Objective: HyLights is a CA facilitating the planning of HyCOM. Focus is an assessment of concluded/ongoing H2/FC demonstration projects and recommendations for the preparation of HyCOM/Lighthouse Projects LP. Although HyLights's assessment focuses on transport stationary and portable H2 applications will be considered if synergies become apparent. HyLights will comprise 3 phases of 12 months each. Phase I includes a methodology definition and assessment, Phase II gaps analysis and development of recommendations and Phase III continuous monitoring. HyLights will need to draw from a network of relevant experts. For this purpose a European Partnership for Hydrogen in Transport EPHT will be established to extend the reach of the European Hydrogen and Fuel Cells Platform HFP. An asset of EPHT will be to include the member states/regions view through a moderation process. Dissemination of the project results will supplement the activity, coherently presenting the European demonstration projects.
Objective: The project HOPE is addressing power electronics. It is based on previous EU research projects like the recently finished FW5 HIMRATE (high-temperature power modules), FW5 PROCURE (high-temperature passive components), and MEDEA+ HOTCAR (high-temperature control electronics) and other EU and national research projects. The general objectives of HOPE are: Cost reduction; meet reliability requirements; reduction of volume and weight. This is a necessity to bring the FC- and ICE-hybrid vehicles to success. WP1 defines specifications common to OEM for FC- and ICE-hybrid vehicle drive systems; Identification of common key parameters (power, voltage, size) that allows consequent standardisation; developing a scalability matrix for power electronic building blocks PEBBs. The power ranges will be much higher than those of e.g. HIMRATE and will go beyond 100 kW electric power. WP2 works out one reference mission profile, which will be taken as the basis for the very extensive reliability tests planned. WP3 is investigating key technologies for PEBBs in every respect: materials, components (active Si- and SiC switches, passive devices, sensors), new solders and alternative joinings, cooling, and EMI shielding. In WP4 three PEBBs will be developed: HDPM (high density power module) which is based on double side liquid cooling of the power semiconductor devices; IML (power mechatronics module), which is based on a lead-frame technology; and SiC-PEBB inverter (silicon carbide semiconductor JFET devices instead of Si devices). WP5 develops a control unit for high-temperature control electronics for the SiC-PEBBs. Finally WP6 works on integrating the new technologies invented in HOPE into powertrain systems and carries out a benchmark tests. All the results achieved in HOPE will be discussed intensively with the proposed Integrated Project HYSIS where the integration work will take place. It is clear from the start that many innovations are necessary to meet the overall goal.
Objective: The strategic objectives of the European Rail Research Network of Excellence (EUR2EX) are: 1.To integrate the fragmented European Rail Research landscape by networking together the critical mass of resources and expertise to provide European leadership and be a world class player, 2.To promote the railway contribution to sustainable transport policy, 3.To improve the competitiveness and economic stability of the railway sector and industry by:creating a durable integrated network of excellence in rail resea rch, technology innovation and knowledge management from the research capacities of universities and institutions, implementing knowledge from rail operators, rail industry incl. SME, with priority given to engineering interfaces and methods for product qu alification in line with ERRAC's SRRA.EUR2EX will have as its foundation six regional/supra regional networks with 67 members and some 670 researchers. Each region has nominated a representative who will be a formal participant for the purpose of the EC co ntract and lean management structure. EUR2EX will encourage new networks to be formed where justified incl. a CEEC network.The members of the regional networks will provide the researchers and research projects that will be integrated and form the research base for new joint projects. UIC, UNIFE and UITP will be EUR2EX participants. They will not provide researchers for integration but their involvement and support are crucial to the success of EUR2EX.EUR2EX will have close links with selected companies tha t have specific knowledge but who may not be able to commit themselves to formal integration. These companies have been identified as associate members.The process of integration of excellence takes place on the basis of a JPA with integrating activities, jointly executed research while sharing research platforms, facilities and activities for spreading excellence to be transferred into a durable integration based on a profound business case.'
Objective: The aim of this project is to turn 4 core communities (Germany, Austria, Luxemburg, Poland) with clearly defined system borders and 14 - 20.000 inhabitants each into CONCERTO communities. A mix of different EE and RES demonstrations (including refurbishment of old buildings, eco-buildings and polygeneration, all underpinned with complete business plans) will allow to avoid about 300 GWh/yr end energy from fossil sources, thus avoiding 94.000 tons CO2/yr, and saving 22.9 mio Euro/yr of disbursements for extra-communal electricity and heat deliveries. The application of the Decentralised Energy Management System (DEMS) will allow for local and inter-communal operation, monitoring and control of energy consumption, storage and generation units and grids, including DSM and LCP, thereby exploring a EE potential of at least 5Prozent. The target in RES coverage for 2010 is of resp. 39 to 62Prozent of the then remaining electricity and heat demand. EnerMAS, a low-threshold version of the European environmental management system.
Objective: The project aims to develop highly integrated solar heating and cooling systems for small and medium capacity applications which are easily installed and economically and socially sustainable. The envisioned applications are residential houses, small office buildings and hotels. The goal is to use the excess solar heat in summer to power a thermally driven cooling process in order to provide cooling for air-conditioning. In the heating season the solar system is used to provide direct heating. The proposed project therefore aims to demonstrate the technical feasibility, reliability and cost effectiveness of these systems, specially conceived as integrated systems to be offered on the market as complete packages which will make better use of the available solar radiation as present systems.
Objective: The project focuses on the demonstration of an innovative and sustainable CHP concept using residues from olive oil production (olive wastes) as fuel. A first plant based on the new concept will be realised in Greece. The main objective of the project is to demonstrate a closed cycle concept able to reduce landfill problems and emissions and to promote the use of renewable electricity production in Southern Europe. The project will be based on an approach integrating the whole chain (fuel logistics and preparation, energy production, by-product utilisation). An optimised fuel logistic concept will guarantee for a secured fuel supply over the whole year. The fuel will not only be dewatered and dried but also a marketable by-product will be produced. By this means a better fuel quality can be achieved and solid wastes as well as waste- water can be omitted. The development and design of the combustion unit focuses on a technology tailored to the special characteristics of the olive waste.
The proposed regulation concerning the registration, evaluation, authorisation and restriction of chemicals (REACH) requires demonstration of the safe manufacture of chemicals and their safe use throughout the supply chain. There is therefore a strong need to strengthen and advance human and environmental risk assessment knowledge and practices with regard to chemicals, in accord with the precautionary principle. The goal of the project OSIRIS is to develop integrated testing strategies (ITS) fit for REACH that enable to significantly increase the use of non-testing information for regulatory decision making, and thus minimise the need for animal testing. To this end, operational procedures will be developed, tested and disseminated that guide a transparent and scientifically sound evaluation of chemical substances in a risk-driven, context-specific and substance-tailored (RCS) manner. The envisaged decision theory framework includes alternative methods such as chemical and biological read-across, in vitro results, in vivo information on analogues, qualitative and quantitative structure-activity relationships, thresholds of toxicological concern and exposure-based waiving, and takes into account cost-benefit analyses as well as societal risk perception. It is based on the new REACH paradigm to move away from extensive standard testing to a more intelligent, substance-tailored approach. The work will be organised in five interlinked research pillars (chemical domain, biological domain, exposure, integration strategies and tools, case studies), with a particular focus on more complex, long-term and high-cost endpoints. Case studies will demonstrate the feasibility and effectiveness of the new ITS methodologies, and provide guidance in concrete form. To ensure optimal uptake of the results obtained in this project, end-users in industry and regulatory authorities will be closely involved in monitoring and in providing specific technical contributions to this project.
The ATTICA consortium offers to provide the European community with a coherent series of assessments of the impact of transport emissions on climate change and ozone depletion. Three assessments will cover the emissions of single transport sectors, viz. of aviation, shipping, and road and rail traffic. Another assessment deals with metrics that allow to describe, quantify, and compare in a fair way the effects of the transport emissions in the atmosphere. Finally, a synthesis of the foregoing assessments will be written that will provide the overview of the impacts of the emissions of all transport sectors on climate change and the ozone layer. For the first time, different modes of transport will be consistently assessed. The consistent assessment allows the interested citizen to estimate in principle their own contribution to environmental problems and to compare it to that of others. Apart from policy and decision makers, the synthesis assessment will help journalists, teachers, and others, to digest the results and to present them in public media, in schools and universities, ensuring wide spread of the results. The assessments and the synthesis report will inform the EU in developing its policy and will strengthen its position in international climate conventions and other international agreements. It will help finding emission reduction and mitigation strategies, and give advice for industry on design of future engines and vehicles, thereby strengthening the European position.
Two innovative integrated Fuel Cell Systems for automotive application will be developed within specific Technological Platforms (TPs): TP1 POWERTRAIN: development of a system for traction power by an 80 kW direct hydrogen PEM fuel cell system implemented on a passenger car. TP2 APU: development of 5 kW Auxiliary Power Unit for both light-duty and heavy-duty vehicles, including microstructured diesel oil steam reformer, clean-up reactors, an innovative reformate hydrogen stack and balance of plant components. These objectives will be reached via R&TD activities that will address the most critical technical bottlenecks which currently hamper wide market penetration of PEM fuel cell systems for road transport, while accounting some of the key market and policy drivers and barriers. Particularly, the following innovative components will be developed: A 80 kW direct hydrogen stack with strong weight and volume reduction, increased efficiency, durability and start-up time, with innovative MEAs embodying sealing layers (7-layers MEAs); A 5 kW reformate stack, including innovative electrocatalyst and MEA elements tolerant to very high CO concentrations and low-resisitivity bipolar plates; A highly efficient, clean and compact micro-structured diesel steam reformer and gas purification unit; Variable displacement compressors with reduced noise level; Innovative humidification/dehumidification apparatus; Heat exchanger and radiator customised for the different applications; Specific targets for both platforms will be achieved via a system approach leading to development and validation of the concepts (POWERTRAIN: in a passenger car; APU: dynamic test validation in bench) with high well-to-wheel efficiency (low fuel consumption), easy and optimised packaging and on-board integration.
Ketzin ist eine Stadt westlich von Berlin im Land Brandenburg. In ihrer Nähe wurde seit 1960 Erdgas aus Sibirien in unterirdischen Sandsteinschichten zwischengelagert. Diese Erdgasspeicherung wurde vor kurzem eingestellt. Hier soll ein Forschungs- und Entwicklungsprojekt eingerichtet werden, bei dem das Treibhausgas Kohlendioxid (CO2 ) im Untergrund gelagert werden soll. Das Projekt wird vom GeoForschungsZentrum Potsdam koordiniert und von der Europäischen Union mit 8.7 Millionen Euro gefördert. Das Projekt soll helfen, das wissenschaftliche Verständnis der geologischen Speicherung von CO2 weiter zu entwickeln und die im Untergrund ablaufenden Prozesse der CO2 Injektion praktisch zu erforschen. Zunächst werden geologisch-geophysikalisch-geochemische Voruntersuchungen des Standortes und des vorgesehenen Speicherhorizontes sowie eine umfassende Risikoabschätzung vorgenommen um sicherzustellen, dass die Speicherung auch gefahrlos durchgeführt werden kann. Die erforderlichen Bewilligungen des zuständigen Bergamtes, der örtlichen Gemeinde und das Einverständnis der betroffenen Anwohner müssen dazu eingeholt werden. Die künftige Nutzung des Geländes ist Teil eines behördlich bereits genehmigten Bebauungsplans, der auch andere Vorhaben zur Nutzung regenerativer Energie aus Wind, Sonne und Biomasse einschließt. Das CO2 SINK Projekt erlaubt die Weiterverwendung vorhandener Gasspeicher-Infrastrukturen. Geplant ist die unterirdische Injektion von jährlich mehreren 10,000 Tonnen an reinem CO2 für zunächst zwei bis drei Jahre. Das CO2 soll dabei vorwiegend aus regenerativen Biomasse-Energierohstoffen gewonnen werden. Dieses ermöglicht im Prinzip, CO2 aus der Atmosphäre zu entziehen und damit die Treibhausgaskonzentration zu verringern. Unterirdische Erdgasspeicher und geologische Speicher für CO2 in salinen Grundwasserleitern (Aquifere) haben zwei gemeinsame Merkmale: Sie bestehen aus Gestein mit großem Porenraum wie z.B. Sandstein, das von abdichtenden Tonschichten überdeckt ist. Im Untergrundspeicher Ketzin wurde das Erdgas in einer Sandsteinschicht zwischen 250 und 400 Meter Tiefe unter der Erde gelagert. Aus Erkundungsbohrungen und seismischen Messungen weiß man, dass es dort aber noch mindestens eine weitere gut geeignete Speicherschicht in größerer Tiefe gibt. Diese ist rund 80 Meter mächtig und liegt auf einer geologischen Kuppe, die sich bis ungefähr 600 Meter unter der Erdoberfläche aufwölbt. Die Sandsteinschicht fällt nach allen Seiten auf etwa 700 Meter ab und ist von abdichtenden Gips- und Tonschichten überlagert. Um den Untergrund und die bei der CO2 Speicherung darin ablaufenden Prozesse verstehen zu können, ist im Projekt CO2SINK eine umfassende Reihe von wissenschaftlichen Untersuchungen geplant. Usw.
| Origin | Count |
|---|---|
| Bund | 83 |
| Type | Count |
|---|---|
| Förderprogramm | 83 |
| License | Count |
|---|---|
| offen | 83 |
| Language | Count |
|---|---|
| Deutsch | 10 |
| Englisch | 82 |
| Resource type | Count |
|---|---|
| Keine | 45 |
| Webseite | 38 |
| Topic | Count |
|---|---|
| Boden | 63 |
| Lebewesen und Lebensräume | 81 |
| Luft | 59 |
| Mensch und Umwelt | 83 |
| Wasser | 75 |
| Weitere | 83 |