Das Projekt "Hocheffiziente Biogas-SCR-Systeme, Teilvorhaben 1: Experimentelle Untersuchung der Eindüsung von Harnstoff-Wasser-Lösung für SCR-Systeme von Biogas-BHKW" wird/wurde gefördert durch: Bundesministerium für Ernährung und Landwirtschaft. Es wird/wurde ausgeführt durch: Leibniz Universität Hannover, Institut für Technische Verbrennung.
Das Projekt "Minderung von NH3-Verlusten und Steigerung der Stickstoffeffizienz beim Einsatz synthetischer Stickstoffdünger, Teilprojekt 12" wird/wurde gefördert durch: Bundesministerium der Justiz und für Verbraucherschutz. Es wird/wurde ausgeführt durch: Technische Universität München, TUM School of Life Sciences, LIfe Science Engineering, Precision Agriculture.
Das Projekt "Minderung von NH3-Verlusten und Steigerung der Stickstoffeffizienz beim Einsatz synthetischer Stickstoffdünger, Teilprojekt 1" wird/wurde gefördert durch: Bundesministerium der Justiz und für Verbraucherschutz. Es wird/wurde ausgeführt durch: Johann Heinrich von Thünen-Institut, Bundesforschungsinstitut für Ländliche Räume, Wald und Fischerei, Institut für Agrarklimaschutz.
Das Projekt "Einfluss unterschiedlicher Eiweißversorgungsstufen in der Mastschweinefütterung auf das Emissionsverhalten von Mastschweinegülle" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Christian-Albrechts-Universität zu Kiel, Institut für Landwirtschaftliche Verfahrenstechnik.Hauptbestandteile der Gülle sind Kot und Harn. Anfallende Mengen und Zusammensetzung sind fütterungsabhängig. Mit der eiweißreduzierten Fütterung werden vor allem die Nieren entlastet. Sie müssen weniger Ammoniak aufgrund der reduzierten Aminosäurendesaminierung aus dem Blutplasma filtern und zu Harnstoff synthetisieren. Das Schwein benötigt weniger Wasser, um den Harnstoff zu lösen und auszuschleusen. Die Folge ist eine geringere abgesetzte Harnmenge. Da die abgesetzte Kotmenge in etwa gleich bleibt, produziert das Mastschwein weniger Gülle. Sie besitzt aber einen höheren Trockensubstanzgehalt. Es ändern sich sowohl ihre chemischen als auch ihre physikalischen Eigenschaften. Dies hat Auswirkungen auf das Emissionsverhalten, was sowohl gasförmige Nährstoffverluste als auch Geruchsstoffströme, Geruchsintensität und Geruchsempfindung (Hedonik) betrifft. Es sollen deshalb grundlegende Untersuchungen zur Emission von Geruchs- und Schadgasen für Güllen verschieden gefütterter Mastschweine durchgeführt werden. Die Ergebnisse sollen Grundlage vor allem für die emissionsrelevante Beurteilung von verschiedenen Haltungsverfahren und Fütterungsstrategien in der Mastschweinehaltung sein.
Das Projekt "ALIBES - Aluminium-Ionen-Batterie für stationäre Energiespeicher, ALIBES - Aluminium-Ionen-Batterie für stationäre Energiespeicher" wird/wurde gefördert durch: Bundesministerium für Bildung und Forschung. Es wird/wurde ausgeführt durch: IoLiTec - Ionic Liquid Technologies GmbH.
Das Projekt "NOx-Verminderung im Abgas von Dieselmotoren durch selektive katalytische Reduktion (SCR) mit Harnstoff" wird/wurde gefördert durch: Arbeitsgemeinschaft Industrieller Forschungsvereinigungen 'Otto-von-Guericke' e.V. / Forschungsvereinigung Verbrennungskraftmaschinen e.V.. Es wird/wurde ausgeführt durch: Technische Universität Kaiserslautern, Lehrstuhl für Kraft- und Arbeitsmaschinen.Untersuchung einer selektiven, katalytischen Abgasnachbehandlung bezueglich der Stickoxidemissionen; Einsatz der Harnstoff-SCR im mobilen Dieselmotorenbereich. Konzeption und Untersuchung eines weiteren SCR-Sytems fuer den dynamischen Motorbetrieb.
Die Esfandyar Ventures One SARL, Avenue J. F. Kennedy 46A L-1855 Luxembourg hat einen Antrag auf Erteilung einer Genehmigung zur Errichtung und zum Betrieb der Notstromdieselmotoranlage eines noch zu errichtendes Rechenzentrums FRA03 südlich des Industrieparks Höchst gestellt. Vorgesehen ist die Errichtung und der Be-trieb von 59 Netzersatzanlagen (NEA) zur Notstromversorgung des Rechenzentrums sowie eine NEA zur Sicherheitsstromversorgung (Life Safety Generator) mit einer Feuerungswärmeleistung von insgesamt ca. 392 MW. Als Brennstoff wird dafür Die-selkraftstoff eingesetzt werden. Die NEA dienen der Sicherstellung einer unterbre-chungsfreien Stromversorgung des Rechenzentrums im Falle eines Stromausfalls. Für die Notstromversorgung sind beantragt: 59 Notstromaggregate (Motortyp MTU20V4000 G74F, CAT175-16, CAT 3516E oder Kohler KD3100) jeweils mit Kraftstoff-Tagestanks mit 800 l Volumen, Mo-torkühlsystemen und SCR-Systemen mit Urea-Tagestanks mit 1.500 l Volumen Ein Notstromaggregat für die Sicherheitsstromversorgung des Gebäudes (Mo-tortyp MTU 18V2000 G26F oder CAT 3412C-C18) mit Kraftstoff-Tagestank mit 800 l Volumen, Motorkühlsystem und SCR-System mit Urea-Tagestank mit 1.500 l Volumen Zwei Harnstofflagertanks mit einem Volumen von jeweils 40 m3 16 Sammel-Abgaskamine Für die Brennstoffversorgung sind beantragt: 20 unterirdische Kraftstofflagertanks mit einem Volumen von jeweils 100 m3 mit jeweils einer Kraftstofftauchpumpe Zwei Kraftstoffpflegeanlagen Zwei Abfüllplätze für Kraftstoff und Harnstoff zugehörige Rohrleitungen Für die Anlage ist folgender Standort vorgesehen: Frankfurt am Main Gemarkung: Schwanheim, Flur: 30, Flurstück: 233/5, Rechts-/Hochwert: 32U 467195 / 5547455. Die Notstromdieselmotoranlage soll baldmöglichst in Betrieb genommen werden. Das Vorhaben bedarf nach § 4 des Bundes-Immissionsschutzgesetzes (BImSchG) in Verbindung mit Nr. 1.1 des Anhangs 1 der 4. Verordnung über genehmigungsbedürftige Anlagen (4. BImSchV) der Genehmigung durch das Regierungspräsidium Darmstadt.
Das Projekt "Bildung von gentoxischen Nitrosoverbindungen durch Nitrosierung von Nahrungskomponenten" wird/wurde ausgeführt durch: Eidgenössische Technische Hochschule Zürich, Institut für Toxikologie.Nitrat wird durch die Bakterien der Mundhoehle im Durchschnitt zu etwa 10 Prozent zu Nitrit reduziert. Dieses gelangt mit dem Speichel in den Magen, wo die sauren Bedingungen eine Nitrosierung von Nahrungskomponenten foerdern. Die entstehenden Nitroso-verbindungen werden z.T. enzymatisch, z.T. spontan, in chemisch reaktive Produkte umgewandelt. Eine Reaktion dieser Abbauprodukte mit der Erbsubstanz DNA kann zur Krebsausloesung beitragen. Im Rahmen frueherer Dissertationen wurde gezeigt, dass Alkylharnstoffe, aromatische Amine, sowie einzelne Aminosaeuren als wichtige Vorlaeufer in Frage kommen. Nicht zuletzt wegen der steigenden Nitratbelastung durch unsere Ernaehrung ist es deshalb wichtig, die endogene Bildung von kanzerogenen Nitrosoverbindungen fuer verschiedene Stoffklassen zu analysieren und in Relation zu setzen mit der Aufnahme von vorgebildeten Nitrosoverbindungen.
Die IVH, Industriepark und Verwertungszentrum Harz GmbH mit Sitz in Hildesheim (Niedersachsen) hat über mehrere Jahre zusammen mit der Umweltdienste Kedenburg GmbH, beide Entsorgungs-/Recyclingunternehmen im Unternehmensverbund der Bettels-Gruppe, Hildesheim, und der Eisenmann Environmental Technologies GmbH, Holzgerlingen, deren NaRePAK-Verfahren zur großmaßstäblichen Umsetzung weiterentwickelt. Stoffkreisläufe zu schließen und somit die effiziente und nachhaltige Nutzung begrenzter Ressourcen zu verbessern ist die erklärte Philosophie der IVH, hier fügt sich das RiA-Verfahren nahtlos ein. In Deutschland fallen jährlich erhebliche Mengen teerhaltigen Straßenaufbruchs an. Dieser Abfallstrom besteht weit überwiegend aus mineralischen Komponenten (z.B. Gesteinskörnungen und Feinsand) und enthält neben Bitumen krebserregende polyzyklische aromatische Kohlenwasserstoffe (PAK). Letztere sind verantwortlich, dass dieser Massenstrom als gefährlicher Abfall eingestuft wird. PAK sind persistent und verbleiben ohne thermische Behandlung langfristig in der Umwelt. Die Abfallmengen sind dabei beträchtlich. Die Bundesregierung geht von einer Menge von etwa 600.000 Tonnen pro Jahr allein von Bundesautobahnen und -straßen aus, dazu kommt der Aufbruch von Landes- und Kreisstraßen, die mengenmäßig die Bundesautobahnen und -straßen weit übertreffen. Bisher wird teerhaltiger Straßenaufbruch überwiegend deponiert, wodurch die im Straßenaufbruch enthaltenen mineralischen Ressourcen dem Wertstoffkreislauf verloren gehen. Der in begrenztem Umfang alternativ mögliche Verwertungsweg: Kalteinbau in Tragschichten im Straßenbau, erfolgt ohne Entfernung der PAK und wird daher nur noch in geringem Umfang angewendet. Eine weitere Möglichkeit ist die thermische Behandlung in den Niederlanden. Dies ist nicht nur verbunden mit langen Transportwegen, auch arbeiten die niederländischen Anlagen in einem deutlich höheren Temperaturintervall – im Bereich der Kalzinierung (Kalkzersetzung) – was dazu führen kann, dass die mineralischen Bestandteile des Straßenaufbruchs nicht mehr die notwendige Festigkeit aufweisen, um für einen Einsatz als hochwertiger Baustoff für die ursprüngliche Nutzung des Primärrohstoffes in Frage zu kommen. Darüber hinaus wird beim Kalzinierungsprozess von Kalkgestein im Gestein gebundenes CO 2 freigesetzt. Mit dem Vorhaben RiA plant die IVH an ihrem Standort in Goslar / Bad Harzburg die Errichtung einer in Deutschland erstmaligen großtechnischen Anlage zur thermischen Behandlung von teerhaltigem Straßenaufbruch. Dabei soll eine möglichst vollständige Rückgewinnung der enthaltenen hochwertigen Mineralstoffe (Gesteinskörnungen)erfolgen. Gleichzeitig werden die enthaltenen organischen Bestandteile, die in Form von Teerstoffen und Bitumen vorliegen, als Energieträger genutzt. In der innovativen Anlage sollen pro Jahr bis zu 135.000 Tonnen teerhaltiger Straßenaufbruch mittels Drehrohr thermisch aufbereitet werden. Dabei werden im Teer enthaltene besonders schädliche Stoffe wie PAK bei Temperaturen zwischen 550 Grad und 630 Grad Celsius entfernt und in Kombination mit der separaten Nachverbrennung vollständig zerstört, ohne dass das Mineralstoffgemisch zu hohen thermischen Belastungen mit der Gefahr einer ungewollten Kalzinierung ausgesetzt ist. Zurück bleibt ein sauberes, naturfarbenes Gesteinsmaterial (ohne schwarze Restanhaftungen von Kohlenstoff), das für eine höherwertige Wiederverwendung in der Bauwirtschaft geeignet ist. Die mineralischen Bestandteile des Straßenaufbruchs können so nahezu vollständig hochwertig verwendet und analog Primärrohstoffen erneut bei der Asphaltherstellung oder Betonherstellung eingesetzt werden. Die organischen Anteile im Abgas werden mittels Nachverbrennung bei 850 Grad Celsius thermisch umgesetzt und vollständig zerstört. Die dabei entstehende Abwärme wird genutzt, um Thermalöl zu erhitzen, um damit Ammoniumsulfatlösungen einer benachbarten Bleibatterieaufbereitung der IVH einzudampfen, aufzukonzentrieren und so ein vermarktungsfähiges Düngemittel herzustellen. Das Thermalöl wird dazu mit 300 Grad Celsius zu der Batterierecyclinganlage geleitet. Die Wärme ersetzt dabei andere Brennstoffe wie z. B. Erdgas. Die verbleibende Abwärme aus der Nachverbrennung wird mittels drei ORC-Anlagen zur Niedertemperaturverstromung genutzt. Es werden ca. 300 Kilowatt elektrische Energie pro Stunde erzeugt. Die beim RiA-Verfahren entstehenden Abgase werden in einer mehrstufigen Rauchgasreinigung behandelt. Die Abgase der Drehrohr-Anlage werden dazu aufwendig mittels Zyklone und nachgeschaltetem Gewebefilter entstaubt. Schwefeldioxid und Chlorwasserstoff werden mittels trockener Rauchgasreinigung nach Additivzugabe abgeschieden. Die Umwandlung von Stickstoffoxiden erfolgt mittels selektiver katalytischer Reduktion mit Harnstoff als Reduktionsmittel. Die bereits genannte Nachverbrennung zerstört verbliebene organische Reste. Die wesentliche Umweltentlastung des Vorhabens besteht in der stofflichen Rückgewinnung des ursprünglichen hochwertigen Gesteins im teerhaltigen Straßenaufbruch, also durch Herstellung eines wiederverwendbaren PAK-freien Mineralstoffgemisches von gleicher Qualität wie die ursprünglichen Primärrohstoffe. Das heißt die besonders umweltschädlichen PAKs werden nachhaltig aus dem Stoffkreislauf entfernt. Mit der Anlage können von eingesetzten 135.000 Tonnen Straßenaufbruch rund 126.900 Tonnen als Mineralstoffgemisch in Form von Gesteinskörnungen und Füller zurückgewonnen und für die Wiederverwendung bereit gestellt werden. Die Gesamtmenge von 126.900 Tonnen pro Jahr reduziert den jährlichen Bedarf von Gesteinsabbauflächen bei einer Abbautiefe von 30 Meter um rund 1.460 Quadratmeter. Bezogen auf den angenommenen Lebenszyklus von 30 Jahren wird eine Fläche von ca. 4,4 Hektar Abbaugebiet allein durch diese Anlage nicht in Anspruch genommen. Zusätzlich wird in gleichem Maße wertvoller Deponieraum bei knappen Deponiekapazitäten eingespart. Bei erfolgreicher Demonstration der technischen und wirtschaftlichen Realisierbarkeit im industriellen Maßstab, lässt sich diese Technik dezentral auf verschiedene Standorte in Deutschland übertragen. Damit wird dem in der Kreislaufwirtschaft propagierten Näheprinzip entsprochen, das heißt die Transportwege und die damit verbundenen Umweltauswirkungen werden weiter reduziert. Auch der nach Region unterschiedlichen Gesteinsarten wird dabei Rechnung getragen. Branche: Wasser, Abwasser- und Abfallentsorgung, Beseitigung von Umweltverschmutzungen Umweltbereich: Ressourcen Fördernehmer: IVH, Industriepark und Verwertungszentrum Harz GmbH Bundesland: Niedersachsen Laufzeit: seit 2024 Status: Laufend
Neubau der Energiezentrale für das Klärwerk Bayreuth Errichtung und Betrieb einer Energiezentrale im Klärwerk Bayreuth für den Einsatz von Klärgas und Gas aus der öffentlichen Gasversorgung auf dem Grundstück der Stadt Bayreuth, Fl.Nr. 3655/2 der Gemarkung Bayreuth an der Drossenfelderstraße 2 in 95445 Bayreuth beantragt. Konkret umfasst das Vorhaben im Wesentlichen: • die Errichtung einer KWK-Anlage, bestehend aus drei Blockheizkraftwerken (BHKW) mit einer Gesamtfeuerungswärmeleistung von 6.496,5 kW, • die Errichtung eines Zwischenbauwerks mit Gasaufbereitung, • die Errichtung der beiden Niederdruckgasbehälter (à 4.000 m³), • die Errichtung von drei doppelwandigen Lagertanks (à 30 m³) für Natronlauge, Magnesiumchlorid und Harnstoff, • die Errichtung von drei freistehenden Kaminanlagen mit je 20,5 m Höhe
Origin | Count |
---|---|
Bund | 225 |
Land | 15 |
Type | Count |
---|---|
Chemische Verbindung | 63 |
Förderprogramm | 152 |
Text | 14 |
Umweltprüfung | 10 |
unbekannt | 1 |
License | Count |
---|---|
geschlossen | 85 |
offen | 153 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 234 |
Englisch | 16 |
Resource type | Count |
---|---|
Dokument | 11 |
Keine | 189 |
Webseite | 43 |
Topic | Count |
---|---|
Boden | 137 |
Lebewesen & Lebensräume | 157 |
Luft | 126 |
Mensch & Umwelt | 240 |
Wasser | 125 |
Weitere | 174 |