Multibeam bathymetry raw and processed data (RESON Seabat T50Extended Range) of Research Vessel Littorina at Fehmarn Belt in the western part of the Baltic Sea. The raw data (.db format) were processed using QPS Qimera software (v 1.7), based on the following workflow: 0.Raw data -> 1.Apply correct Sound Velocity Profiles -> 2. correct lever arm offsets -> 3. Finalize with manual 2D and 3D point editing. The corrected soundings were used to create a GeoTIFF (EPSG Code:4326) .gsf data and GeoTIFF are provided.
Multibeam bathymetry raw and processed data (RESON Seabat T50Extended Range) of Research Vessel Littorina at Fehmarn Belt in the western part of the Baltic Sea. The raw data (.db format) were processed using QPS Qimera software (v 1.7), based on the following workflow: 0.Raw data -> 1.Apply correct Sound Velocity Profiles -> 2. correct lever arm offsets -> 3. Finalize with manual 2D and 3D point editing. The corrected soundings were used to create a GeoTIFF (EPSG Code:4326) .gsf data and GeoTIFF are provided. In addition software is provided with the aim of establishing a benchmark for terrain based navigation correction software using mutlibeam data. A) A script that allows to alter navigation solutions B) A script that allows to compare navigation solutions By altering the original and correct navigation and using the product as a basis for a terrain based navigation correction algorithm, the quality of such an algorithm can be measured by comparing its output to the original navigation. This in turn allows quantitative comparisons between different algorithms or settings. In addition to the original navigation some altered navigation files are provided (in .csv file format).
Wolkenbeobachtungen werden mit Aerosolmessungen auf dem Forschungsschiff (FS) Polarstern und einer Eisstation synchronisiert um den direkten und indirekten Aerosoleffekt zu identifizieren und zu quantifizieren. Diese werden mit dem Zustand der Atmosphäre in Zusammenhang mit deren Strahlungsflüssen am Boden in Verbindung gebracht. Strahlungsschließungsstudien werden durchgeführt um die fernerkundeten Aerosol- und Wolkeneigenschaften mit den in-situ Messungen der Bodenstrahlungsflüsse zu verbinden
Innerhalb der letzten 25 Jahre wurde ein bemerkenswerter Anstieg der bodennahen Lufttemperatur in der Arktis beobachtet, welcher den Globalerwärmungsfaktor von zwei sogar übersteigt. Dieses Phänomen wird als Arktische Verstärkung bezeichnet. Diese Erwärmung führt zu recht dramatischen Veränderungen einer Vielzahl von Klimaparametern. Beispielsweise wurde von Satelliten aus beobachtet, dass sich das arktische Meereis signifikant zurückgezogen hat. Allerdings können Klimamodelle diesen Rückgang immer noch nicht korrekt reproduzieren. Daher ist es zwingend erforderlich den Ursprung dieser Unstimmigkeiten zu identifizieren. Um unser Wissen über die Ursprünge der beobachteten arktischen Klimaveränderungen zu erweitern, ist es notwendig die Genauigkeit dieser Vorhersagen zu verbessern. Um dieses Ziel zu erreichen beantragen wir im Rahmen des Transregio TR 172 die vorhandenen wissenschaftlichen Fachkenntnisse und Kompetenzen dreier deutscher Universitäten und zweier nicht-universitären Forschungsinstitute zu fokussieren und kombinieren. Beobachtungen von Messinstrumenten auf Satelliten, Flugzeugen, luftgetragenen Ballonplattformen, Forschungsschiffen und ausgewählte bodengebundene Messstationen werden in bestimmte Forschungskampagnen integriert und mit Langzeit Messungen kombiniert. Die Modellaktivitäten verwenden eine Hierarchie von Prozess-, mesoskaligen, regionalen und globalen Modellen um eine Brücke zwischen räumlichen und zeitlichen Skalen zu individuellen lokalen Prozessen der entsprechenden Klimasignale herzustellen. Die Modelle dienen als Orientierungshilfe für Kampagnen, zur Analyse von Messungen und Sensitivitäten, zur möglichen Zuordnung der Quellen der beobachteten arktischen Klimaveränderungen und um die Fähigkeiten der Modelle zu testen Beobachtungen zu reproduzieren. Die allumfassende wissenschaftliche Zielsetzung des TR 172 ist es die Schlüsselprozesse, die zur arktischen Verstärkung beitragen, zu identifizieren, untersuchen und zu bewerten um unser Verständnis über die wesentlichen Rückkopplungsmechanismen zu verbessern und gleichzeitig deren relative Bedeutung für die arktische Verstärkung zu quantifizieren. In der ersten Phase wird der Fokus auf atmosphärischen und Bodenprozessen liegen, da die schnell vorrangehenden Veränderungen im arktischen Klima vermuten lassen, dass wichtige atmosphärische Einflüsse an diesen Mechanismen beteiligt sind. In der zweiten und dritten Phase werden dann vor allem die Wechselwirkungen zwischen ozeanischen und atmosphärischen Komponenten der arktischen Verstärkung sowie die damit verbundenen globalen Aspekte genauer untersucht. Die Verbindung von Beobachtungs- und Modellstudien dient dazu die künftigen arktischen Klimaentwicklungsvorhersagen zu verbessern.
Halogenradikale spielen eine Schlüsselrolle in der Chemie der polaren Grenzschicht. Alljährlich im Frühjahr beobachtet man riesige Flächen von mehreren Millionen Quadratkilometern mit stark erhöhten Konzentrationen von reaktivem Brom, welches von salzhaltigen Oberflächen in der Arktis und Antarktis emittiert werden. Dieses Phänomen ist auch als Bromexplosion bekannt. Des Weiteren detektieren sowohl boden- als auch satellitengestützte Messungen signifikante Mengen von Jodoxid über der Antarktis, jedoch nicht in der Arktis. Die Gründe für diese Asymmetrie sind nach wie vor unbekannt, aber das Vorhandensein von nur wenigen ppt reaktiven Jods in der antarktischen Grenzschicht sollte einen signifikanten Einfluss auf das chemische Gleichgewicht der Atmosphäre haben und zu einer Verstärkung des durch Brom katalysierten Ozonabbaus im polaren Frühjahr haben. Der Schwerpunkt der Aktivitäten im Rahmen von HALOPOLE III wird auf der Untersuchung von wichtigen Fragestellungen liegen, die im Rahmen der Vorgängerprojekte HALOPOLE I und II im Bezug auf die Quellen, Senken und Transformationsprozesse von reaktiven Halogenverbindungen in Polarregionen aufgetreten sind. Basierend sowohl auf der synergistischen Untersuchung der bislang gewonnen Daten aus Langzeit - und Feldmessungen sowie auf neuartigen Messungen in der Antarktis sind die wesentlichen Schwerpunkte: (1) Die Untersuchung einer im Rahmen von HALOPOLE II aufgetretenen eklatanten Diskrepanz zwischen aktiven und passiven Messungen DOAS Messungen von IO. (2) Eine eingehende Analyse der DOAS Langzeitmessungen von der Neumayer Station und Arrival Heights (Antarktis) sowie Alert (Kanada) bezüglich Meteorologie, Ursprung der Luftmassen, Vertikalverteilung, sowie des Einflusses von Schnee, Meereis und Eisblumen auf die Freisetzung von reaktiven Halogenverbindungen. (3) Die Untersuchung der kleinskaligen räumlicher und zeitlichen Variation von BrO auf der Basis einer detaillierten Analyse der flugzeuggebundenen MAX-DOAS Messungen während der BROMEX 2012 Kampagne in Barrow/Alaska. (4) Die Analyse der kürzlich in der marginalen Eiszone der Antarktis auf dem Forschungsschiff Polarstern durchgeführten Messungen im Hinblick auf die horizontale und vertikale Verteilung von BrO und IO, sowie den Einfluss der Halogenchemie auf den Ozon- und Quecksilberhaushalt. (5) Weitere detaillierte Untersuchungen des Einflusses von Halogenradikalen, insbesondere Chlor und Jod, auf das chemische Gleichgewicht der polaren Grenzschicht auf der Basis einer Messkampagne in Halley Bay, Antarktis. (6) Detailliertere Langzeit-Messungen von Halogenradikalen und weiteren Substanzen auf der Neumayer Station mittels eines neuen Langpfad-DOAS Instruments welches im Rahmen dieses Projektes entwickelt wird. Zusätzlich zu den bereits existierenden MAX-DOAS Messungen werden diese eine ganzjährige Messungen des vollen Tagesganges sowie die Untersuchung nicht nur der Brom- und Jodchemie, sondern auch der Chlorchemie ermöglichen.
1
2
3
4
5
…
18
19
20