Die Hybridisierung von im öffentlichen Nahverkehr eingesetzten Fahrzeugen bietet die Möglichkeit signifikanter Treibstoff- und Emissionsreduktionen, da die Fahrzyklen gut vorhersehbar sind und häufige Brems- und Beschleunigungsvorgänge enthalten (Start-Stopp Betrieb). Der Einsatz verfügbarer elektrochemischer Speicher (Batterien, Ultracaps) zur Zwischenspeicherung der Bremsenergie ist zwar möglich, jedoch können die geforderten Leistungen bzw. die gewünschte Lebensdauer nur mit großem finanziellen Aufwand bzw. starker Überdimensionierung des Energiespeichers erreicht werden. Im Gegensatz zu den elektrochemischen Speichern bieten Flywheel-Speicher das Potenzial, eine hohe Leistungsdichte mit einer hohen Energiedichte zu verbinden. Durch den Einsatz moderner (Verbund-)Materialien sowohl im Schwungrad selbst wie auch in den Lagern können Flywheel-Speicher sehr kompakt und leicht gebaut werden. Außerdem erreichen sie bereits mit heute verfügbarer Lager-Technologie eine im Vergleich zu modernen Batteriesystemen deutlich erhöhte Lebensdauer. In dem Projekt E3ON soll die Realisierbarkeit von kompakten Flywheel-Speichern unter den in öffentlichen Nahverkehrsfahrzeugen gegebenen Rahmenbedingungen untersucht werden: Gemeinsam mit potenziellen Kunden (siehe beiliegende LOI) werden für Schienenfahrzeuge und Hybridbusse typische Lastprofile sowie extern auftretende mechanische Belastungen (Vibrationen, Fliehkräfte, ...) spezifiziert. Auf deren Basis werden die Hauptkomponenten des Systems (Schwungmasse und Lagerung, Motor/Generator, Umrichter) theoretisch und experimentell in Bezug auf Lebensdauer und Sicherheitsaspekte untersucht. Das Ergebnis der Forschungsarbeiten sind Realisierungsvorschläge für die einzelnen Komponenten sowie eine erste Abschätzung der unter den gegebenen Randbedingungen erreichbaren Lebensdauer und der Kosten. Daraus können die wichtigsten Parameter eines im Rahmen eines Folgeprojekts zu realisierenden Prototyps bzw. Vorseriengeräts abgeleitet werden, wobei speziell der erreichbare Wirkungsgrad (round-trip efficiency), der speicherbare Energieinhalt, die aufnehmbare bzw. abgebbare elektrische Leistung, die erreichbare Lebensdauer und der zu erwartende Preis von Interesse sind. Zusätzlich können die Projektergebnisse zur Beurteilung der Realisierbarkeit von noch weiter miniaturisierten Flywheel-Speichern herangezogen werden. Derartige Speicher eignen sich zum Einsatz in Hybrid- und Elektrofahrzeugen des zukünftigen Individualverkehrs.
Strahlenschutz bei der Elektromobilität Beim Betrieb von konventionellen Verbrennerfahrzeugen, Plug-in-Hybriden und Elektroautos entstehen Magnetfelder im Nieder- und Zwischenfrequenzbereich. Sie treten auch beim Laden von E-Autos und Plug-in-Hybriden auf. Wie stark Menschen diesen Feldern beim Fahren ausgesetzt sind, hängt von der eingesetzten Technologie, der Position von Bauteilen, aber auch der persönlichen Fahrweise ab. Die zum Schutz der Gesundheit empfohlenen Höchstwerte werden in allen untersuchten Szenarien unterschritten. Daher sind nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitsrelevanten Wirkungen zu erwarten. In Elektroautos sind Menschen nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder Hybridantrieb. In Deutschland gibt es bezüglich EMF-Immissionen keine für (Kraft-)Fahrzeuge spezifische Regelung. Wie überall, wo elektrische Ströme fließen, treten auch bei elektrisch angetriebenen Fahrzeugen Magnetfelder auf. Wie stark Personen den Magnetfeldern im Auto oder beim Laden außerhalb des Fahrzeugs ausgesetzt sind, kann sich von Fall zu Fall unterscheiden. Dies hängt von der eingesetzten Technologie, der Position von relevanten Bauteilen relativ zum Körper, aber auch der persönlichen Fahrweise ab. Bei Elektrofahrzeugen entstehen magnetische Felder vor allem im Betrieb und beim Laden der Fahrzeuge. In bisherigen Untersuchungen wurden beim Fahren die stärksten Felder vorwiegend im Fußraum vor den Vordersitzen festgestellt. Beim Einschalten mancher Fahrzeuge entstehen ebenfalls kurzfristig starke Felder. In Verbrennerfahrzeugen können Menschen Magnetfeldern ähnlich stark ausgesetzt sein wie in Hybrid- oder Elektrofahrzeugen. In den Fällen gehen die Magnetfelder nicht vom Antriebsstrang, sondern von anderen elektrischen Fahrzeugkomponenten aus, zum Beispiel von Sitzheizungen. Quelle: vladim_ka/stock.adobe.com Welche Felder kommen in Fahrzeugen und beim Laden vor? Bei elektrisch angetriebenen Fahrzeugen entstehen statische, niederfrequente und zwischenfrequente elektrische und magnetische Felder sowohl beim Fahren als auch beim Laden. Die Frequenzen dieser Felder liegen zwischen null Hertz ( Hz /statische Felder) und mehreren zehn oder hundert Kilohertz ( kHz /niederfrequente Felder und Felder im sogenannten Zwischenfrequenzbereich). Unter Gesichtspunkten des Strahlenschutzes sind bei E-Autos vor allem die Magnetfelder relevant, die unter anderem von folgenden Quellen ausgehen: elektrischer Antriebsstrang, Leitungen und dazugehörige Elektronik, Fahrzeugbatterie, Ladeeinrichtung und Ladekabel. Unabhängig vom Antriebssystem gibt es in modernen Fahrzeugen weitere Quellen magnetischer Felder. Daher können Insass*innen auch in einem Fahrzeug mit Verbrennungsmotor Magnetfeldern ausgesetzt sein. Relevante Quellen magnetischer Felder sind hier beispielsweise: Klimaanlagen, Lüfter, Sitzheizungen, Fensterheber sowie Fahrzeugeinschaltung bzw. Anlasser. Darüber hinaus gibt es Quellen wie Assistenz-, Komfort- und Unterhaltungssysteme, die hochfrequente elektromagnetische Felder für die Erkennung von Objekten ( Radar ) oder die drahtlose Informationsübertragung per Funk nutzen. Weitere Informationen zu hochfrequenten elektromagnetischen Feldern finden Sie in unserem Übersichtsartikel " Was sind hochfrequente elektromagnetische Felder? ". Magnetfeldquellen nur in Elektroautos und Hybriden Wissenschaftlich gesicherte Wirkungen von Magnetfeldern Niederfrequente und zwischenfrequente Magnetfelder dringen nahezu ungehindert in den Körper ein und können dort elektrische Felder und Ströme hervorrufen. Diese können wiederum zu Reiz- und Stimulationswirkungen in Nerven- und Muskelgewebe führen. Damit diese wissenschaftlich gesicherten Wirkungen nicht auftreten, wurden von der Internationalen Kommission zum Schutz vor nichtionisierender Strahlung ( ICNIRP ) Richtlinien entwickelt. Diese Richtlinien beschreiben, wie stark Menschen den Feldern höchstens ausgesetzt sein sollten. Dabei wird neben der Stärke und Verteilung der Magnetfelder auch das Ausmaß der im Körperinnern entstehenden elektrischen Felder berücksichtigt. Wenn die durch die Magnetfelder hervorgerufenen Felder im Körper die von der ICNIRP vorgeschlagenen Höchstwerte nicht übersteigen, sind keine gesundheitsrelevanten Wirkungen zu erwarten. Ob neben den wissenschaftlich gesicherten Wirkungen von Magnetfeldern auch andere, bisher unentdeckte Wirkungen auftreten können, ist Gegenstand weiterer Forschung. Auftreten von Magnetfeldern bei der Elektromobilität Eine Studie des BfS von 2025 gibt Aufschluss über die Frage, in welchem Maße Personen den Magnetfeldern von Elektrofahrzeugen ausgesetzt sind. Untersucht wurden reine E-Autos, Plug-In-Hybride und zum Vergleich ein konventioneller Verbrenner. Auch elektrisch angetriebene Zweiräder wurden getestet. Es ist nach Einschätzung des BfS die bislang detaillierteste Untersuchung zu diesem Thema. In dieser Studie wurden gemessen an den Zulassungszahlen besonders beliebte E-Auto-Modelle verschiedener Automobilhersteller und zusätzlich auch leistungsstarke E-Auto-Modelle untersucht. Dazu wurden Magnetfeldmessungen an unterschiedlichen Stellen im Inneren der Fahrzeuge durchgeführt. Dies geschah bei Fahrten auf öffentlichen Straßen, einer Teststrecke sowie auf Prüfständen. Während der Messung auf der Teststrecke und dem Prüfstand befanden sich die Fahrzeuge beim Beschleunigen, Bremsen oder Fahren mit gleichbleibender Geschwindigkeit in festgelegten Betriebszuständen. Beim Aufladen wurde an Positionen innerhalb und außerhalb der Fahrzeuge gemessen. Es wurden Normal- und Schnellladepunkte berücksichtigt. Fahrzeughersteller waren nicht an der Untersuchung beteiligt. Auftreten von Magnetfeldern in Verbrennern, Plug-In-Hybriden und E-Autos Zum Auftreten von Magnetfeldern in Kraftfahrzeugen gibt es folgende zentrale Erkenntnisse: Die Magnetfelder in E-Autos treten räumlich sehr ungleichmäßig auf. Hohe Werte wurden vor allem im Bereich der Füße und Unterschenkel festgestellt. Kopf und Oberkörper der Menschen im Fahrzeug sind Magnetfeldern hingegen weniger stark ausgesetzt. Die maximale Motorleistung der Elektroautos ist nicht alleine ausschlaggebend dafür, wie stark Menschen den Magnetfeldern im Fahrzeug ausgesetzt sind. Konstruktionsbedingte Merkmale wie die Position von Batterien, Hochvoltkabeln und Leistungselektronik beeinflussen die Magnetfeldverteilungen. Die Stärke der Magnetfelder verändert sich abhängig von der Fahrweise. Beim Beschleunigen und Bremsen entstehen höhere Werte als beim Fahren mit gleichmäßiger Geschwindigkeit. Sowohl während der Fahrt als auch bei Fahrzeugstillstand können Insass*innen Magnetfeldern ausgesetzt sein, die nicht unmittelbar vom Antriebsstrang, sondern von anderen Quellen oder Funktionen stammen. Dies gilt für reine Elektrofahrzeuge, Plug-In-Hybride und Verbrenner gleichermaßen. In Elektroautos sind Menschen nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit Verbrennungsmotor oder Hybridantrieb. So war der maximale während der Fahrt ermittelte Messwert in einem in der Studie zum Vergleich untersuchten Verbrenner höher als die maximalen Messwerte in 8 der 13 untersuchten Elektro- und Hybridfahrzeuge. Hartschaum-Dummy mit zehn Messsonden im Fond eines Elektroautos Auftreten von Magnetfeldern beim Aufladen von E-Autos Zum Auftreten von Magnetfeldern beim Aufladen von E-Fahrzeugen gibt es folgende zentrale Erkenntnisse: Sowohl Personen in als auch neben dem Fahrzeug sind während des Ladevorgangs Magnetfeldern ausgesetzt. Wie beim Fahren können Referenzwerte lokal überschritten sein. Laden über ein Kabel kann mit Wechsel- oder Gleichstrom erfolgen. Obwohl die Schnellladesäulen, die mit Gleichstrom arbeiten, höhere Ladeleistungen und damit kürzere Ladezeiten ermöglichen, sind die Magnetfelder, denen Menschen beim Laden an diesen Säulen ausgesetzt sind, geringer. In keinem der untersuchten Szenarien (verschiedene Ladesäulen, Fahrzeuge, Lademodi, Batterieladezustände und Positionen in und neben den Fahrzeugen) sind Menschen Magnetfeldern in einer für die Gesundheit relevanten Höhe ausgesetzt. Die Magnetfelder sind häufig zu Beginn eines Ladevorgangs für kurze Zeit (Größenordnung Sekunde) deutlich größer als während der folgenden, längeren Ladephase. In den untersuchten Fahrzeugen waren sie in der folgenden Ladephase dann auch durchweg niedriger als beim Fahren. Induktives, also berührungsloses Laden, war während der Projektlaufzeit für die auf dem deutschen Markt angebotenen Serienfahrzeuge nicht verfügbar und konnte daher nur eingeschränkt untersucht werden. Höchstwerte schützen die Gesundheit Neben der Frage, wo und in welchen Situationen Magnetfelder in Elektroautos auftreten, stellt sich aus Sicht des Strahlenschutzes eine entscheidende Frage: Sind Insass*innen den Magnetfeldern in elektrisch betriebenen Fahrzeugen so stark ausgesetzt, dass unerwünschte oder gesundheitsrelevante Wirkungen im Menschen hervorgerufen werden können? Die BfS -Studie von 2025 liefert für die untersuchten Fahrzeuge klare Antworten: Zunächst wurden die in den Fahrzeugen gemessenen Magnetfeldstärken mit Referenzwerten verglichen, die in einer EU -Empfehlung von 1999 (Empfehlung des Rates vom 12. Juli 1999 zur Begrenzung der Exposition der Bevölkerung gegenüber elektromagnetischen Feldern (0 Hz – 300 Gigahertz )) aufgeführt sind. Hierbei zeigten sich in einigen Fällen Überschreitungen dieser Referenzwerte. Eine räumlich auf kleine Körperteilbereiche begrenzte Überschreitung der Referenzwerte führt aber nicht notwendigerweise zu bedenklich starken elektrischen Feldern oder Strömen im Körper. In detaillierten Computersimulationen wurden daher für die Fälle, die aus Strahlenschutzsicht besonders relevant waren, die durch die Magnetfelder hervorgerufenen elektrischen Ströme oder Felder in Körpernachbildungen bestimmt. In allen Fällen waren die zum Schutz der Gesundheit empfohlenen Höchstwerte unterschritten. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Im Detail zeigen die Ergebnisse der BfS -Studie von 2025: Alle untersuchten Fahrzeuge haben die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. In reinen Elektroautos ist man nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Bei einer moderaten Fahrweise werden die Referenzwerte meist im niedrigen zweistelligen Prozentbereich ausgeschöpft. Eine sportliche Fahrweise führte in mehreren Elektrofahrzeugen sowie in einem zu Vergleichszwecken untersuchten Fahrzeug mit Verbrennungsmotor zu Überschreitungen der von der EU empfohlenen Referenzwerte. Trotz der kurzfristigen Überschreitungen der Referenzwerte wurden keine Überschreitungen der empfohlenen Höchstwerte für im Körper hervorgerufene elektrische Felder festgestellt. Mit einer Ausnahme wurden die Referenzwerte in allen Fahrzeugen im Moment des Einschaltens jeweils kurzfristig überschritten – auch in dem Fahrzeug mit Verbrennungsmotor. Quelle: Pichsakul/stock.adobe.com Empfehlungen des BfS In den kommenden Jahren ist mit einer weiter steigenden Anzahl von Elektrofahrzeugen zu rechnen. Daher sind auch bei der Elektromobilität Strahlenschutzaspekte angemessen zu berücksichtigen. Aus grundsätzlichen Strahlenschutzerwägungen sollten Verbraucher*innen den Feldern von Produkten, zu denen auch Fahrzeuge gehören, möglichst gering ausgesetzt sein. Auch wenn in der Untersuchung des BfS von 2025 keine Überschreitungen der zum Schutz der Gesundheit empfohlenen Höchstwerte festgestellt worden sind, so zeigte sich zwischen den untersuchten Fahrzeugen eine erhebliche Spannbreite. Mit einem intelligenten Fahrzeugdesign haben es die Hersteller in der Hand, lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten, damit auch eine kombinierte Einwirkung aus mehreren Quellen nicht zu einer Überschreitung empfohlener Höchstwerte führt. Hierfür sollte schon bei der Konzeption die Position der relevanten Bauteile elektrisch betriebener Fahrzeuge mitgedacht werden. Das Forschungsvorhaben des BfS "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität" zeigt, dass dies bei Kraftfahrzeugen technisch möglich ist. Es zeigen sich erhebliche Unterschiede allein aufgrund der Positionierung relevanter Bauteile. Darüber hinaus sieht das BfS Bedarf, die Normen und Regulierungen weiterzuentwickeln. Aktuelle Bewertungsverfahren decken nicht alle relevanten oder ungünstigen Fälle ab. Personen mit aktiven Körperhilfsmitteln (Herzschrittmacher, Neurostimulatoren etc. ) sollten zudem ihren Arzt oder ihre Ärztin fragen, ob die Funktion des bei ihnen verwendeten Medizinprodukts durch Magnetfelder beeinflusst werden kann. Forschung des BfS zur Elektromobilität Stand: 17.12.2025