API src

Found 128 results.

Network of DER laboratories and pre-standardisation (DER-LAB)

Objective: The main objective of the proposed Network of Excellence (NoE) DER-Lab is to support the sustainable integration of renewable energy sources (RES) and distributed energy resources (DER) in the electricity supply by developing common requirements, quality criteria, as well as proposing test and certification procedures concerning connection, safety, operation and communication of DER-components and systems. DER-Lab intends to strengthen the EC domestic market and to protect European interests on the international standardisation level. A major objective is to establish a durable European DER-Lab Network that will be a world player in this field. The NoE will bring together a group of organisations for the development of certification procedures for DER- components for electricity grids. The NoE will act as a platform to exchange the current state of knowledge between the different European institutes and other groups. The scattered, but high quality research and test facilities will be combined with great benefit for the European research infrastructure DER-Lab will contribute by developing new concepts for control and supervision of electricity supply and distribution and will bundle at European level specific aspects concerning the integration of RES technologies. The absence of European and international standards for the quality and certification of components and systems for DER is a hindrance to the growth of the European market and for European penetration of the world market. It is within the aims of the proposed NoE to reduce these barriers and to work towards common certification procedures for DER components that will be accepted throughout Europe and the world. Obviously this work cannot be done on a national basis. The results of the project and afterwards the output of the network will be a significant contribution to the European standardisation activities and will contribute to the harmonisation of the different national standards.

Demonstration of a sustainable CHP concept using residues from olive oil production (OLIVEPOWER)

Objective: The project focuses on the demonstration of an innovative and sustainable CHP concept using residues from olive oil production (olive wastes) as fuel. A first plant based on the new concept will be realised in Greece. The main objective of the project is to demonstrate a closed cycle concept able to reduce landfill problems and emissions and to promote the use of renewable electricity production in Southern Europe. The project will be based on an approach integrating the whole chain (fuel logistics and preparation, energy production, by-product utilisation). An optimised fuel logistic concept will guarantee for a secured fuel supply over the whole year. The fuel will not only be dewatered and dried but also a marketable by-product will be produced. By this means a better fuel quality can be achieved and solid wastes as well as waste- water can be omitted. The development and design of the combustion unit focuses on a technology tailored to the special characteristics of the olive waste.

FP6-SUSTDEV, Seismic early warning for Europe (SAFER)

Earthquakes are a serious threat for many countries of Europe, particularly for those around the Mediterranean Sea. Early warning systems, based on real time, automated analysis of ground motion measurements, can play an important role in reducing the negative impact of catastrophic events on densely populated areas and, particularly, in mitigating the damage to strategic structures and lifelines. Europe is covered by numerous high quality seismic networks, managed by national and by European agencies, including also some local networks specifically designed for seismic early warning around large cities like Bucharest, Istanbul and Naples, respectively. The SAFER project is aimed at fully exploiting the possibilities offered by a real time analysis of the signals coming from seismic networks for a wide range of actions, performed in a time interval of a few seconds to some tens of minutes. These actions range from the shut down of critical systems of lifelines, industries, highways, railways, etc. and the activation of control systems for the protection of crucial structures, to decision support for rapid response of the emergency management (ground shaking maps, continuously expected damage scenarios, aftershocks hazard etc.). The project is structured in 6 work-packages: (1) Project Coordination and Management (2) Real-Time Estimation of Source Parameters (3) Real-Time Damage Assessment and Reduction Strategies (4) Real- Time Shake Maps (5) Real-Time Aftershock Hazard Assessment (6) Dissemination of Results and End User Interface. The work-packages address all major components of an earthquake early warning system. Tasks of Section 5.3 within the project Preparation of the foundations to generate the most realistic earth shake maps possible: 1.) Derivation of detailed attenuation models of the macroseismic intensity in specified test areas and 2.) Derivation of regional relations between intensities and physical ground motion parameters.

Improved Building Integration of PV by using Thin Film Modules in CIS Technology (BIPV-CIS)

Objective: The results of the project will improve and widen the potential for the integration of solar (PV) energy systems into existing buildings. Special attention will be paid architectural and aesthetic questions. Building integration of PV systems in most cases leads to a 'high tech' and 'modern' appearance of the building. This is caused by the typical window-like surface of most conventional PV modules. Regarding however that90Prozent of the building stock consists of longer existing, that means 'old fashioned' buildings, it is evident that anaesthetically satisfying building integration of PV needs a lot of good will and creativity from planners and architects. In many existing building integrated PV systems the modules contrast with the building and its surroundings. A European survey on the potential and needs for building integrated PV components and systems will identify the basis for the development of modules away from the glass / window-like appearance. In the project PV roof tiles, overhead glazing and facade elements based on CIS thin film technology will be developed and investigated which have a modified optical appearance for better adaptation to the building skin. One of the ideas is optical decoupling of substrate and cover glass. A complete roof tile system with thin film cells adapted to the visual appearance of conventional roof tiles and innovative connection and mounting will be developed. The work includes prototype fabrication and tests according to relevant standards and subsequent performance tests. Novel overhead glazing includes semitransparent thin film modules optimised for daylight transmission. The backside appearance will be modified in order to represent the visible inner part of the building skin. For overhead and insolating glazing an invisible interconnection and for PV roof tiles a low cost connector will be developed. Project results will be systems ready for industrial production.

SUCCESS - successful travel awareness campaigns and mobility management strategies (MAX)

Objective: Mobility Management (MM) and Travel Awareness (TA) have many advantages as soft policy strategies: they are flexible, adaptable, rapid to implement and offer value-for-money. Many sustainable transport research projects have covered MM and TA, but in isolated projects, limited to larger cities and pilot demonstrations. SUCCESS now offers the chance to link these two areas and exploit their synergies, based on its research areas: A Innovative Approaches in TA B Behaviour Change Models and Prospective Assessment C Quality Management and MM For Smaller Cities D Integrating Planning and MM. They will be linked via horizontal WPs: WP 1 State-of-the-art analysis WP 2 Conceptualisation and specification of research activities WP 3 Monitoring investigations and implementation WP 4 Compiling results WP 5 Dissemination and WP 0 Project Management, Quality Control and Evaluation run in parallel for the duration of the project. Organising the work in this way will deliver excellent results.

Sustainable energy management systems (SEMS)

Objective: The aim of this project is to turn 4 core communities (Germany, Austria, Luxemburg, Poland) with clearly defined system borders and 14 - 20.000 inhabitants each into CONCERTO communities. A mix of different EE and RES demonstrations (including refurbishment of old buildings, eco-buildings and polygeneration, all underpinned with complete business plans) will allow to avoid about 300 GWh/yr end energy from fossil sources, thus avoiding 94.000 tons CO2/yr, and saving 22.9 mio Euro/yr of disbursements for extra-communal electricity and heat deliveries. The application of the Decentralised Energy Management System (DEMS) will allow for local and inter-communal operation, monitoring and control of energy consumption, storage and generation units and grids, including DSM and LCP, thereby exploring a EE potential of at least 5Prozent. The target in RES coverage for 2010 is of resp. 39 to 62Prozent of the then remaining electricity and heat demand. EnerMAS, a low-threshold version of the European environmental management system.

Integrated small scale solar heating and cooling systems for a sustainable air-conditioning of buildings (SOLERA)

Objective: The project aims to develop highly integrated solar heating and cooling systems for small and medium capacity applications which are easily installed and economically and socially sustainable. The envisioned applications are residential houses, small office buildings and hotels. The goal is to use the excess solar heat in summer to power a thermally driven cooling process in order to provide cooling for air-conditioning. In the heating season the solar system is used to provide direct heating. The proposed project therefore aims to demonstrate the technical feasibility, reliability and cost effectiveness of these systems, specially conceived as integrated systems to be offered on the market as complete packages which will make better use of the available solar radiation as present systems.

Ballastwasser Behandlung: Nachhaltige Ballastwasseraufbereitung (BAWAPLA)

Maritimer Transport ist von enormer Bedeutung für Europa und den Rest der Welt. Über 90% des Außenhandels der Europäischen Union wird per Seetransport abgewickelt. Mehr als eine Milliarde Tonnen an Fracht werden pro Jahr in den Häfen der Mitgliedstaaten auf- und abgeladen. Der Schiffstransport ist gemessen am Volumen die wichtigste Beförderungsart. Mit dem Seetransportgeschäft begann auch der Transport von Organismen im Ballastwasser von Schiffen. Der internationale Transport von drei bis zu zwölf Milliarden Tonnen Ballastwasser jährlich führt zur Ansammlung von ca. 100 Millionen Tonnen von Ablagerungen in den Schiffen. Die Beseitigung des entstandenen Schlamms verursacht enorme Kosten (ca. 30.000 € für ein kleines Frachtschiff). Neben den wirtschaftlichen Aspekten wird das Ballastwasser als hauptsächlicher Verursacher für die Umsiedlung von Aquaspezies über biologisch-geografische Grenzen hinaus verstanden. Schätzungsweise werden täglich 10.000 Pflanzen- sowie Tierarten per Schiff in die ganze Welt transportiert. Aufgrund des wachsenden Welthandels wächst auch die Bedrohung der Ökosysteme durch invasive Lebewesen. Die immer kürzeren Fahrtzeiten erhöhen die Überlebenswahrscheinlichkeit der Bioinvasoren. Die automatische und zuverlässige Reinigung des Ballastwassers im Tank mithilfe einer neuen Hybrid-Technologie (UV, Filter, Elektrolyse), die einen seewasserbetriebenen Generator nutzt, ist das gemeinsame Ziel der Projektpartner. Durch die Produktion von aktiven Substanzen mit der Elektrolyse aus dem Meerwasser wird vermieden, gefährliche und ätzende Chemikalien an Bord mitzuführen.

Models for Assessing and Forecasting the Impact of Environmental Key Pollutants on Marine and Freshwater Ecosystems and Biodiversity - MODELKEY, Models for Assessing and Forecasting the Impact of Environmental Key Pollutants on Marine and Freshwater Ecosystems and Biodiversity - MODELKEY

MODELKEY comprises a mulitdisciplinary approach aiming at developing interlinked and verified predictive modelling tools as well as state-of-the-art effect-assessment and analytical methods generally applicable to European freshwater and marine ecosystems: 1) to assess, forecast, and mitigate the risks of traditional and recently evolving pollutants on fresh water and marine ecosystems and their biodiversity at a river basin and adjacent marine environment scale, 2) to provide early warning strategies on the basis of sub-lethal effects in vitro and in vivo, 3) to provide a better understanding of cause-effect-relationships between changes in biodiversity and the ecological status, as addressed by the Water Framework Directive, and the impact of environmental pollution as causative factor, 4) to provide methods for state-of-the-art risk assessment and decision support systems for the selection of the most efficient management options to prevent effects on biodiversity and to prioritise contamination sources and contaminated sites, 5) to strengthen the scientific knowledge on an European level in the field of impact assessment of environmental pollution on aquatic eco-systems and their biodiversity by extensive training activities and knowledge dissemination to stakeholders and the scientific community. This goal shall be achieved by combining innovative predictive tools for modelling exposure on a river basin scale including the estuary and the coastal zone, for modelling effects on higher levels of biological organisation with powerful assessment tools for the identification of key modes of action, key toxicants and key parameters determining exposure. The developed tools will be verified in case studies representing European key areas including Mediterranean, Western and Central European river basins. An end-user-directed decision support system will be provided for cost-effective tool selection and appropriate risk and site prioritisation.

Neue Ansätze für ein nachhaltiges Wasserresourcenmanagement (NeWater)

Zentraler Forschungsgegenstand des NeWater Projektes ist der Übergang von derzeit etablierten Regimen im Flussgebietsmanagement zu anpassungsfähigeren Managementsystemen in der Zukunft. Dieser Übergang verlangt ein in hohem Maße integratives Konzept für das Management von Wasserressourcen. NeWater befasst sich mit der Identifizierung von Schlüsselelementen gegenwärtigen Wassermanagements und arbeitet die notwendigen Prozesse für den Übergang dieser Elemente hin zu einem flexibleren Managementansatz heraus. In Rahmen des Projektes werden Konzepte und Tools entwickelt, die einer integrierten Analyse dienen und einen schrittweisen Wandel im Wasserressourcenmanagement unterstützen. Ecologic analysiert gegenwärtige Ansätze im grenzüberschreitenden Flussgebietsmanagement. Aus den Ergebnissen dieser Analyse entwickelt Ecologic im Rahmen von NeWater innovative Verfahren für grenzüberschreitendes Flussgebietsmanagement, die die Anforderung an ein adaptives Management erfüllen.

1 2 3 4 511 12 13