr, and saving 22.9 mio Euro/yr of disbursements for extra-communal electricity and heat deliveries. The application of the Decentralised Energy Management System (DEMS) will allow for local and inter-communal operation, monitoring and control of energy consumption, storage and generation units and grids, including DSM and LCP, thereby exploring a EE potential of at least 5Prozent. The target in RES coverage for 2010 is of resp. 39 to 62Prozent of the then remaining electricity and heat demand. EnerMAS, a low-threshold version of the European environmental management system.

Integrated small scale solar heating and cooling systems for a sustainable air-conditioning of buildings (SOLERA)

Objective: The project aims to develop highly integrated solar heating and cooling systems for small and medium capacity applications which are easily installed and economically and socially sustainable. The envisioned applications are residential houses, small office buildings and hotels. The goal is to use the excess solar heat in summer to power a thermally driven cooling process in order to provide cooling for air-conditioning. In the heating season the solar system is used to provide direct heating. The proposed project therefore aims to demonstrate the technical feasibility, reliability and cost effectiveness of these systems, specially conceived as integrated systems to be offered on the market as complete packages which will make better use of the available solar radiation as present systems.

1 2 3 4 511 12 13