Die Firma BioEnergie Gettorf GmbH & Co. KG in Butterkamp 2, 24214 Tüttendorf, plant die Errichtung und den Betrieb einer Anlagen zur Erzeugung von Strom, Dampf, Warmwasser, Prozesswärme oder erhitztem Abgas in einer Verbrennungseinrichtung (wie Kraftwerk, Heizkraftwerk, Heizwerk, Gasturbinenanlage, Verbrennungsmotoranlage, sonstige Feuerungsanlage), einschließlich zugehöriger Dampfkessel, durch den Einsatz von gasförmigen Brennstoffen (insbesondere Koksofengas, Grubengas, Stahlgas, Raffineriegas, Synthesegas, Erdölgas aus der Tertiärförderung von Erdöl, Klärgas, Biogas), mit einer Feuerungswärmeleistung von ein Megawatt bis weniger als 10 Megawatt, bei Verbrennungsmotoranlagen in der Stadt 24214 Gettorf, Rosenweg, Gemarkung Gettorf, Flur 7, Flurstücke 450 und 453.
Das Projekt "Optimierung des bestehenden Verbrennungssystems der Siemens Energy Gas Turbine 4000F für den sicheren Betrieb mit Wasserstoffanteil größer als 50%vol zur CO2-Emissionsreduktion" wird/wurde ausgeführt durch: Siemens Energy Global GmbH & Co. KG.Die Siemens Energy SGT5/6-4000F Gasturbine ist mit über 350 weltweit betriebenen Anlagen - und damit der zweitgrößten Gasturbinen Flotte größer als 100MW überhaupt - ein wichtiges Produkt bei der gasbasierten Stromerzeugung. Ziel dieses Projektes ist es, den 4000F Brenner bis 2026 so weiterzuentwickeln, dass der Betrieb der Gasturbine mit Gasmischungen größer als 50% vol H2 ohne Leistungsabsenkung ermöglicht wird. Die Lösung soll vollständig kompatibel zur installierten 4000F Flotte auf Basis des bestehenden Verbrennungssystems sein, d.h. erforderliche Anpassungen dürfen nur geringfügige Modifikationen darstellen, um eine wirtschaftliche Umrüstung für die Betreiber zu ermöglichen. Der derzeitige Status bzgl. hoher H2-Anteile ( größer als 30%) ist mit TRL2 zu bewerten. Abschluss des Projekts soll ein Review gemäß des Produktentwicklungsprozesses sein, so dass eine vollständige Freigabe des Prototypen-Designs zur Maschinenimplementierung für die Erstanwendung erfolgt.
Das Projekt "Turbomaschinen für Hydrogen Technologien, Teilvorhaben: AP3.1a, AP4.1 und AP4.2" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Siemens Energy Global GmbH & Co. KG.Um die Ziele des 7. Energieforschungsprogramms effizient und schnell realisieren zu können, sollen mit dem AG Turbo Verbundprojekt TurboHyTec technologische Fragestellungen untersucht werden, die sich neuen Anforderungen an Turbomaschinen in der Energiewende konzentrieren. Das Verbundprojekt gliedert sich in 4 Arbeitspakete: Für die Realisierung einer Wasserstoff-Energieinfrastruktur werden im AP1 'Wasserstoff-Anwendungen' sowohl Verdichter für den Wasserstoff-Transport als auch Gasturbinen für die Wasserstoff-Rückverstromung betrachtet. Es stehen innovative Fertigungsverfahren und die Anwendung neuartiger Werkstoffe im Vordergrund. Zudem werden Themen bearbeitet, welche die Verbrennung in einer Gasturbine bei einem Einsatz von Wasserstoff optimieren. Im AP2 'Energiespeicher' werden Verdichter-Komponenten für den Einsatz als Wärmepumpen und Expansionsturbinen als Bestandteile von Energiespeichersystemen erarbeitet. Neben einer nachhaltigen Stromversorgung ist die Bereitstellung von grüner Wärme für die Industrie essenziell. Um bestehende Wärmeversorgungsanlagen und neuartige Wärmeenergie-Speicheranlagen an den zukünftigen flexiblen Betrieb anpassen zu können, der bei der Interaktion mit erneuerbarer Energiebereitstellung zwangsläufig entsteht, werden im AP3 'Flexibilisierung' derartige Aufgabenstellungen an Verdichtern und Turbinen durchgeführt. Für die Auslegung, die Produkterstellung und den Betrieb von Turbomaschinen und deren Bauteilen wird eine durchgängige Digitalisierung angestrebt. Daraus leiten sich Anpassungen in den Abläufen mit einer stärkeren Virtualisierung und weitergehenden Simulationsansätzen über den gesamten Produktentstehungsprozess und den Betrieb der Anlagen ab. Interdisziplinäre Simulationen sollen bereits in frühen Projektphasen eingesetzt werden. In dem AP4 'Digitalisierung' werden diese Themenfelder adressiert. SIEMENS Energy beteiligt sich dabei direkt an den Hauptarbeitspaketen 'Flexibilisierung' und 'Digitalisierung'.
Wesentliche Änderung des Kraftwerks (Anlage 80) durch Errichtung und Betrieb eines Wärmeübertragers im Abgaspfad des Kombiblocks (Kessel 2 und Gasturbine) sowie Ableitung der Abgase über einen neuen Kamin
Das Projekt "Open Test Case zur Kalibrierung von Simulationsverfahren für konvektiv gekühlte Schaufeln von Wasserstoff- und Erdgasturbinen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: RWTH Aachen University, Institut für Strahlantriebe und Turboarbeitsmaschinen.In der Zukunft werden Wasserstoff-Gasturbinen eine wichtigen Stellenwert in der Stromerzeugung einnehmen, da sie aufgrund ihrer Flexibilität hervorragend zum Ausgleich von Fluktuationen der erneuerbaren Energien eingesetzt und klimaneutral betrieben werden können. Voraussetzung für die Entwicklung und Auslegung moderner Gasturbinen sind die Zuverlässigkeit und Genauigkeit von numerischen Berechnungsverfahren. Die Vorhersage der Strömung und des Wärmeübergangs an gekühlten Turbinenschaufel ist dabei aufgrund der hohen Komplexität eine besondere Herausforderung. Aus dem Grund sind hochauflösende experimentelle Datensätze realer Maschinen unerlässlich zur Validierung und Weiterentwicklung von numerischen Methoden und Modellen. Zu diesem Zweck werden am Institut für Strahlantriebe und Turbomaschinen (IST) der RWTH Aachen University werden an zwei Prüfständen, 'Heißgaskanal' (HGK) und 'Kaltluftkanal' (KLK), die Strömung und der Wärmeübergang an industriellen Gasturbinenschaufeln untersucht. Im HGK werden unter realistischen Temperaturbedingungen (Heißgas bis zu 1000 Grad C und Kühlluft bis zu 300 Grad C) die Materialtemperaturen von Gasturbinenschaufeln untersucht. Diese Daten eignen sich ausgezeichnet zur Validierung der Wärmeübergangsmodelle in numerischen Strömungslösern. Die Daten werden durch den KLK ergänzt, der zur Untersuchung der komplexen Innenströmung des Kühlluftsystems eingesetzt wird. Die Skalierung der Geometrie um den Faktor 5 erlaubt eine detailliertere Vermessung der Innenströmung sowie die Bestimmung von Wärmeübergangskoeffizienten. Die experimentellen Daten der am IST vorhandenen Prüfstände definieren zwei anspruchsvolle Testfälle für CFD- und CHT-Simulationen. Im Rahmen des Projekts sollen diese Validierungsfälle zur Nutzung durch FVV-Mitglieder bereitgestellt werden. Außerdem sollen Empfehlungen für die Modellierung der komplexen Strömungen gegeben.
Das Projekt "Optimierung des bestehenden Verbrennungssystems der Siemens Energy Gas Turbine 4000F für den sicheren Betrieb mit Wasserstoffanteil größer als 50%vol zur CO2-Emissionsreduktion, Teilvorhaben: Designoptimierung und Validierung von SGT5-4000F Brennern basierend auf Hochdruckverbrennungstests" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Siemens Energy Global GmbH & Co. KG.Die Siemens Energy SGT5/6-4000F Gasturbine ist mit über 350 weltweit betriebenen Anlagen - und damit der zweitgrößten Gasturbinen Flotte größer als 100MW überhaupt - ein wichtiges Produkt bei der gasbasierten Stromerzeugung. Ziel dieses Projektes ist es, den 4000F Brenner bis 2026 so weiterzuentwickeln, dass der Betrieb der Gasturbine mit Gasmischungen größer als 50% vol H2 ohne Leistungsabsenkung ermöglicht wird. Die Lösung soll vollständig kompatibel zur installierten 4000F Flotte auf Basis des bestehenden Verbrennungssystems sein, d.h. erforderliche Anpassungen dürfen nur geringfügige Modifikationen darstellen, um eine wirtschaftliche Umrüstung für die Betreiber zu ermöglichen. Der derzeitige Status bzgl. hoher H2-Anteile ( größer als 30%) ist mit TRL2 zu bewerten. Abschluss des Projekts soll ein Review gemäß des Produktentwicklungsprozesses sein, so dass eine vollständige Freigabe des Prototypen-Designs zur Maschinenimplementierung für die Erstanwendung erfolgt.
Das Projekt "Optimierung des bestehenden Verbrennungssystems der Siemens Energy Gas Turbine 4000F für den sicheren Betrieb mit Wasserstoffanteil größer als 50%vol zur CO2-Emissionsreduktion, Teilvorhaben: Laborversuche" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut für Antriebstechnik.Bei stationären Gasturbinen kann der Übergang zur CO2-freien Energie-Erzeugung in Schritten erfolgen. Dabei wird die Brennstoff-Zusammensetzung sukzessive von reinem Erdgas in Richtung Wasserstoff verschoben. Die Brenner in stationären Gasturbinen sind als besonders schadstoffarme Vormischbrenner stark auf die Verbrennungseigenschaften von Erdgas optimiert. Da sich die Verbrennungseigenschaften von Wasserstoff und Erdgas stark unterscheiden, stellt die Zumischung von Wasserstoff zum Brennstoff hohe Anforderungen an die Brennstoff-Flexibilität der Vormischbrenner. Insbesondere wird sich mit zunehmendem Wasserstoffanteil die Lage der Wärmefreisetzungszone relativ zum Brenneraustritt ändern. Dieser Einfluss soll an einem skalierten, aber dennoch anwendungsorientierten Brenner, bei realistischen Betriebsbedingungen unter Einsatz laseroptischer Messverfahren charakterisiert werden.
Das Projekt "Smartkompensator für die kritische Infrastruktur" wird/wurde ausgeführt durch: DeKomTe de Temple - Kompensator - Technik GmbH.Das Energieversorgungsnetz in Deutschland wird heterogener und komplexer. Die Projektierung vieler kleinerer, verteilter Kraftwerksanlagen zur Energiegewinnung sowie die Integration bestehender Systemkomponenten stellen neue Herausforderungen an die Anlagen sowie deren Teilkomponenten dar. Insbesondere das An- und Herunterfahren einer Gasturbine bewirkt thermischen und mechanischen Stress. Um Systemausfälle zu vermeiden, müssen die verwendeten Kraftwerkskomponenten optimiert werden. Kompensatoren sind kritische Anlagenkomponenten, die Bewegungen aufnehmen, sodass Schäden am System verhindert werden und die Funktionsfähigkeit des Gesamtsystems gewährleistet bleibt. Im Rahmen einer prädiktiven Instandhaltung (Predictive Maintenance) sollte es möglich werden, den Zustand von Kompensatoren im laufenden Betrieb und in Echtzeit zu überwachen und bevorstehende Wartungseingriffe zu prognostizieren. Das Ziel dieses Vorhabens ist die Neuentwicklung eines Kompensators dessen Betriebszustand sensorisch erfasst und überwacht wird. Dafür wird ein experimentelles System zur Datenerfassung und -weiterleitung gebaut, das unter realen Bedingungen in einem Versuchskraftwerk in Deutschland getestet wird. Innerhalb des SMART-KIT Projektes wird damit ein neuartiges Bauteil für kritische Infrastrukturen getestet, das zu erhöhter Zuverlässigkeit an thermischen Kraftwerken beitragen kann und damit einen kostenintensiven Ausfall des Gesamtsystems verhindert.
Das Projekt "Turbomaschinen für Hydrogen Technologien, Teilvorhaben: 3.3 und 4.4b Wasserverdunstung im Laufrad eines Radialverdichters und Untersuchung eines digitalen Zwillingmodells von Gasdichtungen" wird/wurde gefördert durch: Bundesministerium für Wirtschaft und Klimaschutz. Es wird/wurde ausgeführt durch: Universität Duisburg-Essen, Institut für Energie und Umweltverfahrenstechnik, Lehrstuhl für Strömungsmaschinen.Das Forschungsvorhaben untersucht auf der einen Seite die Auswirkungen der Wassereinspritzung auf das Betriebsverhalten eines Radialverdichters. Die Wassereinspritzung in Axialverdichtern von Gasturbinen ist eine gängige Praxis, um die Leistungsfähigkeit der Turbine zu verbessern. Um dieses Potenzial auch in Radialverdichtern zu nutzen, sind weitere Forschungsarbeiten im Bereich der Flüssigkeitseinspritzung notwendig. Die Radialverdichter werden hauptsächlich in der Prozessindustrie eingesetzt. Ziel dieses Projektes ist es die Berechnung und Einflüsse der Wassereinspritzung auf das Betriebskennfeld eines Radialverdichters zu untersuchen. Im Projekt (FKZ: 03EE5035B) wurde ein Radialverdichter mit Wassereinspritzung aufgebaut und Kennfelder mit und ohne Wassereinspritzung vermessen. Unklar ist das Potenzial der Wassereinspritzung, welches durch den Ort der Verdunstung bestimmt wird, welches hier adressiert werden soll. Im zweiten Thema wird die Abdichtung der Wellenenden, die verhindert, dass das Prozessfluid aus der Maschine in die Atmosphäre entweicht. Die Forschung an berührungslosen Gleitringdichtungen mit Trockengasschmierung DGS (Dry Gas Seals), wird aufgrund des geringen und kontrollierbaren Leckagestroms, des berührungslosen Betriebs und der Eignung für die Hochdruckumgebung, als Dichtungslösung eingesetzt. Im Projekt (FKZ: 03EE5041H) wurden die Prognosemodelle zur Berechnung des Dichtspaltes entwickelt und in ein digitales Zwillingsmodell implementiert. Die gesamte Architektur des digitalen Zwillings basierend auf einer Open Source IoT-Plattform. Im neuen Projekt wird das Gesamtkonzept auf eine reale Maschine übertragen. Die messbaren und nicht messbaren Prozessgrößen der realen Anlage und ihre logischen Zusammenhänge werden mit Hilfe von maschinellem Lernen und physikbasierten Modellen analysiert. Die Ergebnisse werden zur Leistungsoptimierung von Radialverdichtern in der Prozessindustrie genutzt.
Das Projekt "Messung und Beeinflussung der Abgas-Komponenten von Gasturbinen" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Technische Hochschule Aachen, Fachbereich 4, Lehrstuhl und Institut für Dampf- und Gasturbinen.Untersuchung des Abgasverhaltens von Gasturbinen fuer verschiedene Belastungsfaelle; Optimierung der Verbrennung und der Brennkammergeometrie unter dem Gesichtspunkt der Schadstoffverminderung und des Brennstoffbedarfes.
Origin | Count |
---|---|
Bund | 989 |
Land | 93 |
Type | Count |
---|---|
Förderprogramm | 785 |
Messwerte | 1 |
Text | 203 |
Umweltprüfung | 81 |
unbekannt | 11 |
License | Count |
---|---|
geschlossen | 100 |
offen | 785 |
unbekannt | 195 |
Language | Count |
---|---|
Deutsch | 1039 |
Englisch | 107 |
Resource type | Count |
---|---|
Archiv | 193 |
Datei | 195 |
Dokument | 277 |
Keine | 476 |
Webseite | 335 |
Topic | Count |
---|---|
Boden | 585 |
Lebewesen & Lebensräume | 543 |
Luft | 664 |
Mensch & Umwelt | 1080 |
Wasser | 467 |
Weitere | 1016 |