API src

Found 2031 results.

Related terms

Modellierte Nährstoffemissionen, -frachten und -konzentrationen in Flusseinzugsgebieten der deutschen Nord- und Ostsee um 1880 (Datensatz)

Das Modell MoRE wurde auf die Jahre um 1880 angewandt, um die mittleren historischen Emissionen, Frachten und Konzentrationen von Stickstoff und Phosphor für Flusseinzugsgebiete, die in die deutsche Nord- und Ostsee einleiten, zu quantifizieren. Die historische Wasserbilanz wurde mit dem Modell LARSIM-ME abgeleitet und in MoRE integriert. Die Modellergebnisse ergänzen die historischen Modellergebnisse, die den bestehenden deutschen Zielkonzentrationen für Stickstoff am so genannten Übergabepunkt limnisch-marin und Schwellenwerten für den guten ökologischen Zustand der Küsten- und Meeresgewässer zugrunde liegen. Die Datensatzdatei enthält die Geometrie der 3048 Modellierungseinheiten in den Einzugsgebieten von Nord- und Ostsee (mit Ausnahme des Stettiner Haffs und des Einzugsgebiets der oberen Donau) und eine lange Datentabelle mit den Modelloutputs und ausgewählten Inputdaten (47 Variablen, Spalten durch Tabstopps getrennt).

Natürliche Bodenfruchtbarkeit

Die natürliche Bodenfruchtbarkeit bildet die Grundlage für die land- und forstwirtschaftliche Nutzung unserer Böden sowie für die Etablierung standortangepasster Vegetation. Das Bodenbewertungsinstrument Sachsen (2022) dient als methodische Grundlage für die Bewertung auf Basis der Bodenkarte Dresden (2024). Haupteingangsparameter ist die Menge des pflanzenverfügbaren Wassers (nFKWe) unter zusätzlicher Berücksichtigung von Hangneigung, Grundwassereinfluss, Bodentyp und kapillarer Aufstiegsrate.

Stadtklimaanalyse Hamburg 2023

Die Stadtklimaanalyse Hamburg 2023 basiert auf einer modellgestützten Analyse zu den klimaökologischen Funktionen für das Hamburger Stadtgebiet. Die Berechnung mit FITNAH 3D erfolgte in einer hohen räumlichen Auflösung (10 m x 10 m Raster) und liefert Daten und Aussagen zur Temperatur und Kaltluftentstehung in Hamburg. Die Untersuchung wurde auf der Annahme einer besonders belastenden Sommerwetterlage für Mensch und Umwelt mit geringer Luftbewegung und hoher Temperaturbelastung erstellt. Als Grundlage für die flächenbezogenen Bewertungen und deren räumliche Abgrenzungen diente der ALKIS-Datensatz „Bodennutzung“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Weitere Informationen zur Stadtklimaanalyse Hamburg 2023 sind unter folgendem Link abrufbar: https://www.hamburg.de/landschaftsprogramm/18198308/stadtklima-naturhaushalt/ Dort stehen der Erläuterungsbericht, die Analyse- und Bewertungskarten sowie eine Erläuterungstabelle für den Datensatz, der als Grundlage für die Ebenen 11 bis 14 dient, zum Download zur Verfügung. Die Ebenen des Geodatensatzes „Stadtklimaanalyse Hamburg 2023“ werden wie folgt präzisiert: 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung) Die bodennahe Temperaturverteilung bedingt horizontale Luftdruckunterschiede, die wiederum Auslöser für lokale thermische Windsysteme sind. Ausgangspunkt dieses Prozesses sind die nächtlichen Temperaturunterschiede, die sich zwischen Siedlungsräumen und vegetationsgeprägten Freiflächen einstellen. An den geneigten Flächen setzt sich abgekühlte und damit schwerere Luft in Richtung zur tiefsten Stelle des Geländes als Kaltluftabfluss in Bewegung. Das sich zum nächtlichen Analysezeitpunkt 4 Uhr ausgeprägte Kaltluftströmungsfeld wird über Vektoren abgebildet, die für eine übersichtlichere Darstellung auf 100 m x 100 m Kantenlänge aggregiert werden. 02 Flurwinde und Kaltluftabflüsse Bei den nächtlichen Windsystemen werden Flurwinde von Kaltluftabflüssen unterschieden. Flurwinde werden durch den horizontalen Temperaturunterschied zwischen kühlen Grünflächen und warmer Bebauung ausgelöst. Kaltluftabflüsse bilden sich über Oberflächen mit Hangneigungen von mehr als 1 ° aus. 03 Bereiche mit besonderer Funktion für den Luftaustausch Diese Durchlüftungszonen verbinden Kaltluftentstehungsgebiete (Ausgleichsräume) und Belastungsbereiche (Wirkungsräume) miteinander und sind aufgrund ihrer Klimafunktion elementarer Bestandteil des Luftaustausches. Es handelt sich i.d.R. um gering überbaute und grüngeprägte Strukturen, die linear auf die jeweiligen Wirkungsräume ausgerichtet sind und insbesondere am Stadtrand das Einwirken von Kaltluft aus den Kaltluftentstehungsgebieten des Umlandes begünstigen. 04 Kaltlufteinwirkbereich innerhalb von Bebauung und Verkehrsflächen Hierzu zählen Siedlungs- und Verkehrsflächen, die sich im „Einwirkbereich“ eines klimaökologisch wirksamen Kaltluftstroms mit einem Wert von mehr als 5 m³/(s*m) befinden. Hier ist sowohl im bodennahen Bereich als auch darüber hinaus eine entsprechende Durchlüftung vorhanden. Die Eindringtiefe der Kaltluft beträgt, abhängig von der Bebauungsstruktur, zwischen ca. 100 m und bis zu 700 m. Darüber hinaus spielt auch die Hinderniswirkung des angrenzenden Bebauungstyps eine wesentliche Rolle. 05 Gebäude (Bestand und Planung) Mithilfe der Gebäudegrenzen werden Effekte auf das Mikroklima sowie insbesondere das Strömungsfeld berücksichtigt. Als Grundlage dient der ALKIS-Datensatz „Gebäude“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Dieser Datensatz wurde anhand ausgewählter, zum Zeitpunkt der Bearbeitung im Verfahren sowie in Planung befindlicher Bebauungspläne und Großprojekte modifiziert. 06 Windgeschwindigkeit um 4 Uhr Siehe Hinweise zur Ebene 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung). Die Rasterzellen stellen ergänzend zu den Windvektoren die Windgeschwindigkeit flächenhaft in 10 m x 10 m Auflösung dar. 07 Kaltluftvolumenstromdichte um 4 Uhr Der Kaltluftvolumenstrom beschreibt diejenige Menge an Kaltluft in der Einheit m³, die in jeder Sekunde durch den Querschnitt beispielsweise eines Hanges oder einer Kaltluftleitbahn fließt. Der Volumenstrom ist ein Maß für den Zustrom von Kaltluft und bestimmt neben der Strömungsgeschwindigkeit die Größenordnung des Durchlüftungspotenzials. Zum Zeitpunkt 4 Uhr morgens ist die Intensität der Kaltluftströme voll ausgeprägt. 07a Kaltluftvolumenstromdichte um 4 Uhr in den Grün- und Freiflächen Reduzierung der Ebene 07 Kaltluftvolumenstromdichte um 4 Uhr auf die Grün- und Freiflächen. 08 Lufttemperatur um 4 Uhr Der Tagesgang der Lufttemperatur ist direkt an die Strahlungsbilanz eines Standortes gekoppelt und zeigt daher i.d.R. einen ausgeprägten Abfall während der Abend- und Nachtstunden. Dieser erreicht kurz vor Sonnenaufgang des nächsten Tages ein Maximum. Das Ausmaß der Abkühlung kann je nach meteorologischen Verhältnissen, Lage des Standorts und landnutzungsabhängigen physikalischen Boden- bzw. Oberflächeneigenschaften große Unterschiede aufweisen. Besonders auffällig ist das thermische Sonderklima der Siedlungsräume mit seinen gegenüber dem Umland modifizierten klimatischen Verhältnissen. 08a Lufttemperatur um 4 Uhr im Siedlungsraum Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Siedlungsflächen. 08b Lufttemperatur um 4 Uhr in den Verkehrsflächen Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Verkehrsflächen. 09 Lufttemperatur um 14 Uhr Die Lufttemperatur am Tage ist im Wesentlichen durch die großräumige Temperatur der Luftmasse in einer Region geprägt und wird weniger stark durch Verschattung beeinflusst, wie es bei der PET der Fall ist (Erläuterung „PET“ siehe Ebene 10 und 13). Daher weist die für die Tagsituation modellierte Lufttemperatur eine homogenere Ausprägung auf. 10 Physiologisch Äquivalente Temperatur (PET) um 14 Uhr Meteorologische Parameter wirken nicht unabhängig voneinander, sondern in biometeorologischen Wirkungskomplexen auf das Wohlbefinden des Menschen ein. Zur Bewertung werden Indizes verwendet (Kenngrößen), die Aussagen zur Lufttemperatur und Luftfeuchte, zur Windgeschwindigkeit sowie zu kurz- und langwelligen Strahlungsflüssen kombinieren. Wärmehaushaltsmodelle berechnen den Wärmeaustausch einer „Norm-Person“ mit seiner Umgebung und können so die Wärmebelastung eines Menschen abschätzen. Die hier genutzte Kenngröße PET (Physiologisch Äquivalente Temperatur, VDI 3787, Blatt 9) bezieht sich auf außenklimatische Bedingungen und zeigt eine starke Abhängigkeit von der Strahlungstemperatur. Mit Blick auf die Wärmebelastung ist sie damit vor allem für die Bewertung des Aufenthalts im Freien am Tage sinnvoll einsetzbar. 11 Bewertung nachts Siedlungs- und Verkehrsflächen: mittlere Lufttemperatur um 4 Uhr Zur Bewertung der bioklimatischen Situation wird die nächtliche Überwärmung in den Nachtstunden (4 Uhr morgens) herangezogen und räumlich differenziert betrachtet. Der nächtliche Wärmeinseleffekt wird anhand der Differenz zwischen der durchschnittlichen Lufttemperatur einer Siedlungs- oder Verkehrsfläche und der gesamtstädtischen Durchschnittstemperatur von etwa 17,1 °C bewertet. Die mittlere Überwärmung pro Blockfläche wird in fünf Bewertungsstufen untergliedert und reicht von sehr günstig (≥ 15,8 °C) bis sehr ungünstig (>= 20 °C). 12 Bewertung nachts Grün- und Freiflächen: bioklimatische Bedeutung Bei der Bewertung der bioklimatischen Bedeutung von grünbestimmten Flächen ist insbesondere die Lage der Grün- und Freiflächen zu Leitbahnen sowie zu bioklimatisch ungünstig oder weniger günstig bewerteten Siedlungsflächen entscheidend. Es handelt sich um eine anthropozentrisch ausgerichtete Wertung, die die Ausgleichsfunktionen der Flächen für den derzeitigen Siedlungsraum berücksichtigt. Die klimaökologischen Charakteristika der Grün- und Freiflächen werden anhand einer vierstufigen Skala (sehr hohe bioklimatische Bedeutung bis geringe bioklimatische Bedeutung) bewertet. 13 Bewertung tags Siedlungs- und Verkehrsflächen: bioklimatische Bedeutung (PET 14 Uhr) Zur Bewertung der Tagsituation wird der humanbioklimatische Index PET um 14:00 Uhr herangezogen. Für die PET existiert in der VDI-Richtlinie 3787, Blatt 9 eine absolute Bewertungsskala, die das thermische Empfinden und die physiologischen Belastungsstufen quantifiziert. Die Bewertung der thermischen Belastung im Stadtgebiet Hamburg orientiert sich daran und reicht auf einer fünfstufigen Skala von extrem belastet (> 41 °C) bis schwach belastet ( 41 °C) zu einer sehr geringen Aufenthaltsqualität führt. 14 Bewertung tags Grün- und Freiflächen: Aufenthaltsqualität (PET 14 Uhr) Die Zuweisung der Aufenthaltsqualität von Grün- und Freiflächen in der Bewertungskarte beruht auf der jeweiligen physiologischen Belastungsstufe. Es werden vier Bewertungsstufen unterschieden. Eine hohe Aufenthaltsqualität ergibt sich aus einer schwachen oder nicht vorhandenen Wärmebelastung (PET 41 °C) zu einer sehr geringen Aufenthaltsqualität führt.

Reststoffbereitstellung/ Reststoffaufbereitung, TP1.5: Darstellung und Konditionierung von technischen Langfasern aus heimischen und tropischen Reststoffen für die Halbzeug-Fertigung der Fahrzeug- und Bauindustrie

Wasserspeichervermögen des Bodens

Für die Bewertung der Bodenteilfunktion „Bestandteil des Wasserkreislaufs Lebensraum“ wird u.a. das Kriterium „Wasserspeichervermögen des Bodens“ herangezogen. Böden nehmen Niederschlagswasser auf und speichern es in ihren Bodenporen. Damit haben sie einen wesentlichen Einfluss auf den Wasserhaushalt. Ein hohes Wasserspeichervermögen zeichnet Böden als besonders schutzwürdig aus. Die Bewertung des "Wasserspeichervermögens" erfolgt durch die Beurteilung der nutzbaren Feldkapazität des potentiellen Wurzelraumes bis ein eine Bodentiefe von max. 1,5 Meter. Die Kenndaten hierfür sind: Bodenart des Feinbodens, Grobbodenanteile, Durchwurzelungstiefe, nutzbare Feldkapazität, Bodendichte sowie Humusgehalte des Bodens. Für die Ableitung des Wasserspeichervermögens werden Kartierungsdaten (Leitprofildaten) des FIS Boden des Freistaates Sachsen herangezogen. Böden in hoher Hangneigung erhalten Bewertungsabschläge. Bei der Bewertung wird die Geländeposition und die klimatischen Standortbedingungen nicht direkt bewertet, obwohl diese für das Wasserspeichervermögen relevant sind.

Prozessoptimierte Verarbeitung von Hanfbast für anwendungsoptimierte Seilstrukturen

Erosionsverhalten in Abhängigkeit von der Applikationsmethode

In einer Reihe von Versuchen mit Erosionsanlagen wurde die Beziehung zwischen Begrünungstechnik und Erosionsverhalten beobachtet. Es konnte deutlich beobachtet werden, dass nur bei Verwendung von Mulchdecken sowohl erhöhte Oberflächenabflüsse als auch nennenswerte Bodenabträge vermieden werden. Der deutlich bessere Erosionsschutz bei Abdeckung des Oberbodens durch so unterschiedliche Materialien wie Heu, Stroh, Netze oder Matten kann durch die schützende Wirkung des organischen Materiales erklärt werden. Dabei wird die (kinetische) Energie der Regentropfen abgebaut und das Wasser sickert langsam in den Boden. Dadurch werden die Bodenaggregate vor Zerstörung bewahrt. Die Kapillaröffnungen des Bodens verschlämmen nicht und deutlich höhere Wassermengen können in den Boden einsickern. Ohne Abdeckung des Oberbodens mit Mulchmaterial haben standortgerechte und schnellwüchsige Saatgutmischungen in den ersten 4 bis 8 Wochen nach der Ansaat ein vergleichbar schlechtes Erosionsverhalten. Wie schon erwähnt kann das Erosionsverhalten durch die Verwendung von Deckfrüchten anstatt Mulchdecken in Hochlagen nicht nennenswert verbessert werden.

Ausnahmen von der Vorgabe der streifenförmigen Ausbringung von Düngemitteln gem. § 6 Abs 3. DüV (WMS Dienst)

Flüssige organische und flüssige organisch-mineralische Düngemittel, einschließlich flüssiger Wirtschaftsdünger, dürfen auf bestellten Ackerflächen seit dem 1. Februar 2020 nur noch streifenförmig auf den Boden aufgebracht oder direkt in den Boden eingebracht werden. Für Grünland- und Dauergrünlandflächen sowie Flächen mehrschnittigem Feldfutterbau gelten diese Vorgaben ab dem 1. Februar 2025. In Niedersachsen sind davon Flächen ausgenommen, welche sich innerhalb von Feldblöcken mit > 20 % Hangneigung auf = 30 % der Feldblockfläche befinden.

Wasser als Ressource

<p>Wasser als Ressource</p><p>Wasser ist ein existentieller Grundstoff des Lebens für Mensch, Tier und Pflanze. Von den weltweiten Wasserreserven sind nur knapp 3 % Süßwasser. Ein Großteil des Süßwassers ist in Eis, Schnee und Permafrostböden gebunden. Nur ein geringer Teil des verbleibenden Süßwassers ist tatsächlich nutzbar, ein Großteil ist nicht zugänglich. Zudem sind die Süßwasservorräte global ungleich verteilt.</p><p>Der Wasserkreislauf wird vor allem durch klimatische Faktoren wie Temperatur, Wind und Sonneneinstrahlung gesteuert. Weitere natürliche Faktoren wie die Pflanzenarten und -dichte beeinflussen die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Verdunstung#alphabar">Verdunstung</a>⁠; Bodenart und Struktur des Geländes, z.B. Hangneigung, wirken auf die Versickerungsfähigkeit und das Abflussgeschehen.</p><p>Zusätzlich beeinflussen menschliche Eingriffe den natürlichen Wasserkreislauf:</p><p>Deutschland hat im langjährigen Mittel ein ⁠<a href="https://www.umweltbundesamt.de/service/glossar/w?tag=Wasserdargebot#alphabar">Wasserdargebot</a>⁠ von 176 Milliarden Kubikmeter (Mrd. m³). Davon entnahmen im Jahr 2022 öffentliche Wasserversorger, , Industrieunternehmen, Bergbau und Energieversorger sowie die Landwirtschaft insgesamt 17,9 Mrd. m³.</p><p>Energieversorger beziehen ihr Kühl- und Prozesswasser fast vollständig aus Flüssen, Seen und Talsperren. Auch Industrieunternehmen und das verarbeitende Gewerbe entnehmen das notwendige Wasser überwiegend aus Flüssen, Seen und Talsperren. Die Trinkwasserversorger decken ihren Bedarf zu gut 70 % aus Grund- und Quellwasser. Die Landwirtschaft nutzt vornehmlich Grundwasser (69,1 %).</p><p>Neben diesen direkten Wasserentnahmen nutzen wir auch indirekt Wasser durch den Konsum von Lebensmitteln sowie die Nutzung von Dienstleistungen und Produkten (z.B. Kleidung, elektronische Geräte), die im Ausland hergestellt und nach Deutschland eingeführt werden. Aus der Summe der direkten und indirekten Wassernutzung ergibt sich der sogenannte Wasserfußabdruck für Deutschland. Nach Berechnungen von<a href="https://www.umweltbundesamt.de/publikationen/konzeptionelle-weiterentwicklung-des">Bunsen et al.</a>(2022) beträgt er insgesamt rund 219 Mrd. m³ pro Jahr. Damit erzeugt jede Person in Deutschland durchschnittlich einen Wasserfußabdruck von 7.200 Liter täglich.</p><p></p>

Hangneigungswerte an der Gewässerbemessungsgrenze (DüV)

In der Düngeverordnung §§ 5, 13a sowie dem WHG § 38a werden Bewirtschaftungsauflagen für den Schutz von Oberflächengewässern unter Berücksichtigung einer durchschnittlichen Hangneigung, landeinwärts ab Böschungsoberkante definiert. Die Böschungsoberkante (BöK) ist als topographisches Element im Land BB nicht verfügbar. In Abstimmung der Fachbereiche Wasser und Landwirtschaft kommt ersatzweise die Gewässerbemessungsgrenze zum Einsatz. Diese wird aus den ATKIS-Gewässerobjekten, unter Berücksichtigung des Digitalen Feldblockkatasters gebildet und repräsentiert geometrisch das zu schützende Oberflächengewässer.

1 2 3 4 5202 203 204