API src

Found 128 results.

New sustainable concepts and processes for optimization and upgrading municipal wastewater and sludge treatment (NEPTUNE)

The scope of sewage treatment is changing: Up to date municipal wastewater treatment plants (WWTP) were seen as an end-of-pipe treatment just before discharge, having the aim to avoid eutrophication and hygienic health hazard in surface water. Due to the global demographic trends as well as new legislations (e.g. the Water Framework Directive, WFD) increased focus is put on quantity and quality of effluents: WWTP are more and more seen as interface between sanitation and environment, delivering resources to the environment or human activities (recharge of drinking water reservoirs, recycling of nutrient, efficient energy use). This focus shift has implications on the quality goals set for WWTP products: land requirement, effluent N, P load, effluent pathogen load, energy optimization. New focus: nutrient recycling, micropollutants: ecotoxicology of the effluent energy production. NEPTUNE is focusing on technology solutions allowing to meet present and future standards via upgrading of existing infrastructure (new control strategies with online sensors; effluent upgrading with oxidation, activated carbon or wetland treatment; sludge processing for safe nutrient recycle) as well as via new techniques (fuel cell applications; new oxidative agents; polymer production from sludge). By including pathogen and ecotoxicity aspects into life cycle assessment studies (LCA), the project is helping improve the comparability of various technical options and propose a suitability ranking. The new focus given by the WFD and the emerging interest on organic (eco-)toxic compounds requires characterizing treated effluent and treatment technologies concerning ecotoxicologic aspects and micropollutants. The project is contributing to this discussion by ecotoxicity assessment and micropollutant fate studies.

Integrated small scale solar heating and cooling systems for a sustainable air-conditioning of buildings (SOLERA)

Objective: The project aims to develop highly integrated solar heating and cooling systems for small and medium capacity applications which are easily installed and economically and socially sustainable. The envisioned applications are residential houses, small office buildings and hotels. The goal is to use the excess solar heat in summer to power a thermally driven cooling process in order to provide cooling for air-conditioning. In the heating season the solar system is used to provide direct heating. The proposed project therefore aims to demonstrate the technical feasibility, reliability and cost effectiveness of these systems, specially conceived as integrated systems to be offered on the market as complete packages which will make better use of the available solar radiation as present systems.

Fuel Flexible, Air-regulated, Modular, Electrically Integrated SOFC System (FLAME-SOFC)

Objective: The overall objective of the FlameSOFC project is the development of an innovative SOFC-based micro-CHP system capable to operate with different fuels and fulfilling all technological and market requirements at a European level. The main focus concerning t he multi-fuel flexibility lies on different natural gas qualities and LPG, but also on liquid fuels (diesel like heating oil, industrial gas oil IGO and renewables like FAME). The target nominal net electrical output is 2 kWel (stack electrical output ca. 2,5 kW), which is expected to represent the future mainstream high volume mass market for micro-CHPs. An advanced planar, compact SOFC-stack will be developed and combined with an innovative, compact and robust fuel processor, which will be able to process many different fuels without catalytic components, thus enabling the potential for a long lifetime of greater than 30.000 h. A simple, highly integrated and reliable system design will result via the integration of advanced peripheral components like the advanced T hermal Partial Oxidation reformer (T-POX), the multi-purpose off-gas burner, the compact heat exchangers, the cool flame vaporizer and the soot trap. Advanced control strategies will assure an optimal integration in an electrical network environment. The o verall efficiency targets are greater than 35 percent net electrical efficiency and greater than 90 percent total CHP efficiency, which will result in 2 tons of annual CO2 reduction per unit (compared to the combination of a condensing boiler and European electricity mix). The SOFC fuel cell technology will be applied because it is less sensitive to impurities and variations in the fuel composition than other fuel cell systems and has a better cost reduction potential than other fuel cell types. The high temperature level of the SOFC tec hnology gives also a better integration potential in co- or tri-generation applications. The main target application is a micro CHP system for single or two-family residential homes with electrical grid connection.

Energy in Minds

Das europaweite Förderprojekt hat zum Ziel, den Anteil fossiler Energieträger und den Ausstoß von CO2 in vier europäischen Städten innerhalb von 5 Jahren um 20 Prozent bis 30 Prozent zu senken. Teilnehmer sind Neckarsulm in Deutschland, die Energieregion Weiz-Gleisdorf in Österreich, Falkenberg in Schweden und Zlin in Tschechien. Neben diesen Städten nehmen Gornji Grad in Slowenien und die Region Turin in Italien als Beobachterstädte an dem Projekt teil. Alle Partner sind führend auf dem Gebiet regenerativer Energiesysteme und rationeller Energieverwendung. Maßnahmen: - Sensibilisierung der Bevölkerung für Energiefragen, - Energieagenturen werden eingerichtet bzw. ausgebaut, - ein jährlich stattfindender Energie-Tag' wird eingeführt, - Durchführung von Informationskampagnen, - Energiechecks und Gebäudesanierungen, - Realisierung von Sonnenkollektoren und Photovoltaikanlagen, - alte Heizungsanlagen privater Haushalte werden durch CO2-neutrale Holzpellet-Heizungen ersetzt, - biomassebetriebene Heizkraftwerke sollen die Effizienz bestehender Nahwärmeversorgung verbessern. Projekte der Partnerstädte: Im Rahmen des Projekts werden innovative Energietechnologien getestet, weiterentwickelt, ausgewertet und optimiert. Neckarsulm: Realisierung einer solarbetriebenen Klärschlamm-Trocknungsanlage, - Durchführung eines Feldversuches mit Holzpellet-Stirling Motoren. Weiz-Gleisdorf: Schaffung einer Infrastruktur zur Belieferung mit Pflanzenöl, - Fahrzeugtests mit dem Kraftstoff-Pflanzenöl. Falkenberg: Errichtung von Windturbinen, - Untersuchung passiver Kühlung mit der innovativen PCM-Technik. Zlin: Nutzung von Energie aus der Abfallverbrennung. Ein wichtiger Aspekt während der gesamten Projektdauer ist die Zusammenarbeit, der Erfahrungsaustausch, die Wissensverbreitung aller Partner inner- und außerhalb des Konsortiums. Energy in Minds.' - Visionen: Dieses Forschungsprojekt soll Initiativen anregen, unterstützend wirken, um das Energiebewußtsein der Bevölkerung positiv zu verändern und zu stärken. STZ-EGS ist Initiator und Koordinator der 18 Vertragspartner.

Biomass fluidised bed gasification with in situ hot gas cleaning (AER-GAS II)

Objective: The project aim is a low-cost gasification process with integrated in-situ gas cleaning for the conversion of biomass into a product gas with high hydrogen concentration, high heating value and low tar/alkali/sulphur concentration in one process step for s ubsequent power production. The proposed process uses in-situ CO2 capture (AER, Absorption Enhanced Reforming). It is more efficient than conventional gasification due to (i) the in-situ integration of the reaction heat of CO2 absorption and water-gas shif t reaction heat (both exothermic) into the gasification and (ii) the internal reforming of primary and secondary tars, which cuts off the formation of higher tars. Thus, the chemical energy of tars remains in the product gas. The product gas after dust rem oval can directly be used in a gas engine for electricity generation. Due to the low operation temperature (up to 700 C) and due to CaO-containing bed materials, the proposed process allows the use of problematic feedstocks such as biomass with high minera l and high moisture content, e.g. straw, sewage sludge, etc., leading to an increased market potential for biomass gasification processes. Screening/development of absorbent materials with high attrition stability and tar cracking properties will be carrie d out. Analysis of tar formation/decomposition process will be studied in a lab-scale fixed bed reactor and a 100 kWth circulating fluidised bed reactor (continuous mode). With the acquired data, the 8 MWth biomass plant at Guessing, Austria, will be opera ted with absorbent bed material in order to prove the feasibility of a scale-up and to assess the economical aspects of the process. In order to point out the market potential, the cost reduction of the AER technology will be quantified in comparison with the conventional gasification power plant. Expected results will be: (i) a broad knowledge of the proposed process and (ii) a low-cost technology for biomass gasification with subsequent power production.

Fuel cell power trains and clustering in heavy-duty transports (FELICITAS)

Objective: The FELICITAS consortium proposes an Integrated Project to develop fuel cell (FC) drive trains fuelled with both hydrocarbons and hydrogen. The proposed development work focuses on producing FC systems capable of meeting the exacting demands of heavy-dut y transport for road, rail and marine applications. These systems will be: - Highly efficient, above 60Prozent - Power dense, - Powerful units of 200kW plus, - Durable, robust and reliable. Two of the FC technologies most suitable for heavy-duty transport applic ations are Polymer Electrolyte FuelCells (PEFC) and Solid Oxide Fuel Cells (SOFC). Currently neither technology is capable of meeting the wideranging needs of heavy-duty transport either because of low efficiencies, PEFC, or poor transient performance,SO FC. FELICITAS proposes the development of high power Fuel Cell Clusters (FCC) that group FC systems with other technologies, including batteries, thermal energy and energy recuperation.The FELICITAS consortium will first undertake the definition of the requirements on FC power trains for the different heavy-duty transport modes. This will lead to the development of FC power train concepts, which through the use of advanced multiple simulations, will undertake evaluations of technical parameters, reliab ility and life cycle costs. Alongside the development of appropriate FC power trains the consortium will undertake fundamental research to adapt and improve existing FC and other technologies, including gas turbines, diesel reforming and sensor systems f or their successful deployment in the demanding heavy-duty transport modes. This research work will combine with the FC power trains design and simulation work to provide improved components and systems, together with prototypes and field testing where ap propriate.The FELICITAS consortium approach will substantially improve European FC and associated technology knowledae and know-how in the field of heavv-duty transport.

New Burner Technologies for Low Grade Biofuels to Supply Clean Energy for Processes in Biorefineries (BIO-PRO)

The project aims on developing new combustion technologies for bio-residues. Innovative combustion technologies like flameless oxidation (FLOX (R)) and continuous air staging (COSTAIR) will be enhanced by re-burning and co-firing in order to meet this goal. Two basic types of BIO-PRO burners will be developed to meet this goal: - A pilot burner for gas and liquid fuels; - A pilot burner for solid fuels applying a pre-gasification step for the solids without gas cooling. The technology to be developed shall be able to self adjust to different fuel qualities (fuel moisture 10-50 percent). For emissions of the investigated fuels the upper limit for CO will be 30 mg/m3 (currently 50 mg/m are typical) and NOx will be reduced by 50 percent (starting point for dry wood chips in available combustion systems = 210 mg/m ). The prototypes of the new burners will be brought to pre-commercialisation level (two pilot scale burners and operation guidelines). The accompanying socio-economic assessment will assess the economic viability of the new technology (live cycle assessment) on the one hand and will show promising markets for a subsequent dissemination of the technology on the other hand (dissemination strategy). A successful development and application of the technology is expected to have following impact: - Increased use of bio-residues, increasing the utilisation of biomass in Europe by up to 50 percent (basis 54.175 toe in 1998). This will reduce CO2 emissions by 46 Mio t/a (basis: energy consumption 1998); - Improved European competitiveness in the global market, accounting for up to 15,000 new jobs; - NOx emissions from biomass combustion systems will be reduced within 10 years by approx. 76,500 t/a (basis: biomass consumption 1998).

Sustainable energy management systems (SEMS)

Objective: The aim of this project is to turn 4 core communities (Germany, Austria, Luxemburg, Poland) with clearly defined system borders and 14 - 20.000 inhabitants each into CONCERTO communities. A mix of different EE and RES demonstrations (including refurbishment of old buildings, eco-buildings and polygeneration, all underpinned with complete business plans) will allow to avoid about 300 GWh/yr end energy from fossil sources, thus avoiding 94.000 tons CO2/yr, and saving 22.9 mio Euro/yr of disbursements for extra-communal electricity and heat deliveries. The application of the Decentralised Energy Management System (DEMS) will allow for local and inter-communal operation, monitoring and control of energy consumption, storage and generation units and grids, including DSM and LCP, thereby exploring a EE potential of at least 5Prozent. The target in RES coverage for 2010 is of resp. 39 to 62Prozent of the then remaining electricity and heat demand. EnerMAS, a low-threshold version of the European environmental management system.

POLYCITY - europäische Energieforschung für Kommunen

Die Projektgebiete liegen in Deutschland, Italien und Spanien. Deutschland: Scharnhauser Park: In Ostfildern am südlichen Rand von Stuttgart entsteht auf einem ehemaligen amerikanischen Militärgelände der Stadtteil Scharnhauser Park für rund 10.000 Bewohner und mit etwa 2.500 Arbeitsplätzen. Zu rund 80 Prozent soll der Energiebedarf aus erneuerbarer Energie gedeckt werden. Kern des Energiekonzeptes für den Stadtteil ist ein Biomasse-Blockheizkraftwerk mit 1 MW elektrischer und 6 MW thermischer Leistung. Die Anlage wird optimiert, eine Ist-Analyse ist bereits erstellt worden. Mit der im Sommer ungenutzten Wärmeenergie soll künftig Kälte für die Klimatisierung von Gewerbebauten erzeugt werden. Neben der ganzjährigen Nutzung erneuerbarer Energien für die Kraft-Wärme-Kältekopplung ist auch Energiespeicherung (zentral und dezentral) und ein kommunales Energiemanagementsystem auf der Basis modernster Informationstechnologien vorgesehen. Das zafh.net liefert Know-how der simulationsgestützten Regelung von Anlagen und setzt betriebsbegleitende Simulationen ein. In Echtzeit soll aus den klimatischen Randbedingungen der optimale Betriebszustand berechnet und mit den real gemessenen Werten verglichen werden. Als Basis ist ein Geoinformationssystem entwickelt worden, mit dem die Energiedaten der Gebäude erfasst und ausgewertet werden können. Die Gebäude unterliegen einem hohen Dämmstandard (25 Prozent unter den in der Wärmeschutzverordnung 1995 geforderten Werten). Bei den im Projekt neu dazukommenden Wohn- und Gewerbebauten wird der Transmissionswärmeverlust um weitere 20-30 Prozent gesenkt. Die ersten Wohnbauten wurden im Herbst 2005 vom Siedlungswerk Stuttgart erstellt. Mit Argon gefüllte Fenster mit erhöhter Rahmendämmungund Kunststoff-Abstandhaltern erreichen einen Gesamt-Wärmedurchgangskoeffizienten von 1,1 W m-2 K-1. In diesem ersten Bauabschnitt sind reine Abluftanlagen ohne Wärmerückgewinnung installiert worden, in späteren Bauabschnitten sollen Anlagen mit Wärmerückgewinnung einer Vergleichsanalyseunterzogen werden. Die Gebäudedichtigkeit wird mit Blower-Door-Tests experimentell untersucht. Der Energiestandard wird bei allen Bauten dokumentiert. Messgeräte für die Fernauslese und Auswertung (Smartbox) sind bereits installiert. ImGewerbegebiet wird im März 2006 ein erstes Demoprojekt zur innovativen Gebäudetechnologie (Heizung, Lüftung, Klima) mit etwa 4.000 m2 Nutzfläche erstellt. In der Ausführungsplanung enthalten sind: thermische Kühlung, Erdreichwärmetauscher, Betonkernaktivierung (zur Kühlung) ein Unterflurkonvektions-Heiz- und Kühlsystem, ein Tageslicht-Lenksystem. Nicht nur das Biomassekraftwerk liefert Strom, sondern auch gebäudeintegrierte PV-Anlagen. Ziel ist eine Leistung von insgesamt 70 kWp. Zudem wird die kinetische Energie des Wassers genutzt: Das aus den Hochbehältern ins Netz abfließende Trinkwasser treibt eine 80-kW-Entspannungsturbine an.

Demonstration of a sustainable CHP concept using residues from olive oil production (OLIVEPOWER)

Objective: The project focuses on the demonstration of an innovative and sustainable CHP concept using residues from olive oil production (olive wastes) as fuel. A first plant based on the new concept will be realised in Greece. The main objective of the project is to demonstrate a closed cycle concept able to reduce landfill problems and emissions and to promote the use of renewable electricity production in Southern Europe. The project will be based on an approach integrating the whole chain (fuel logistics and preparation, energy production, by-product utilisation). An optimised fuel logistic concept will guarantee for a secured fuel supply over the whole year. The fuel will not only be dewatered and dried but also a marketable by-product will be produced. By this means a better fuel quality can be achieved and solid wastes as well as waste- water can be omitted. The development and design of the combustion unit focuses on a technology tailored to the special characteristics of the olive waste.

1 2 3 4 511 12 13