API src

Found 177 results.

Related terms

National emissions reported to the Convention on Long-range Transboundary Air Pollution (LRTAP Convention), v1.1, 2025

This metadata refer to the data on emissions of air pollutants submitted to the LRTAP Convention and copied to EEA. Data compiled are annual national total and sectoral emissions of air pollutants and associated activity data reported by EEA member and cooperating countries. Data are available for download in the UNECE/EMEP Nomenclature for Reporting (NFR19) format used by countries. A consolidated dataset for all countries in the NFR19 format and consistent with the European Union's air pollutant emission inventory submission to the LRTAP Convention is also provided.

National emissions reported to the Convention on Long-range Transboundary Air Pollution (LRTAP Convention)

Data compiled are annual national total and sectoral emissions of air pollutants and associated activity data reported by EEA member and cooperating countries. Data are available for download in the UNECE/EMEP Nomenclature for Reporting (NFR14) format used by countries. A consolidated dataset for all countries in the NFR14 format and consistent with the European Union's air pollutant emission inventory submission to the LRTAP Convention is also provided.

Emissionen persistenter organischer Schadstoffe

<p>Emissionen persistenter organischer Schadstoffe</p><p>Die Emissionsentwicklung persistenter organischer Schadstoffe verläuft uneinheitlich. Minderungserfolge sind bei den polyzyklischen aromatischen Kohlenwasserstoffen zu verzeichnen.</p><p>Umweltwirksamkeit von persistenten organischen Schadstoffen</p><p>Persistente organische Schadstoffe (Persistent Organic Pollutants, POPs) werden in der Umwelt nur langsam abgebaut. Besondere Umweltrelevanz ergibt sich daraus, dass sie nach ihrer Freisetzung in der Umwelt verbleiben und sich in der Nahrungskette anreichern. Damit können sie ihre schädigende Wirkung auf Ökosysteme und Mensch langfristig entfalten. Einige POPs weisen eine hohe Toxizität auf – in der breiten Öffentlichkeit wurde dies durch Unglücke wie in Seveso deutlich. Da sie weiträumig transportiert werden, können sie nach ihrer ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ selbst in entlegenen Gebieten zu einer Belastung führen. Zu den POPs gehören Chemikalien, die zu bestimmten Anwendungszwecken hergestellt werden (zum Beispiel ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=Pflanzenschutzmittel#alphabar">Pflanzenschutzmittel</a>⁠ und Industriechemikalien), aber auch solche, die unbeabsichtigt bei Verbrennungs- oder anderen thermischen Prozessen entstehen (sogenannte<em>u</em>POPs wie polychlorierte Dibenzo-p-dioxine und –furane (PCDD/F) oder polyaromatische Kohlenwasserstoffe (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PAK#alphabar">PAK</a>⁠) (siehe Tab. „Emissionen persistenter organischer Schadstoffe nach Quellkategorien“).</p><p>Internationale Regelungen zum Schutz vor persistenten organischen Schadstoffen</p><p>Im Rahmen der Konvention über weiträumige grenzüberschreitende Luftverunreinigungen (<a href="https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone">Convention on Long-Range Transboundary Air Pollution</a>, CLRTAP) der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UN#alphabar">UN</a>⁠-Wirtschaftskommission für Europa (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNECE#alphabar">UNECE</a>⁠) wurde 1998 ein<a href="https://unece.org/environment-policy/air/protocol-persistent-organic-pollutants-pops">Protokoll zur Reduktion der POP-Emissionen</a>von 32 Staaten und der EU unterzeichnet. Deutschland hatte hierzu unter Federführung des Umweltbundesamts technische Basisdokumente erstellt, zum Beispiel zum Stand der Technik der Emissionskontrolle stationärer Quellen. 2009 wurde das Protokoll novelliert; Regelungen zu sieben weiteren POPs wurden aufgenommen und bestehende Regelungen aktualisiert.</p><p>Darüber hinaus ist seit 2004 das weltweit geltende<a href="http://chm.pops.int/Home/tabid/2121/Default.aspx">Stockholmer Übereinkommen</a>zu POPs in Kraft, das inzwischen von 186 Staaten ratifiziert wurde.</p><p>Beide Vertragswerke, das POPs-Protokoll und die Stockholm-Konvention, regeln derzeit über 20 verschiedene POPs, die aber nicht alle deckungsgleich in beiden Abkommen vertreten sind. Zudem werden neue POPs aufgenommen. Die formulierten Ziele der Abkommen richten sich im Detail nach dem jeweils betroffenen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/s?tag=Stoff#alphabar">Stoff</a>⁠ und umfassen alle Möglichkeiten vom Verbot über Substitution bis hin zu der Anforderung, dass die Emissionen des Stoffes den Wert eines Referenzjahres zukünftig nicht überschreiten darf.</p><p>Umfang der Emissionen</p><p>Die Schätzungen der Emissionen unbeabsichtigt freigesetzter POPs (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=uPOPs#alphabar">uPOPs</a>⁠) sind in der Regel mit größeren Unsicherheiten behaftet als die der Schadstoffe, die beabsichtigt eingesetzt werden.</p><p>Polychlorierte Biphenyle (PCB)</p><p>Polychlorierte Biphenyle (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PCB#alphabar">PCB</a>⁠) sind in ihrer Anwendung strikt reglementiert, teilweise bereits seit Jahrzehnten. Rund zwei Drittel der insgesamt eingesetzten PCB von rund 100 Tausend Tonnen (Tsd. t) befinden sich geschlossen in Trafos, Kondensatoren oder Hydraulikflüssigkeit. Die restlichen Anwendungen in offenen Systemen (zum Beispiel Dichtungsstoffe, Anstriche und Weichmacher) liegen schon lange zurück. Daher werden die verbleibenden Emissionen der laufenden Anwendungen nur noch gering eingeschätzt (1990: 1.736 kg, 2023: 204 kg). Die Entsorgungssituation ist dennoch problematisch, da bei nicht kontrolliertem Verbleib von erheblichen Re-Emissionen auszugehen ist.</p><p>Dioxine und Furane</p><p>Polychlorierte Dibenzodioxine und -furane (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PCDDPCDF#alphabar">PCDD/PCDF</a>⁠, kurz oft ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Dioxine#alphabar">Dioxine</a>⁠ genannt) entstehen in Gegenwart von Chlorverbindungen bei jeder nicht vollständigen Verbrennung. Größte Quelle war 1990 noch die Abfallverbrennung in der Energiewirtschaft, deren Eintrag heute jedoch vernachlässigbar ist. Von insgesamt ca. 111 Gramm (Emissionsangaben in I-⁠<a href="https://www.umweltbundesamt.de/service/glossar/t?tag=TEQ#alphabar">TEQ</a>⁠: Internationales Toxizitätsäquivalent) im Jahr 2023 stammten 45 % aus der Energiewirtschaft und 14 % aus den Industrieprozessen, dort fast ausschließlich aus der Metallindustrie (größtenteils aus Sinteranlagen). 38 % stammen aus Haus- und Autobränden. Insgesamt sanken die Emissionen zwischen 1990 und 2009 um etwa 85 % und stagnieren seither auf diesem Niveau beziehungsweise fluktuieren leicht.</p><p>Polyzyklische aromatische Kohlenwasserstoffe (PAK)</p><p>Zu den polyzyklischen aromatischen Kohlenwasserstoffen (⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PAK#alphabar">PAK</a>⁠) gehören über 100 Verbindungen.<br>⁠PAK⁠ entstehen durch unvollständige Verbrennung. Hauptquellgruppe sind mit Abstand die kleinen Feuerungsanlagen der Haushalte. Die vorhandenen Messwerte sind jedoch mit hohen Unsicherheiten verbunden, da ähnlich wie bei den Dioxinen eine repräsentative Aussage zum Nutzerverhalten bei kleinen Feststofffeuerungen nicht möglich ist. Weiterhin gibt es Schätzungen (unterschiedlicher Qualität) zu PAK-Emissionen der Stahl- und mineralischen Industrie sowie von Kraftwerken und Abfallverbrennungsanlagen. Insgesamt ist das deutsche PAK-Inventar jedoch fast vollständig, da diese Emissionen weitestgehend aus Verbrennungsprozessen entstehen, die gut überwacht werden.Hexachlorbenzol (HCB)Die Datenlage für ⁠HCB⁠ ist deutlich schlechter als für ⁠Dioxine⁠/Furane und ⁠PAK⁠. Dieser Schadstoff wird in Anlagen normalerweise nicht gemessen, da er nicht gesetzlich geregelt ist. Seit 1977 ist HCB als reiner Wirkstoff in der Anwendung als ⁠Pflanzenschutzmittel⁠ verboten. Jedoch kann es als chemische Verunreinigung in anderen Wirkstoffen vorkommen. Mit Hilfe des Bundesamts für Verbraucherschutz und Lebensmittelsicherheit (BVL) konnten erstmals für die Berichterstattung 2016 HCB-Emissionen für diesen Bereich über die Inlandsabsätze der Pflanzenschutzmittel mit den Wirkstoffen Chlorthalonil und Picloram seit 1990 bis 2016 und der zulässigen HCB-Maximalgehalte ermittelt werden. ⁠Lindan⁠ ist bis zum Anwendungsverbot im Jahr 1997 berücksichtigt. Der rückläufige Trend ist nicht nur auf verminderte Maximalgehalte zurückzuführen, sondern auch auf die schwankenden Absatzmengen sowie die jeweiligen Wirkstoffzulassungen.Verschiedene Branchen, bei denen HCB-Emissionen zu erwarten wären, sind derzeit noch unberücksichtigt, wie zum Beispiel die Metallindustrie und die Zementindustrie.Weitere POPsFür weitere prioritär betrachtete POPs liegen wenig belastbare oder sehr geringe Emissionsschätzungen vor oder die Substanzen wurden in Deutschland weder hergestellt noch angewendet. Gleichwohl sind Immissionen über den Import nicht auszuschließen. Gleiches gilt für Ausgasungen von im Inland früher einmal verwendeten Produkten, für die die großräumige Immissionssituation vernachlässigbar ist (zum Beispiel ⁠DDT⁠ und ⁠Lindan⁠ im Holzschutz von Innenbauten der neuen Länder).TrendsWeitere Emissionsminderungen sind bei Dioxinen (PCDD/F) aufgrund der bereits vollzogenen Maßnahmen nur noch in geringem Umfang zu erwarten. Die Benzo(a)pyren- (BaP-) Emissionen dürften sich großräumig bei den Kleinfeuerungen (Kamine, Öfen) durch Brennstoffsubstitution und -einsparung weiter verringern, solange der Holzeinsatz in der Kleinfeuerung nicht weiter zunimmt. Die hier vereinzelt bei Anlagen der Eisen- und Stahlindustrie noch vorhandenen Reduktionspotenziale haben vor allem lokale Bedeutung. Bei ⁠PCB⁠ könnte die Altlastenproblematik mangels Kontrolle der umweltgerechten Rückführung vornehmlich durch Aufklärung entschärft werden. Bei Chlorparaffinen gibt es ein Stoffsubstitutionspotenzial kurzkettiger durch langkettige Stoffe. Die Verwendung kurzkettiger Chlorparaffine in der metallverarbeitenden Industrie und in der Lederverarbeitung und Zurichtung wurde in der EU mit derRichtlinie 2002/45/EGim Jahre 2002 verboten.

Luftschadstoff-Emissionen in Deutschland

<p>Luftschadstoff-Emissionen in Deutschland</p><p>Luftschadstoff-Emissionen aus unterschiedlichsten Quellen beeinträchtigen die Luftqualität, können in der Umwelt Säuren bilden oder die übermäßige Anreicherung von Nährstoffen (Eutrophierung) in Ökosysteme vorantreiben. Auch die menschliche Gesundheit kann belastet werden.</p><p>Entwicklung der Luftschadstoffbelastung</p><p>Emissionen werden durch den Verkehr, die Energieerzeugung, Industrieprozesse, die Landwirtschaft und viele andere Aktivitäten verursacht. Die seit 1990 erzielten deutlichen Erfolge bei der Emissionsminderung einzelner Luftschadstoffe zeigt die Abbildung „Emissionen ausgewählter Luftschadstoffe“. Daraus geht hervor, dass bei vielen Luftschadstoffen die stärksten Minderungen in der ersten Hälfte der 1990er Jahre erzielt werden konnten.</p><p>Ermittlung der Emissionsmengen</p><p>Die jährlichen Emissionen werden im Umweltbundesamt aus den verfügbaren Daten (Statistiken der Länder und des Bundes, Informationen von Verbänden und Betrieben, Modelle) für alle Quellen berechnet. Die Schadstoffemissionen werden dann Verursachergruppen, so genannten Quellkategorien, zugeordnet.</p><p>Diese Aufteilung ist in der Tabelle „Emissionen ausgewählter Luftschadstoffe nach Quellkategorien“ zu sehen, unerheblich ist dabei der Ort des Verbrauchs. Beispielsweise werden die Emissionen aus der Stromproduktion bei dieser Systematik den Produzenten (hier: Kraftwerke) und nicht den Verbrauchern zugerechnet. Die Tabelle stellt Angaben zu Stickstoffoxiden (NOx), Ammoniak (NH3), leichtflüchtigen organischen Verbindungen ohne Methan (⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NMVOC#alphabar">NMVOC</a>⁠), Schwefeldioxid (SO2) und Staub – einschließlich der Feinstaubanteile PM10und PM2,5– sowie Kohlenmonoxid (CO) zusammen. Außerdem werden die Säurebildner SO2, NH3und NOxunter Berücksichtigung ihres Säureäquivalents erfasst.</p><p>Die Berechnungen erfolgen nach den internationalen Berichtsvorschriften unter der<a href="http://www.unece.org/env/lrtap/welcome.html">UNECE Luftreinhaltekonvention</a>. Zum Zweck der Harmonisierung der Berichterstattung haben sich diese an den Vorgaben des Intergovernmental Panel on Climate Change der Vereinten Nationen (⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=IPCC#alphabar">IPCC</a>⁠) für die Treibhausgase orientiert.</p><p>Minderung von Emissionen durch die europäische National Emission Ceilings (NEC)-Richtlinie und das Göteborg-Protokoll</p><p>In der europäischen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a>⁠ (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) sind für die EU-Mitgliedstaaten Emissionsminderungsverpflichtungen für die wichtigsten Luftschadstoffe (SO2, NOx, NH3, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NMVOC#alphabar">NMVOC</a>⁠ und PM2,5) festgelegt, die ab dem Jahr 2020 relativ zu 2005 einzuhalten sind. Auch das von den Parteien der Genfer Luftreinhaltekonvention beschlossene<a href="https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone">Göteborg-Protokoll</a>enthält analoge Minderungsziele für diese Schadstoffe. Dabei sind die Reduktionsverpflichtungen für den Zeitraum 2020 bis 2029 in beiden Regelungen identisch. Unter der NEC-Richtlinie sind ab dem Jahr 2030 dann deutlich höhere Reduktionen vorgesehen.</p><p>Die Tabelle „Reduktionsverpflichtungen der NEC-Richtlinie; Emissionen im Jahr 2023“ zeigt die beschlossenen Emissionshöchstmengen und stellt sie den Emissionsdaten für das Jahr 2023 gegenüber. Bei der Überprüfung der Zielerreichung werden nach der NEC Richtlinie die Emissionen aus der Düngewirtschaft und landwirtschaftlichen Böden nicht berücksichtigt.</p>

Pilotstudien zur Eignung der Bioindikation mit Moosen zur Erfassung der atmosphärischen Deposition persistenter organischer Schadstoffe sowie Mikroplastik

Im Rahmen des internationalen Moosmonitorings 2020/2021 (ICP Vegetation, Genfer Luftreinhaltekonvention) wurden an 25 Standorten in Deutschland Moosproben genommen und im Labor analysiert. Erstmals wurde neben langlebigen organischen Schadstoffen (POPs), Schwermetallen und reaktiven Stickstoffverbindungen auch Mikroplastik in den Proben untersucht. Die Ergebnisse werden genutzt, um die räumliche Verteilung der atmosphärischen Belastung und zeitliche Entwicklungen im Eintrag von Luftschadstoffen in Ökosysteme zu beobachten und zu bewerten. Veröffentlicht in Texte | 02/2025.

Pilotstudien zur Eignung der Bioindikation mit Moosen zur Erfassung der atmosphärischen Deposition persistenter organischer Schadstoffe sowie Mikroplastik

Im Rahmen des internationalen Moosmonitorings 2020/2021 (ICP Vegetation, Genfer Luftreinhaltekonvention) wurden an 25 Standorten in Deutschland Moosproben genommen und im Labor analysiert. Erstmals wurde neben langlebigen organischen Schadstoffen (POPs), Schwermetallen und reaktiven Stickstoffverbindungen auch Mikroplastik in den Proben untersucht. Die Ergebnisse werden genutzt, um die räumliche Verteilung der atmosphärischen Belastung und zeitliche Entwicklungen im Eintrag von Luftschadstoffen in Ökosysteme zu beobachten und zu bewerten.

Pilotstudien zur Eignung der Bioindikation mit Moosen zur Erfassung der atmosphärischen Deposition persistenter organischer Schadstoffe sowie Mikroplastik

Im Rahmen des internationalen Moosmonitorings 2020/2021 (ICP Vegetation, Genfer Luftreinhaltekonvention) wurden an 25 Standorten in Deutschland Moosproben genommen und im Labor analysiert. Erstmals wurde neben langlebigen organischen Schadstoffen (POPs), Schwermetallen und reaktiven Stickstoffverbindungen auch Mikroplastik in den Proben untersucht. Die Ergebnisse werden genutzt, um die räumliche Verteilung der atmosphärischen Belastung und zeitliche Entwicklungen im Eintrag von Luftschadstoffen in Ökosysteme zu beobachten und zu bewerten.

Manual on Methodologies and Criteria for Modelling and Mapping Critical Loads and Levels and Air Pollution Effects, Risks, and Trends - Update 2024

This report is an important collection of tools used in the framework of the Geneva Convention on Long-Range Transboundary Air Pollution (CLRTAP). Thus, it provides for example a scientific basis on the application of critical levels and loads, their interrelationships, and the consequences for abatement. After the transfer of the Coordination Center for Effects from the Netherlands to Germany this edition is published by the German Environment Agency (⁠ UBA ⁠). With this edition recent technical updates where transferred in the document. The changes of chapter 3 from the Ammonia-workshop decided 2023 have been incorperated.The information on backgrounddatabase (BGDB) (5.2) and the new receptor map were implemented in chapter 5.6. Veröffentlicht in Texte | 123/2024.

Überschreitung der Belastungsgrenzen für Eutrophierung

<p>Überschreitung der Belastungsgrenzen für Eutrophierung</p><p>Nährstoffeinträge (vor allem Stickstoff) aus der Luft belasten Land-Ökosysteme und gefährden die biologische Vielfalt. Zur Bewertung dieser Belastung stellt man ökosystemspezifische Belastungsgrenzen (Critical Loads) den aktuellen Stoffeinträgen aus der Luft gegenüber. Trotz rückläufiger Stickstoffbelastungen in Deutschland besteht weiterhin Handlungsbedarf – vor allem bei den Ammoniak-Emissionen.</p><p>Situation in Deutschland</p><p>Im Jahr 2019 (letzte verfügbare Daten) wurden die ökologischen Belastungsgrenzen für ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>⁠ durch Stickstoff in Deutschland auf 69 % der Flächen empfindlicher Ökosysteme überschritten (siehe Karte „Überschreitung des Critical Load für Eutrophierung durch die Stickstoffeinträge im Jahr 2019“). Die zur Flächenstatistik dieser Überschreitung herangezogenen Ökosystemtypen stammen aus dem CORINE-Landbedeckungsdatensatz von 2012 und bilden vor allem Waldökosysteme ab (ca. 96 %). Besonders drastisch sind die Überschreitungen in Teilen Nordwestdeutschlands. Aufgrund der dort ansässigen Landwirtschaft und intensiv betriebenen Tierhaltung ist der Stickstoffeintrag dort besonders hoch. So sind etwa zwei Drittel der Stickstoffeinträge auf Ammoniakemissionen zurückzuführen.</p><p>Im Rahmen eines ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠-Vorhabens zur Modellierung der Stickstoffdeposition (PINETI-4, Abschlussbericht in prep.) konnte die Entwicklung der Belastung methodisch konsistent für eine lange Zeitreihe (2000 bis 2019) rückgerechnet werden. Die nationalen Zeitreihendaten zeigen, dass der Anteil der Flächen in Deutschland, auf denen die ökologischen Belastungsgrenzen überschritten wurden, von 84 % im Jahr 2000 auf 69 % im Jahr 2019 zurückging (siehe Abb. „Anteil der Fläche empfindlicher Land-Ökosysteme mit Überschreitung der Belastungsgrenzen für Eutrophierung“). Die Abnahme der Belastungen spiegelt größtenteils den Rückgang der Emissionen durch Luftreinhaltemaßnahmen wider.</p><p>Handlungsbedarf trotz sinkender Stickstoffeinträge</p><p>Auch in den nächsten Jahren ist wegen der bisher nur unwesentlich abnehmenden<a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/ammoniak-emissionen">Ammoniak-Emissionen</a>– vornehmlich aus der Tierhaltung – mit einer weiträumigen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>⁠ naturnaher Ökosysteme zu rechnen. Bei der Minderung von diffusen Stickstoffemissionen in die Luft besteht daher erheblicher Handlungsbedarf.</p><p>Was sind ökologische Belastungsgrenzen für Eutrophierung?</p><p>Zur Bewertung der Stoffeinträge werden ökologische Belastungsgrenzen (⁠<a href="https://www.umweltbundesamt.de/service/glossar/c?tag=Critical_Loads#alphabar">Critical Loads</a>⁠) ermittelt. Nach heutigem Stand des Wissens ist bei deren Einhaltung nicht mit schädlichen Wirkungen auf Struktur und Funktion eines Ökosystems zu rechnen. ⁠<a href="https://www.umweltbundesamt.de/service/glossar/%C3%B6?tag=kologische_Belastungsgrenzen#alphabar">Ökologische Belastungsgrenzen</a>⁠ sind somit ein Maß für die Empfindlichkeit eines Ökosystems und erlauben eine räumlich differenzierte Gegenüberstellung der Belastbarkeit eines Ökosystems mit aktuellen atmosphärischen Stoffeinträgen.</p><p>Das dadurch angezeigte Risiko bedeutet nicht, dass in dem betrachteten Jahr tatsächlich schädliche chemische Kennwerte erreicht oder biologische Wirkungen sichtbar sind. Es kann Jahrzehnte dauern, bis Ökosysteme auf Überschreitungen der ökologischen Belastungsgrenzen reagieren. Im Rückschluss ist auch die Erholung des Ökosystems auf vorindustrielles Niveau sehr langwierig, wenn nicht sogar eine irreversible Schädigung des Ökosystems vorliegt. Beide Prozesse sind abhängig von Stoffeintragsraten, meteorologischen und anderen Randbedingungen sowie von chemischen Ökosystemeigenschaften. Daher sind absolute Schadprognosen mittels der Überschreitungen der ökologischen Belastungsgrenzen prinzipiell nicht möglich.</p><p>Stickstoffdepositionen – ein Treiber des Biodiversitätsverlusts</p><p>Ein übermäßiger atmosphärischer Eintrag (⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠) von Nährstoffen (vor allem Stickstoff) und deren Anreicherung in Land-Ökosystemen kann auf lange Sicht Ökosysteme stark beeinträchtigen. So kann es zu chronischen Schäden der Ökosystemfunktionen (wie der Primärproduktivität und des Stickstoffkreislaufs) kommen. Auch Veränderungen des Pflanzenwachstums und der Artenzusammensetzung zugunsten stickstoffliebender Arten (⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>⁠) können hervorrufen werden. Außerdem wird die Anfälligkeit vieler Pflanzen gegenüber Frost, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a>⁠ und Schädlingsbefall erhöht.</p><p>Atmosphärische Einträge führen zu einer weiträumigen Angleichung der Stickstoffkonzentrationen im Boden auf einem nährstoffreichen Niveau. Die derzeit hohen Stickstoffeinträge in natürliche und naturnahe Land-Ökosysteme sind eine Folge menschlicher Aktivitäten, wie Landwirtschaft oder Verbrennungsprozesse. Diese sind mit hohen Emissionen von chemisch und biologisch wirksamen (reaktiven) Stickstoffverbindungen in die Luft verbunden. Aus der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a>⁠ werden diese Stickstoffverbindungen über Regen, Schnee, Nebel, Raureif, Gase und trockene Partikel wieder in Land-Ökosysteme eingetragen. Die resultierende Überdüngung ist eine der Hauptursachen für den Rückgang der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=Biodiversitt#alphabar">Biodiversität</a>⁠. Fast die Hälfte der in der Roten Liste für Deutschland aufgeführten Farn- und Blütenpflanzen sind durch Stickstoffeinträge gefährdet.</p><p>Ziele und Maßnahmen zur Verringerung der Stickstoffeinträge</p><p>Ein langfristiges Ziel der Europäischen Union (EU) und der Genfer Luftreinhaltekonvention (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNECE#alphabar">UNECE</a>⁠ Convention on Long-Range Transboundary Air Pollution, CLRTAP) ist die dauerhafte und vollständige Unterschreitung der ökologischen Belastungsgrenzen für ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>⁠. International wurden deshalb in der sog. neuen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a>⁠ (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?qid=1542011736987&amp;uri=CELEX:32016L2284">Richtlinie (EU) 2016/2284</a>vom 14.12.2016) für alle Mitgliedstaaten weitere Minderungen der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a>⁠ von reaktiven Stickstoffverbindungen (NHx, Stickstoffoxide (NOx)) vereinbart, die bis 2030 erreicht werden müssen. Für Deutschland ergeben sich folgende nationale Emissionsminderungsverpflichtungen für Stickstoff für das Jahr 2030 und darüber hinaus im Vergleich zum Basisjahr 2005:</p><p>(siehe auch<a href="https://www.umweltbundesamt.de/themen/luft/emissionen-von-luftschadstoffen">„Emissionen von Luftschadstoffen“</a>).<br>Konkrete nationale Maßnahmen, die zum Erreichen der oben genannten Minderungsverpflichtungen geeignet sind, werden derzeit in einem Nationalen Luftreinhalteprogramm zusammengestellt. Maßnahmen zur Begrenzung der negativen Auswirkungen des reaktiven Stickstoffs, zu denen auch die Eutrophierung von Ökosystemen zählt, sind in der Veröffentlichung des Umweltbundesamtes"Reaktiver Stickstoff in Deutschland"enthalten. Auch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (⁠BMU⁠) verfolgt den Ansatz einer nationalenStickstoffminderungsstrategie. Weitere Informationen bietet auch das Sondergutachten des SRU„Stickstoff: Lösungen für ein drängendes Umweltproblem“. Hintergrundwissen zur Modellierung von atmosphärischen Stoffeinträgen bietet derBerichtzum Forschungsvorhaben „PINETI-4: Modelling and assessment of acidifying and eutrophying atmospheric deposition to terrestrial ecosystems“.

Experimental and literature review of internationally proposed critical levels for ammonia to protect the vegetation

Vascular plants, mosses and lichens react sensitively to the exposure to air pollutants and pollution from ammonia (NH 3 ). Critical concentration values for ammonia to protect vegetation (so-called critical levels) were defined for risk assessment in the Geneva Convention on Long-Range Transboundary Air Pollution (CLRTAP). The project was used to review the current scientific status of those impact thresholds. In addition, extensive experimental studies were carried out to test the sensitivity of numerous native vascular plant species to NH 3 . The focus here was on species protected under the Natura2000 legislation and common in habitats in Germany. Veröffentlicht in Texte | 64/2024.

1 2 3 4 516 17 18