Objective: The overall objective of the FlameSOFC project is the development of an innovative SOFC-based micro-CHP system capable to operate with different fuels and fulfilling all technological and market requirements at a European level. The main focus concerning t he multi-fuel flexibility lies on different natural gas qualities and LPG, but also on liquid fuels (diesel like heating oil, industrial gas oil IGO and renewables like FAME). The target nominal net electrical output is 2 kWel (stack electrical output ca. 2,5 kW), which is expected to represent the future mainstream high volume mass market for micro-CHPs. An advanced planar, compact SOFC-stack will be developed and combined with an innovative, compact and robust fuel processor, which will be able to process many different fuels without catalytic components, thus enabling the potential for a long lifetime of greater than 30.000 h. A simple, highly integrated and reliable system design will result via the integration of advanced peripheral components like the advanced T hermal Partial Oxidation reformer (T-POX), the multi-purpose off-gas burner, the compact heat exchangers, the cool flame vaporizer and the soot trap. Advanced control strategies will assure an optimal integration in an electrical network environment. The o verall efficiency targets are greater than 35 percent net electrical efficiency and greater than 90 percent total CHP efficiency, which will result in 2 tons of annual CO2 reduction per unit (compared to the combination of a condensing boiler and European electricity mix). The SOFC fuel cell technology will be applied because it is less sensitive to impurities and variations in the fuel composition than other fuel cell systems and has a better cost reduction potential than other fuel cell types. The high temperature level of the SOFC tec hnology gives also a better integration potential in co- or tri-generation applications. The main target application is a micro CHP system for single or two-family residential homes with electrical grid connection.
The share of renewable energy sources in the European energy balance can be increased by a meaningful contribution of geothermal energy. Since the mining cost (exploration and drilling) to access the resources represents over 60 percent of the total investment, a reduction in mining cost would increase the competitiveness of geothermal energy significantly. This goal can be achieved if we had a way to detect the presence of the fluids inside the natural and/or enhanced geothermal systems before any drilling operation. The project I-GET is aimed at developing an innovative geothermal exploration approach based on advanced geophysical methods. The objective is to improve the detection, prior to drilling, of fluid bearing zones in naturally and/or artificially fractured geothermal reservoirs. This new approach will be tested in four European geothermal systems with different geological and thermodynamic reservoir characteristics: two high enthalpy (metamorphic and volcanic rocks), one middle enthalpy geothermal system (deep sedimentary rocks), and one low enthalpy geothermal system (shallow sedimentary rocks). Petrophysical and geomechanical properties of the investigated rocks will be defined by laboratory measurements. With respect to the high enthalpy sites elastic and electric rock properties will be determined at the steam/liquid transition of the pore fillings. The validity of the laboratory and simulation results will be verified by new field experiments. Seismic and magnetotelluric data will be acquired in the test sites, and new acquisition and processing techniques will be developed to solve problems related to the particular target such as high temperatures, anisotropy, phase condition, etc.. The static and dynamic three-dimensional model of geothermal reservoirs will be reconstructed by means of all the data acquired. The input of the results of new geophysical prospecting into reservoir modelling is a crucial test of the quality of the new exploration method.
Objective: In a deregulated EU rail market monitoring of the vehicle and infrastructure interface is mandatory for enhanced availability of operation reducing costs. Especially when a rolling stock is crossing boundaries between independent infrastructure grids, cond ition monitoring becomes crucial. A monitoring tool on OCLs overhead contact lines - for infrastructure managers is needed for an separate measurement of contact force and surface condition of the vehicle current strip. The rolling stock operator needs a complementary device to measure not only the vertical contact force, but moreover the friction force, in order to analyse the vehicle and OCL interface condition. In SMITS a monitoring system for contact force on the interface current collector lt;- gt; c ontact wire has been developed. A sensor technology has been started to explore showing the potential for an extended range of rail monitoring tools. An innovative coherent sensor technology approach shall be investigated and two independent monitoring too ls for vehicle and infrastructure be developed. These shall be validated at new rail tracks specified for TSI interoperable cross boundary transportation: the Ltschberg Basis Tunnel, CH and the HSL Zuid high speed line, NL, both ready for operation in 2007 . Demonstration tests in operation will be performed along the Korridor X infrastructure passing through different countries rail networks. The outcome of the project will enable managers to specify driving conditions for the usage of their infrastructure to avoid excessive wear improving availability. Complementary rolling stock operators can monitor OCL condition giving them an informative argument in case of damage. Condition-dependent user fees as well as threat of penalty will force vehicle and infrast ructure managers to maintain the vehicle and infrastructure interface on a superior level of availability. The operational costs will be reduced and availability of transportation capacity enhanced.
Objective: The objective of the project is the research on of low-cost components for fuel cell (FC-) systems and electric drive systems which can be used in future hybridised FC-vehicles (medium term objective) and ICE vehicles. The components will be analysed and tested in two FC-vehicle platforms with different concepts. The project consortium consists of 6 major European car manufacturers, 10 major and smaller suppliers, 6 institutes and 4 universities. The focus of the project is on components which have a high potential of significant cost reduction by decreasing complexity and/or choosing innovative approaches to support a future mass production. In the field of FC-system components the key components which are investigated are innovative air supply based on electrical turbochargers, novel humidification subsystems, new hydrogen sensors and innovative hydrogen injection system components. For the electric drive system we focus on highly integrated drive trains (converters, inverters and electrical motors) and high-energy-density battery systems based on innovative Li-Ion technology which has been developed in EU funded projects (EV-lift, Lionheart). All the component work is accompanied by a sub project which will work on requirements of the vehicles, subsystems and components, standardisation of the components, identification of synergies between components for FC- and ICE Hybrids, safety aspects and a comparative investigation of different electrical storage systems (battery / supercap) and the respective e-storage management. In the system level subproject not only will the components be integrated in the two validator vehicles and tested, but it will also be worked on optimised vehicle control strategies, energy-management and development of modular system control software. The improved system components and subsystems could be used as a basis for future FC- and ICE-vehicles which are planned to be deployed in the HyCOM initiative and the Lighthouse projects.
Objective: The Act2 project builds on the previous experience of Hannover and Malmö and seeks to support development in Nantes, analyse the drivers for success in partner cities, implement major developments in target communities taking significant steps to establish best practice experience as standard commercial practice. The Act2 communities will demonstrate technical and process solutions for large-scale RUE and RES integration in new-build and refurbishment, in housing and tertiary buildings providing a benchmark for the Cities of Tomorrow.
Maritimer Transport ist von enormer Bedeutung für Europa und den Rest der Welt. Über 90% des Außenhandels der Europäischen Union wird per Seetransport abgewickelt. Mehr als eine Milliarde Tonnen an Fracht werden pro Jahr in den Häfen der Mitgliedstaaten auf- und abgeladen. Der Schiffstransport ist gemessen am Volumen die wichtigste Beförderungsart. Mit dem Seetransportgeschäft begann auch der Transport von Organismen im Ballastwasser von Schiffen. Der internationale Transport von drei bis zu zwölf Milliarden Tonnen Ballastwasser jährlich führt zur Ansammlung von ca. 100 Millionen Tonnen von Ablagerungen in den Schiffen. Die Beseitigung des entstandenen Schlamms verursacht enorme Kosten (ca. 30.000 € für ein kleines Frachtschiff). Neben den wirtschaftlichen Aspekten wird das Ballastwasser als hauptsächlicher Verursacher für die Umsiedlung von Aquaspezies über biologisch-geografische Grenzen hinaus verstanden. Schätzungsweise werden täglich 10.000 Pflanzen- sowie Tierarten per Schiff in die ganze Welt transportiert. Aufgrund des wachsenden Welthandels wächst auch die Bedrohung der Ökosysteme durch invasive Lebewesen. Die immer kürzeren Fahrtzeiten erhöhen die Überlebenswahrscheinlichkeit der Bioinvasoren. Die automatische und zuverlässige Reinigung des Ballastwassers im Tank mithilfe einer neuen Hybrid-Technologie (UV, Filter, Elektrolyse), die einen seewasserbetriebenen Generator nutzt, ist das gemeinsame Ziel der Projektpartner. Durch die Produktion von aktiven Substanzen mit der Elektrolyse aus dem Meerwasser wird vermieden, gefährliche und ätzende Chemikalien an Bord mitzuführen.
Project main goals: The main purpose of this project is to develop an innovative 400 kWth solar reformer for several applications such as Hydrogen production or electricity generation. Depending of the feed source for the reforming process CO2 emissions can be reduced significantly (up to 40 percent using NG), because the needed process heat for this highly endothermic reaction is provided by concentrated solar energy. A pre-design of a 1 MW prototype plant in Southern Italy and a conceptual layout of a commercial 50 MWth reforming plant complete this project. Key issues: The profitability decides if a new technology has a chance to come into the market. Therefore several modifications and improvements to the state-of-the-art solar reformer technology will be introduced before large scale and commercial system can be developed. These changes are primarily to the catalytic system, the reactor optimisation and operation procedures and the associated optics for concentrating the solar radiation. For the dissemination of solar reforming technology the regions targeted are in Southern Europe and Northern Africa. The potential markets and the impact of infrastructure and administrative restrictions will be assessed. The environmental, socio-economic and institutional impacts of solar reforming technology exploitation will be assessed with respect to sustainable development. The market potential of solar reforming technology in a liberalised European energy market will be evaluated. Detailed cost estimates for a 50 MWth commercial plant will be determined.
Objective: In order for the commercial production of large CIGS modules on the multi-MW scale to be successful, the processes must still be streamlined and optimised taking considering both economical and ecological aspects. This project aims to support the developme nt of this material- and energy-saving thin-film technology so it can gain a foothold in the free PV market. Promising laboratory results will be transferred to large-scale production, where the availability of appropriate production equipment and very hig h material and process yields are of decisive importance. 4 universities, 2 research institutes, and 4 companies will work closely together in order to merge the physical understanding of the processes and the engineering know-how, which are necessary for up-scaling the CIGS technology to a marketable multi-megawatt production volume. We will focus on: (1) very high-quality modules manufactured by coevaporation of CIGS and applying cost-effective methods, ETA up to 14 Prozent on 0.7 m2; (2) the development of Cd-free buffer layers for Cd-free CIGS modules on an area of up to 0.7 m2, ETA up to 12 Prozent; (3) and the development of a mid-term alternative: electrodeposition of low-cost CIS modules with ETA above 10 Prozent (estimated cost about 0.8 E/Wp). We will transfer the Mo back contact sputtering know-how to a specialised European large-area glass coater to provide substrates for both the coevaporation and the electrodeposition approaches. All process developments such as modifications of the back contact, wet- or vacuum-deposited buffer layers, the multi-stage coevaporation of CIGS, or improved Ga incorporation in electrodeposited absorbers will first be tested and evaluated on the laboratory scale. Successful approaches will be up-scaled and transferred to three independ ent commercial CIGS pilot lines located in three different European countries. Novel process and quality control techniques must also be developed and applied to reach these ambitious goals.
Harmful algal blooms (HABs) are caused by local proliferation of algae, with deleterious consequences, particularly in coastal waters throughout the world. Negative environmental effects include toxicity to human consumers of seafood, marine faunal mortalities or morbidity, habitat damage, disruption of marine food webs and economic losses to fishing, aquaculture, and tourism. In Europe, socio-economic factors and human health risk have led to comprehensive surveillance programmes for harmful microalgae and their toxins. Among harmful microalgae and cyanobacteria in European marine and brackish waters, many produce potent neurotoxins, ichthyotoxins or hepatotoxins. Although structural elucidation of many of these groups of toxins has advanced, much less is known about biosynthetic pathways and gene regulation in toxigenic species. We propose a limited genomic study of expressed sequence tags (ESTs) for toxigenic representatives of major eukaryotic microalgal groups, including dinoflagellates, raphidophytes, prymnesiophytes and diatoms, and cyanobacteria. Cultures will be grown under various environmental conditions to investigate the effects of external forcing functions on gene expression linked to toxicity and growth. After cloning of cDNA of toxigenic strains pooled from cultures grown under these different conditions into plasmid vectors, about 10,000 clones from each taxon will be randomly sequenced for ESTs. Our approach is to annotate the ESTs and attempt to identify genes associated with toxin production. DNA microarrays will be developed for screening of toxigenic and non-toxigenic strains. In addition, the sequence data will be analysed to identify other genes that may be involved in cell regulation or growth, cell cycle events, stress response and the induction of sexuality. Cultures will be grown under various environmental conditions to investigate the effects of external forcing functions on gene expression linked to toxicity and growth. Successful completion of this project will yield new information on microalgal and cyanobacterial genomic sequences for a diversity of taxa and will assist in the diagnosis of genes related to toxin biosynthesis and the formation of toxic blooms.
Objective: The results of the project will improve and widen the potential for the integration of solar (PV) energy systems into existing buildings. Special attention will be paid architectural and aesthetic questions. Building integration of PV systems in most cases leads to a 'high tech' and 'modern' appearance of the building. This is caused by the typical window-like surface of most conventional PV modules. Regarding however that90Prozent of the building stock consists of longer existing, that means 'old fashioned' buildings, it is evident that anaesthetically satisfying building integration of PV needs a lot of good will and creativity from planners and architects. In many existing building integrated PV systems the modules contrast with the building and its surroundings. A European survey on the potential and needs for building integrated PV components and systems will identify the basis for the development of modules away from the glass / window-like appearance. In the project PV roof tiles, overhead glazing and facade elements based on CIS thin film technology will be developed and investigated which have a modified optical appearance for better adaptation to the building skin. One of the ideas is optical decoupling of substrate and cover glass. A complete roof tile system with thin film cells adapted to the visual appearance of conventional roof tiles and innovative connection and mounting will be developed. The work includes prototype fabrication and tests according to relevant standards and subsequent performance tests. Novel overhead glazing includes semitransparent thin film modules optimised for daylight transmission. The backside appearance will be modified in order to represent the visible inner part of the building skin. For overhead and insolating glazing an invisible interconnection and for PV roof tiles a low cost connector will be developed. Project results will be systems ready for industrial production.
| Origin | Count |
|---|---|
| Bund | 128 |
| Type | Count |
|---|---|
| Förderprogramm | 128 |
| License | Count |
|---|---|
| offen | 128 |
| Language | Count |
|---|---|
| Deutsch | 15 |
| Englisch | 126 |
| Resource type | Count |
|---|---|
| Keine | 67 |
| Webseite | 61 |
| Topic | Count |
|---|---|
| Boden | 95 |
| Lebewesen und Lebensräume | 127 |
| Luft | 91 |
| Mensch und Umwelt | 128 |
| Wasser | 118 |
| Weitere | 128 |