API src

Found 490 results.

Related terms

Ermittlung der Emissionssituation bei der Verwertung von Bioabfällen

Derzeit werden in Deutschland etwa 8,6 Mio. Tonnen an Bio- und Grünabfällen aus Haushalten und der Garten- und Parkpflege getrennt gesammelt und verwertet. Die Behandlung erfolgt vorwiegend in reinen Kompostierungsanlagen, zunehmend aber auch anaerob in Vergärungsanlagen. Zum Teil werden bestehende Kompostierungsanlagen mit einer Vergärungsstufe nachgerüstet, zum Teil werden neue Vergärungsanlagen für Bioabfälle geplant, bei denen meist eine Nachrotte der Gärreste vorgesehen ist. Die Emissionen der Anlagen sind sehr unterschiedlich und hängen stark von der Betriebsweise der Anlagen und weniger als erwartet von ihrer technischen Ausstattung ab. Dies ist Ergebnis des Forschungsprojektes "Ermittlung der Emissionssituation bei der Verwertung von Bioabfällen". Neben den Ergebnissen von Emissionsmessungen an verschiedenen Anlagen enthält der Abschlussbericht daher auch Empfehlungen zum emissionsarmen Betrieb von Kompostierungs- und Vergärungsanlagen.<BR>Quelle: www.umweltbundesamt.de/

Mitbehandlung von Flotatschlamm im Faulturm der Kläranlage am Standort Stendaln

Die Vorhabenträgerin beabsichtigt in ihrem bestehenden Faulturm zusätzlich Flotatschlamm einer anaeroben Gärung zuzuführen.

Regenbogenfabrik Berlin-Kreuzberg

Das Quartier der heutigen „Regenbogenfabrik“ im Bereich der Lausitzer Straße 22 in 10999 Berlin Kreuzberg entstand um ca. 1875. Dabei wurden innerstädtische Wohnbebauungen gemischt mit gewerblicher Nutzung errichtet. Die 5-geschossigen Wohngebäude mit Unterkellerung sind in den sandigen Schichten unterhalb eines Torfhorizontes gegründet. Des Weiteren entstanden Nebengebäude unterschiedlichster Art, die teils unterkellert und ebenfalls in den Sandschichten gegründet sind. Die historische Recherche ergab, dass bis ca. 1920 im Hofbereich des ca. 1.500 m² großen Grundstücks im Herzen von Berlin Kreuzberg ein Sägewerk betrieben wurde. Die Umgebung von Wohnbebauung blieb bestehen. In der Zeit von 1928 bis 1978 wurde der Hof mit den angrenzenden Gebäuden als Chemische Fabrik mit angeschlossenem Chemikalienhandel genutzt. Im 2. Weltkrieg wurde der Hof und die angrenzenden Gebäude stark beschädigt. Dabei wurden gelagerte Fässer und Tanks undicht und die darin gelagerten Stoffe gelangten in den Untergrund. In den Nachkriegsjahren wurde das Gelände rekonstruiert und diverse Sanierungs-, Renovierungs- und Umbauarbeiten durchgeführt. Seit etwa der 80er Jahre dient es als Kulturzentrum „Regenbogenfabrik“ mit Kita, Begegnungsstätte, Hostel, Café und weiteren Einrichtungen. Untersuchungen des Bodens weisen im Bereich der Lausitzer Straße 22 unter einer ca. 2 m mächtigen anthropogenen Auffüllungsschicht eine ca. 1–1,3 m mächtige Schicht aus holozänen Faulschlämmen bzw. Torfen unterschiedlichen Zersetzungsgrades auf. Darunter schließen sich im Liegende bis ca. 15 m unter Geländeoberkante (GOK) Fein- und Mittelsande an. In ca. 100 m nordwestlicher Richtung im Bereich des Jugendzentrums CHIP (Reichenberger Straße 44/45 ) sind in einer Tiefe von 13 m stark schluffige Sande bzw. Schluffe unterschiedlicher Mächtigkeiten eingeschaltet, die den Aquifer in einen oberen und einen unteren Bereich trennen. Bis in die Tiefe von ca. 30 m ist anschließend mit Mittelsanden zu rechnen, welche wiederum von Sand-/Tonlagerungen im Bereich von 30–35 m unter Gelände unterlagert werden. Der Grundwasserflurabstand beträgt in Abhängigkeit von der Geländemorphologie ca. 2,5–3,0 m [ca. 32,10 m Normalhöhennull (NHN)]. Die Grundwasserfließrichtung ist nach Nordwest gerichtet und die Fließgeschwindigkeit sehr gering. Der Bereich der Regenbogenfabrik liegt außerhalb von Trinkwasserschutzzonen. In den 80er Jahren wurde ein LCKW-Schaden (LCKW = Leichtflüchtige chlorierte Kohlenwasserstoffe) im Untergrund ermittelt. Zur Gefahrenabwehr wurde unverzüglich ein Bodenaustausch der wasserungesättigten Bodenzone mit einer Tiefe von ca. 1–2 m bis zum Erreichen des Torfhorizontes vorgenommen. Im Anschluss wurde das Gelände mit sauberem Sand aufgefüllt und Wege und Grünanlagen angelegt. Dadurch wurde zunächst der Gefährdungspfad Boden – Mensch unterbrochen. In späteren detaillierten Erkundungen von 1988 bis 1989 im Auftrag des Senats von Berlin stellte sich heraus, dass die unterhalb des ausgetauschten Bodens liegende Torfschicht mit LCKW-Bodenbelastungen zwischen 200–500 mg/kg kontaminiert ist. Die Torfschicht wirkt dabei als langjährige Quelle, die die einmal aufgenommenen LCKW sehr langsam über Rückdiffusion aus dem immobilen Porenraum an das Grundwasser abgibt. Unterhalb der Torfschicht lagern relativ geringbelastete Sande. Es wurden Grundwasserbelastungen mit bis zu 260 mg/l LCKW im Bereich des Grundstücks ermittelt. Aufgrund der vorgefundenen Belastungen wurde im Zeitraum von Dezember 1990 bis Juni 1992 ein Pilotprojekt zur in-situ-Grundwassersanierung im Hydro-Airlift-Verfahren (System „Züblin“) durchgeführt und anschließend abgebrochen, da die Maßnahme zur Sanierung des Standortes aus verschiedenen Gründen nicht zielführend war. Im Zeitraum 2003 bis 2004 konnte die Grundwasserbelastung weiterhin bestätigt und der Schaden eingegrenzt werden. Zu diesem Zeitpunkt wurde der Schwerpunkt der Grundwasserbelastung unterhalb des Kellers der heutigen Regenbogenfabrik mit Konzentrationen von bis zu ca. 180.000 µg/l LCKW angetroffen. Nachrangig wurde eine Verunreinigung mit BTEX (leichtflüchtige aromatische Kohlenwasserstoffe) ermittelt. Ausgehend von der LCKW-Quelle war aufgrund der guten Lösungseigenschaften der LCKW eine Kernfahne in Richtung Nordwest im Tiefenbereich von ca. 10–30 m unter GOK mit Konzentrationen von ca. 10.000 µg/l ausgebildet. Im weiteren Grundwasserabstrom nahmen die LCKW Konzentrationen auf < 3.000 µg/l ab. Insgesamt erstreckte sich der Schaden zu diesem Zeitpunkt horizontal über eine Luftlinienstrecke von bis zu 500 m. Das Umwelt- und Naturschutzamt des Bezirkes Friedrichshain-Kreuzberg als zuständige Ordnungsbehörde forderte weitere Maßnahmen zur Gefahrenabwehr. Nach in-situ-Erkundungen im Jahr 2006 wurden 2007 weitere Grundwassermessstellen im Bereich der LCKW Fahne errichtet und auf die bekannten Schadstoffe zuzüglich der Milieuparameter hinsichtlich mikrobiologischer Abbauprozesse untersucht. Hierbei wurde festgestellt, dass ein Abbau der LCKW über die einzelnen Chlorierungsstufen bis zum unschädlichen Ethen stattfindet. Das vorhandene Mikroorganismen-Konsortium am Standort ließ die Durchführung eines mikrobiologischen Sanierungsverfahrens in Form einer reduktiven Dechlorierung durch Zugabe von Nährsubstraten (Zuckerrübenmelasse) als Vorzugsvariante bestehen. Diese Methode ist nicht nur sehr preiswert, sondern für diesen Standort auch äußerst effektiv. Zur Prüfung der großflächigen Umsetzbarkeit wurde ein Versuchsfeld für Substratinfiltrationen im Bereich des Jugendzentrums CHIP im Abstrom der Regenbogenfabrik geplant und von Oktober 2007 bis August 2008 ein 1. Feldversuch am Standort erfolgreich durchgeführt. Aufgrund der positiven Ergebnisse wurde die Maßnahme im full-scale Maßstab geplant. Es wurden 2011/2012 und 2013/2014 zusätzliche Infiltrationsgalerien errichtet, um Zuckerrübenmelasse verdünnt mit Standortwasser mittels eines Verteilersystems mit geringem Druck zu infiltrieren. Die Infiltrationsgalerien bestehen jeweils aus einer Reihe von Ober- und Unterpegeln. Der Reihenabstand der Infiltrationspunkte liegt abhängig von der baulichen Situation vor Ort zwischen ca. 3 bis 4 m. Im April 2023 wurden die bestehenden Infiltrationsgalerien um insgesamt 30 flache Infiltrationspegel erweitert. Trotz der bisherigen Sanierungserfolge wird aus der im Innenhof der Regenbogenfabrik oberflächennah vorhandenen, hoch belasteten und als Schadstoffdepot wirkenden Torfschicht weiterhin LCKW in das Grundwasser eingetragen. Aus diesem Grund wurde im Frühjahr 2023 ein Feldversuch zur Grundwasserzirkulation am Brunnen BR 13 durchgeführt mit dem Ziel, den Austrag der LCKW aus dem Torfkörper potentiell zu beschleunigen und den LCKW-Abbau somit perspektivisch zu verkürzen. Dabei wurde aus dem tiefer verfilterten Brunnen BR 13 b Grundwasser entnommen, mit Melasse versetzt und in den oberflächennah verfilterten Brunnen BR 13 a bzw. den Infiltrationspegel IP 31 reinfiltriert. Es zeigte sich im Laufe des Versuches zunächst eine signifikant höhere Mobilisation von LCKW aus der Torfschicht in das Grundwasser. Im weiteren Verlauf war eine deutliche Abnahme der LCKW-Konzentrationen und eine verstärkte Metabolisierung der höher chlorierten LCKW in Richtung der niedrig chlorierten LCKW bzw. dem harmlosen Zielabbaupodukt Ethen festzustellen. Der Feldversuch hat somit deutlich gezeigt, dass die Grundwasserzirkulation den cometaoblischen reduktiven LCKW-Abbau am Standort beschleunigen kann. Das Wirkprinzip basiert darauf, dass anaerobe Bakterien organische Substrate für ihr Wachstum benötigen. Die Energie für den Stoffwechsel unter sauerstoffarmen Bedingungen erhalten die Bakterien durch Übertragung von Reduktionsäquivalenten (H+ und e-) von Elektronenspendern auf Elektronenempfänger. Unter verschiedenen Redoxbedingungen werden durch die Bakterien die Stoffe Nitrat, Mangan, Eisen, Sulfat und Kohlendioxid als Elektronenempfänger benutzt. Dieser Prozess ist als anaerobe Atmung bekannt und wird durch die entsprechenden Bakterien auch bei der reduktiven Dechlorierung von LCKW bis hin zum unschädlichen Ethen angewandt. Hierbei sind die LCKW die Elektronenempfänger. Das Wirkprinzip des anaeroben reduktiven LCKW-Abbaus kann in den direkten und indirekten (cometabolitischen) LCKW-Abbau unterschieden werden. Es ist davon auszugehen, dass an kontaminierten Standorten jeweils beide Prozesse parallel ablaufen. Direkt anaerober Abbau von LCKW: Beim direkten anaeroben Abbau nutzen die Bakterien die LCKW als Elektronenempfänger und Wasserstoffatome als Elektronenspender. Durch den Austausch von Chloratomen mit Wasserstoffatomen gewinnen die Bakterien direkt Energie. Dieser Prozess wird als Halorespiration oder Chloratmung bezeichnet. Der für diesen Prozess benötigte Wasserstoff wird durch die Fermentierung (Gärung) von organischem Material bereitgestellt. Indirekt cometabolitischer Abbau von LCKW: Zusätzlich im Aquifer vorhandenes organisches Substrat dient abbauaktiven Bakterien als Energie- und Kohlenstofflieferant. Für den Aufschluss und Abbau des organischen Substrates produzieren die entsprechenden Bakterien Enzyme. Mit diesen Enzymen können unter anderem auch die LCKW abgebaut werden. Dieser Abbaumechanismus wird als cometabolischer Abbau von LCKW bezeichnet und steht in Konkurrenz zu anderen Elektronenempfängern wie z.B. Sulfat und Nitrat. Allgemein sind die natürlich ablaufenden Abbauprozesse stark an die jeweiligen Milieubedingungen (Redox-Verhältnisse, Verfügbarkeit von O 2 , pH-Wert) im Aquifer gebunden. Um den natürlichen am Standort stattfindenden Abbau von LCKW zu beschleunigen, wird organisches Substrat in Form von Melasse dem Grundwasser zugeführt. Häufig sind verschiedene Bakterienarten am schrittweisen mikrobiellen Abbau von LCKW beteiligt. Das Bakterium Dehalococcoides ethenogenes ist das derzeit einzig bekannte Bakterium, dass LCKW komplett vom PCE (PCE = Tetrachlorethen, auch Perchlorethen) bis zum Ethen aufspalten kann Seit Beginn der Durchführung der Melasseinfiltrationen im full-scale-Maßstab im Jahr 2011 sind bereits erste deutlich positive Entwicklungen im Bereich der einzelnen Infilltrationsgalerien zu erkennen. Im folgenden Beispiel wird hierbei die Überwachungsmessstelle MMS 5 OP der Infiltrationsgalerie 1.1 dargestellt, an der die Entwicklungen aufgezeigt werden können. Es ist deutlich zu erkennen, dass durch die Stimulation des mikrobiologischen Abbaus die Bildung von Ethen (in den Abbildungen Rosa) und ein Rückgang von VC (Vinylchlorid) und Cis 1,2 DCE (Cis-1,2-Dichlorethen) stattfindet. An anderen Messstellen im Untersuchungsgebiet, wo zum Teil noch vor der Infiltration große Mengen an hochchlorierten LCKW vorlagen, wurden diese durch die mikrobiologische Dechlorierung bereits zu niedrigchlorierten LCKW, auf dem Weg zum unschädlichen Ethen, abgebaut. Es sind zum Teil auch deutliche Reduzierungen in den Summenkonzentrationen der LCKW zu erkennen. Die seit ca. 2018 anfallenden jährlichen Kosten für die mikrobiologische Sanierung durch Zugabe von Melasse, das begleitende Grundwassermonitoring, Installation der Sanierungsinfrastruktur und ingenieurtechnische Begleitung belaufen sich auf ca. 85.000 € brutto pro Jahr.

Effizienz im Weinkeller

Bei der Herstellung von Wein werden verschiedene Prozesse durchlaufen, die neben der Qualität des Produktes die finanziellen Aufwendungen des ausführenden Betriebes beeinflussen. So ist der Verfahrensschritt der Gärung ausschlaggebend für die Bildung charakteristischer Inhaltsstoffe des Weins. Gleichzeitig geht mit diesem Prozess ein nicht zu vernachlässigender Energiebedarf einher: Bei der Gärung von Maische aus roten Trauben muss im Zuge der ablaufenden mikrobiologischen Vorgänge Wärme aus dem Prozess abgeführt werden. Die Herstellung von Weißweinen erfordert in hiesigen Breiten hingegen nicht selten die Bereitstellung von Wärmeenergie. Der Richard Wagner GmbH + Co. KG aus Alzey in Rheinland-Pfalz ist es nun gelungen eine innovative Lösung zu entwickeln, die Weinproduzenten unterschiedlicher Größe ein Produkt zur Verfügung stellt, das einen ressourcenschonenden und wirtschaftlichen Umgang mit den vorhandenen Energien ermöglicht. Bei der Lösung kommt anstelle der in diesen Produktionsbereichen oft eingesetzten Kompressionskältemaschinen ein offener Nasskühlturm in Verbindung mit einer speziellen Wärmerückgewinnung zum Einsatz. Die angebotenen Kühlturm-Systeme decken dabei einen Leistungsbereich zwischen 60 kW und 800 kW ab und lassen den saisonalen Betrieb der Anlagen unter wirtschaftlich interessanten Bedingungen zu.

CO-Vergaerung von Bioabfaellen und Klaerschlamm

Das Projekt "CO-Vergaerung von Bioabfaellen und Klaerschlamm" wird vom Umweltbundesamt gefördert und von Emschergenossenschaft durchgeführt. Ziel des Forschungsprojektes ist die Entwicklung einer verfahrenstechnisch optimalen Loesung zur Mitbehandlung von Bioabfaellen in klassischen Klaerschlamm-Behandlungsanlagen unter minimalem Zusatzaufwand. Das Verfahren soll deshalb so einfach wie moeglich gestaltet werden. Dies bedeutet, dass die Bioabfaelle nach der Aufbereitung (Stoerstoffabtrennung, Zerkleinerung) in den Klaerschlamm eingemischt werden und das Gemisch dann wie herkoemmlicher Klaerschlamm weiterbehandelt wird (einstufige, mesophile Faulung der Gesamtsuspension mit anschliessender Konditionierung, Entwaesserung und Verwertung). Es soll nachgewiesen werden, dass die Co-Vergaerung von Bioabfaellen und Klaerschlamm in ueblichen Faulbehaeltern moeglich ist und die nachgeschalteten Einrichtungen zur Schlammbehandlung weiterhin genutzt werden koennen. Ausserdem soll gezeigt werden, dass das ausgefaulte Gemisch gegenueber ausgefaultem Klaerschlamm deutliche Qualitaetsvorteile aufweist (Schadstoffbelastung, Naehrstoffe, Bodenverbesserung) und zur Herstellung eines vielseitig einsetzbaren Pflanzensubstrats geeignet ist. Ein weiteres Ziel des Vorhabens ist daher, durch Einfuehrung der Co-Vergaerung die Akzeptanz fuer Substrate auf Klaerschlammbasis in der Landwirtschaft, dem Landbau und der Rekultivierung zu erhoehen.

Teilvorhaben 5: Modellierung und Prozesssteuerung, Anlagenbetrieb und mikrobiologische Analytik

Das Projekt "Teilvorhaben 5: Modellierung und Prozesssteuerung, Anlagenbetrieb und mikrobiologische Analytik" wird vom Umweltbundesamt gefördert und von Technische Universität München, Institut für Wasserwesen, Lehrstuhl für Siedlungswasserwirtschaft durchgeführt. Ziel des Teilvorhabens ist die Entwicklung einer modellbasierten Prozesssteuerung und die Intensivierung des biologischen Aufschlusses der zu untersuchenden LCB Materialien Mais- und Grassilage. Das zu entwickelnde Steuerungskonzept erleichtert den Anlagenbetrieb erheblich und dient der Erhöhung der Prozessstabilität und des anaeroben Abbaus. Durch die offene Struktur des mathematischen Modells und der Betriebssteuerung ist eine Übertragbarkeit auf andere Anlagenkonfigurationen und Substrate möglich. Dem biologischen Aufschluss der Hydrolyse, der primär limitierende Schritt im Gesamtabbau zu Biogas, und der Quantifizierung der relevanten Mikroorganismen kommt ebenfalls eine wichtige Rolle im Teilvorhaben zu. Innerhalb des Verbundes ist eine enge Zusammenarbeit von Experten in den Bereichen mathematische Modellierung, Anlagentechnik, chemisch/physikalische Analytik, Mikrobiologie und Ingenieurwissenschaft gewährleistet. Die Lösung der vorliegenden komplexen Thematik wird hierdurch stark erleichtert. Der praktische Nutzen des Projektes wird als sehr hoch eingeschätzt. Die Ergebnisse des Verbundes werden innerhalb der Projektlaufzeit an Praxisanlagen überprüft.

Re2alko - Optimierung der Regionalen Bioalkoholherstellung aus biogenen Reststoffen

Das Projekt "Re2alko - Optimierung der Regionalen Bioalkoholherstellung aus biogenen Reststoffen" wird vom Umweltbundesamt gefördert und von Fachhochschule Münster, Labor für Wasser-, Abwasser- und Umwelttechnik durchgeführt. Thema: Die Erschließung und Nutzung biogener Reststoffe zur Produktion von innovativen Biokraftstoffen der zweiten Generation mit hohem Klimaschutzpotential soll optimiert werden. Ziele: Ziel des Projektes ist die Optimierung der Erschließung und Nutzung biogener Reststoffe zur Produktion von innovativen Biokraftstoffen der zweiten Generation mit hohem Klimaschutzpotential. Es wird ein belastbares Konzept zur schrittweisen Umwandlung dezentraler Bioethanolanlagen in Anlagen zur Vergärung von regionalen Rest- und Abfallstoffen aus landwirtschaftlichen Betrieben erstellt sowie die wissenschaftlich-technischen Voraussetzungen dafür geschaffen. Dabei soll neben der Produktion des sogenannten Lignozellulose-Ethanols auch die Produktion von Biobutanol evaluiert werden. Zur Energieoptimierung soll die Schlempe in einer nachgeschalteten Biogasanlage vergoren werden. In einer anschließenden Pilotphase ist vorgesehen, die entwickelten Konzepte in eine bestehende dezentrale gekoppelte Bioethanol/Biogasanlage zu implementieren. Maßnahmen: Der Projektpartner Fachhochschule Münster/Prof. Wetter wird sich vornehmlich mit den Fragen zur energetischen und stofflichen Optimierung der Brennerei beschäftigen. Insbesondere die Bereitstellung von regenerativer Energie für die Brennereiprozesse ist ein wesentlicher Bestandteil der Untersuchungen. Schwerpunkte: - Auswahl Pflanzenmaterial - Vorbehandlung - Enzymatische Verzuckerung - Fermentation - Effizienzsteigerung einer Brennerei - Pilotanlage - Kreislaufführung - Butanolfermentation - Energie- und Ökobilanz - Ökonomische Betrachtung.

VP4/ EVerBio - Teilprojekt A

Das Projekt "VP4/ EVerBio - Teilprojekt A" wird vom Umweltbundesamt gefördert und von DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH durchgeführt. Es wird die energetische Verwertung von Reststoffströmen der Biomasseaufschlussverfahren untersucht: a) in TP 4.0.2 feste ligninhaltige Reststoffströme in thermo-chemischer Konversion (Verbrennung) b) in TP 4.0.3 flüssige und pastöse Reststoffe in biochemischer Konversion zu Biomethan im Biogasprozess TP 4.0.2 beginnt mit der Charakterisierung der Brennstoffeigenschaften der relevanten Reststoffe. Es folgt Systemanalyse zur Prüfung des technischen Einsatzgebietes (Co-Feuerung im Großkraftwerk, Einsatz in Kleinkraftwerken). Dann finden Untersuchungen zur Brennstoffaufbereitung und daran anschließend Verbrennungsuntersuchungen statt. Die gewonnenen Daten dienen der Modellierung der Konversionsverfahren, um die untersuchten Prozessketten bewerten zu können. Dies erfolgt abschließend unter ökonomischen und ökologischen Aspekten. Während der gesamten Projektlaufzeit findet Rückkopplung und Austausch mit den Reststofferzeugern statt, um Optionen der Einsatzstoffoptimierung hinsichtlich der Energieausbeutemaximierung zu prüfen.TP 4.0.3 startet mit der Charakterisierung und Bewertung der Substrate. Darauf basierend wird ein geeignetes Verfahren für die anaerobe Vergärung entwickelt. Anschließend findet die energetische und ökonomische Modellierung für den großtechnischen Einsatz statt. Begleitend findet Rückkopplung und Austausch mit den Reststofferzeugern statt, um Optionen der Einsatzstoffoptimierung hinsichtlich der Energieausbeutemaximierung zu prüfen.

VP: 4/4EVerBio - Teilprojekt B

Das Projekt "VP: 4/4EVerBio - Teilprojekt B" wird vom Umweltbundesamt gefördert und von Vattenfall Europe New Energy GmbH durchgeführt. Es wird die energetische Verwertung von Reststoffströmen der Biomasseaufschlussverfahren untersucht: a) in TP 4.0.2 feste ligninhaltige Reststoffströme in thermo-chemischer Konversion (Verbrennung)b) in TP 4.0.3 flüssige und pastöse Reststoffe in biochemischer Konversion zu Biomethan im Biogasprozess TP 4.0.2 beginnt mit der Charakterisierung der Brennstoffeigenschaften der relevanten Reststoffe. Es folgt Systemanalyse zur Prüfung des technischen Einsatzgebietes (Co-Feuerung im Großkraftwerk, Einsatz in Kleinkraftwerken). Dann finden Untersuchungen zur Brennstoffaufbereitung und daran anschließend Verbrennungsuntersuchungen statt. Die gewonnenen Daten dienen der Modellierung der Konversionsverfahren, um die untersuchten Prozessketten bewerten zu können. Dies erfolgt abschließend unter ökonomischen und ökologischen Aspekten. Während der gesamten Projektlaufzeit findet Rückkopplung und Austausch mit den Reststofferzeugern statt, um Optionen der Einsatzstoffoptimierung hinsichtlich der Energieausbeutemaximierung zu prüfen.TP 4.0.3 startet mit der Charakterisierung und Bewertung der Substrate. Darauf basierend wird ein geeignetes Verfahren für die anaerobe Vergärung entwickelt. Anschließend findet die energetische und ökonomische Modellierung für den großtechnischen Einsatz statt. Begleitend findet Rückkopplung und Austausch mit den Reststofferzeugern statt, um Optionen der Einsatzstoffoptimierung hinsichtlich der Energieausbeutemaximierung zu prüfen.

Teilprojekt 8

Das Projekt "Teilprojekt 8" wird vom Umweltbundesamt gefördert und von Agraferm Technologies AG durchgeführt. Ziel des Projektes ist es, schnellstmöglich einen Biogasreaktor zur Vergärung von Schlempe im halbtechnischen oder technischen Maßstab auf dem Gelände der CropEnergies in Zeitz zu errichten. An diesem Reaktor werden dann die Versuche zur Charakterisierung der Fermenterbiologie und ihrer metabolischen Regulierung durchgeführt. Am DBFZ und an der TUHH, IUE werden parallel dazu in Laborreaktoren Gärversuche durchgeführt, mit dem Ziel die Methoden für die Versuche im Großmaßstab zu testen. Mit den gewonnenen Erkenntnissen wird der Reaktor so modifiziert, dass der Kohlenstoff-Umsetzungsgrad im Biogasreaktor weiter gesteigert wird. Die durchzuführenden Arbeiten bestehen aus der Erstellung der Planungsunterlagen nach HAOI, dem Abu der Anlage, der anschließenden Inbetriebnahme der Anlage und der wissenschaftlichen Begleitung der Anlage auf dem Schwerpunkt Spurenelemente/Spurenelementanalytik. Die analytischen Methoden sind die Standards zur Düngewertermittlung, Abwassercharakterisierung und der Spurenelementanalytik. (Naßchemische Methoden für N, P, NH4-N; AAS für Metalle; GC für VFA; TS, GV, SS nach ASME)

1 2 3 4 547 48 49