Metallhydride können einen wichtigen Beitrag für eine umweltfreundliche Energienutzung leisten. Hydrid-Wärmetransformatoren, -wärmepumpen und -kälteanlagen können aus niederwertiger Antriebswärme Hochtemperaturwärme sowie Nutzwärme und -kälte für die Klimatisierung bereitstellen. Hydrid-Wärmespeicher können in Solaranlagen oder der Industrie eingesetzt werden; Hydrid-Wasserstoffspeicher können in brennstoffzellen-getriebenen Fahrzeugen eingesetzt werden und damit zur Reduzierung der CO2-Emissionen beitragen. Die hohen Kosten der Metallhydride und die teure Herstellung der Hydridbehälter (Reaktoren) sind das größte Hindernis bei der Nutzung dieser Technologien. In diesem gemeinsamen Forschungsvorhaben sollen am Institut für Kernenergetik und Energiesysteme (IKE), Universität Stuttgart in Zusammenarbeit mit dem Indian Institute of Technology (IITM) (gefördert durch das indische Non-Conventional Energy Ministry-MNES) neue, kostengünstige, aus herkömmlichen und leicht verfügbaren Metallen herstellbare Hydridlegierungen hergestellt und charakterisiert sowie leistungsfähige, einen guten Wärme- und Stofftransport aufweisende, kostengünstige Reaktoren für Wasserstoffspeicher und Wärmepumpen entwickelt werden.
Die Eigenschaft bestimmter Metalle, Wasserstoff chemisch als Hydrid zu binden stellt eine Alternative zu der Gas- und Fluessigspeicherung dar. Bei der Bildung des Metallhydrides werden Wasserstoffmolekuele gespalten und Wasserstoffatome an Zwischengitterplaetzen geeigneter Metalllegierungen eingebaut. Die Wasserstoff-Metall-Reaktion setzt in Abhaengigkeit des eingesetzten Metalls Bildungswaerme bis zu 30 Prozent des unteren Heizwertes von Wasserstoff frei. Im Verlauf der Rueckreaktion kann aufgrund der Hydridzersetzung Wasserstoff abgegeben und Waerme verlustlos gespeichert werden. Die Bildung von Hydriden als Funktion von Druck, Temperatur und Wasserstoffkonzentration im Metall wird in Konzentrations-Druck-Isothermen erfasst. Die Umwandlung von Metall in Metallhydrid findet unter konstantem Wasserstoffdruck bei gleichbleibender Temperatur statt. Schwerpunktmaessig werden Magnesiumhydride, Hydride der 3 d-Uebergangsmetallreihe und Hydride auf Basis der seltenen Erden im Hinblick auf ihr thermodynamisches Verhalten, ihre Reaktionskinetik, ihre Waermeleitfaehigkeit, ihrer Speicher- und Zyklisierungsstabilitaet untersucht. Hierbei hat sich herausgestellt, dass Metallhydride technisch sinnvoll und wirtschaftlich einsetzbar sind, wenn die Reaktion der Metalle mit Wasserstoff nicht allein zur Wasserstoffspeicherung dient, sondern zusaetzliche Funktionen mit den Systemen erfuellt werden koennen. Die Waermetoenung empfiehlt Hydride nicht nur als Wasserstoff-, sondern auch als Waermespeicher. Die Kombination zweier Hydridspeicher auf unterschiedlichem Temperaturniveau kann als Waermepumpsystem funktionieren. Zur Zeit steht die Entwicklung verfahrenstechnischer Simulationsprogramme im Vordergrund, die es erlauben, die gemessenen thermodynamischen Daten als Basis fuer die Voraussagen des Betriebsverhaltens grosstechnischer Energiespeicher zu treffen.
Die Verwendung von Pikrinsäure (2,4,6-Trinitrophenol) als Sprengstoff hat zu bedeutenden Umweltbelastungen geführt. Die Toxizität der Pikrinsäure (PA) und dessen mutagenes Reduktionsprodukt 2-Amino-4,6-Dinitrophenol schafft ein wirtschaftliches Interesse, die großen Mengen an PA in Altlasten und Abwasserströmen mikrobiologisch zu entfernen. Die Basis für die geplanten Arbeiten sind Bakterien der Gattungen Nocardioides und Rhodococcus, die über Reduktion des aromatischen Ringes und Bildung eines Hydrid-Meisenheimer (H-Pikrat) Komplexes PA als alleinige Stickstoffquelle verwenden. Zwei Enzyme aus Nocardioides simplex übertragen H von NADPH auf PA unter Bildung des H-Pikrat Komplexes. Teile der für den PA-Abbau vermeintlichen genetischen Information aus Rhodococcus opacus HL PM-1 wurden mit der Differential-Display-Technik gefunden. Ziel ist es, die Gene und Genfunktionen des gesamten PA-Abbauweges zu identifizieren und zu charakterisieren, sowie die biochemischen Kenntnisse zu vertiefen. Dies ist entscheidend für die Entwicklung von Systemen zur Entfernung von PA und für die Erschließung von neuartigen Degradationssystemen für TNT.
Im hier vorgeschlagenen F/E-Verbundvorhaben sollen fortschrittliche Metallhydrid (MH)-Speichermodule entwickelt werden, in denen optimierte Hydrid-Graphit-Verbundwerkstoffe HGV (basierend auf Mg- und Ti-haltigen Legierungen) zum Einsatz kommen sollen. Die gesamte Wertschöpfungskette von der Werkstoffherstellung und -charakterisierung über die Auslegung bis zur Erprobung von fortschrittlichen MH-Speichermodulen soll im Vorhaben abgebildet werden, um eine spätere industrielle Umsetzung mit den relevanten industriellen Partnern zeitnah und direkt zu ermöglichen. Als Projektziel soll die Übertragung der erlernten Erkenntnisse und Fähigkeiten hinsichtlich der großtechnischen Umsetzbarkeit an einer ausgewählten Demonstratoranwendung validiert werden. GKN wird an der Anwendungsanalyse, Konzepterstellung und seiner Umsetzung von vorne an aktiv teilnehmen. Mit Know-How im Bereich Pulverherstellung und seine Verarbeitung wird GKN die HGV mitentwickeln, herstellen und testen, mit dem Hinblick auf spätere großtechnischen Markteinführung. Parallel zu den Messungen an HGV werden die FEM-Simulationen durchgeführt, die mit Erkenntnissen aus In-operando Methoden übereinstimmt und optimiert werden. Für die ausgewählte Anwendung wird ein Demonstrator entwickelt und gebaut.
Ziele des Teilprojektes RevAl an der Arbeitsstelle Mülheim sind die Synthese, die strukturelle Charakterisierung und die kinetische Optimierung neuer reversibler Wasserstoffspeichermaterialien basierend auf AlH3-Stickstoffverbindungen. Generell sind viele dieser Verbindungen unter Normalbedingungen nicht stabil und zerfallen unter Abgabe von Wasserstoff. Um solche instabilen Verbindungen dennoch synthetisieren und untersuchen zu können, sind tiefe Temperaturen und/oder hohe Gasdrücke erforderlich. Damit sind aber auch besondere Anforderungen an die instrumentelle Ausstattung, das Probenhandling und die Synthese notwendig. Diese Expertise soll im Laufe des Projektes entwickelt und optimiert werden. Um Erfahrungen bei der Synthese und Charakterisierung zu sammeln, werden zunächst stabilere Systeme der Aminoalane im Fokus der Untersuchungen stehen. Diese werden im Laufe des Projektes auf die instabilen Systeme ausgeweitet. In der ersten Projektphase wird neben der Synthese die instrumentelle Entwicklung von Tieftemperaturzellen zur strukturellen Charakterisierung mit Hilfe von Röntgenpulverdiffraktometrie im Vordergrund stehen. Im folgenden Projektschritt werden instabile System synthetisiert, strukturell charakterisiert und optimierte Bedingungen für die Wiederbelebung (Rehydrierung) ggf. mit Hilfe von Katalysatoren ermittelt und die Materialien für die Anforderungen eines Feststoffwasserstoffspeichers für Brennstoffzellenfahrzeuge optimiert.
Ziele des Teilprojektes im Gesamtprojekt RevAl ist neben der Synthese eines komplementären Alazan-Portfolios die thermodynamisch Charakterisierung der Verbindungen mittels Kalorimetrie unter Anwendungs-, d.h. unter und Hochdruckbedingungen. Die Untersuchungen sollen dazu dienen, systematische Trends bei der Variation der molekularen und strukturellen Eigenschaften zu erkennen, so dass eine gezielte Optimierung der Materialien auf den Anwendungsfall im Druckbereich bis 700bar erfolgen kann. Neben der thermodynamischen Charakterisierung werden spektroskopische Untersuchungen zur Verbesserung möglicher Katalysatoren für die reversible Beladung durchgeführt. Am Anfang des Projekts werden neben der Synthese von geeigneten Startverbindungen vor allem apparative Maßnahmen zur Erweiterung des Druckbereichs der Hochdruckkalorimetrie (im Wesentlichen Wärmeflusskaloriemetrie) sowie der Beladbarkeit über volumetrische Messung in den Bereich von 700bar erfolgen. Daraufhin werden die eigensynthetisierte, bei Raumtemperatur stabile Aminoalane in Bezug auf deren Rehydrierbarkeit und den dabei vorkommenden Wärmetönungen untersucht. Sobald die instabilen Hydride der Mühlheimer Arbeitsgruppe vorliegen, werden diese gleichartigen Untersuchungen unterzogen. Nach Identifikation geeigneter Alazan-und Katalysatormaterialien wird die Katalysator-Alazan-Wechselwirkung röntgenphotoelektronspektroskopisch untersucht und mit den strukturellen Ergebnissen zur Wirkungsoptimierung in Bezug gesetzt.
Hybrids of the water flea Daphnia occur in many lakes. However, little is known about the factors that cause the success of Daphnia hybrids. In a joint project of two laboratories we study the possible role of biotic interactions in the maintenance of a Daphnia hybrid complex. Daphnia hyalina, D. galeata and their hybrids occur in Bodensee and in Greifensee. The parent species are more abundant in Lake Constance, while hybrids dominate in Greifensee. Both lakes differ in important aspects (morphometry, trophic state), which is reflected by different biotic influences con Daphnia. Compared to Lake Constance, Daphnia in Greifensee are more often exposed to low quality food (toxic blue-greens) and have less of a refuge from fish predation (due the anoxic hypolimnion). Differences between both lakes in the invertebrate predation regime and in the parasite load of Daphnia are very probable. Besides field sampling programmes, we want to establish a collection of about 50 Daphnia clones from both lakes (parent species and hybrids, recent clones and old clones hatched from sediment cores). These clones will be used for life history experiments in the laboratory to test the influences of low quality food, of fish kairomones, of invertebrate predator kairomones and of a protozoan parasite. Food quality and invertebrate predator experiments will be done in Konstanz; parasite and fish experiments will be done in Dübendorf.
Organische Schad- und Reststoffe lassen sich durch eine thermisch-katalytische Umsetzung vollstaendig zerstoeren. Das Reaktionsprinzip beruht auf der Vergasung der Verbindungen mit Wasserdampf in Anwesenheit eines Katalysators auf Calciumaluminatbasis. Dabei entstehen ueberwiegend Wasserstoff, Kohlenmonoxid und Kohlendioxid. Hetero-organische Elemente (Chlor, Schwefel, Stickstoff) reagieren vollstaendig zu den Hydriden. Der Katalysator laesst sich weiterhin mit einem Traegermaterial aus Siliciumcarbid kombinieren. Durch Dotierung mit Stickstoff kann der elektrische Widerstand des Siliciumcarbids so weit erniedrigt werden, dass er die Eigenschaften eines Heizelements annimmt. Der notwendige Energiebedarf fuer die chemische Reaktion wird somit unmittelbar am Ort der Umsetzung gedeckt. Die experimentellen Untersuchungen werden ergaenzt durch eine Abschaetzung der fuer eine entsprechende Schadstoffbeseitigung relevanten Massenstroeme.
Im Rahmen des BMFT-Projektes 'Alternative Energien fuer den Strassenverkehr' und in Zusammenarbeit mit Industriefirmen sollen Hydridspeicher fuer den Kraftfahrzeugverkehr entwickelt werden. Bisherige Untersuchungen zeigen, dass das Leistungs-/Gewichtsverhaeltnis von KFZ-Hydridrspeichern durch konstruktive und verfahrenstechnische Optimierungen wesentlich verbessert werden kann.
Origin | Count |
---|---|
Bund | 49 |
Type | Count |
---|---|
Förderprogramm | 49 |
License | Count |
---|---|
offen | 49 |
Language | Count |
---|---|
Deutsch | 43 |
Englisch | 9 |
Resource type | Count |
---|---|
Keine | 27 |
Webseite | 22 |
Topic | Count |
---|---|
Boden | 26 |
Lebewesen und Lebensräume | 19 |
Luft | 20 |
Mensch und Umwelt | 49 |
Wasser | 22 |
Weitere | 49 |