Niedrige Wolken sind Schlüsselbestandteile vieler Klimazonen, aber in numerischen Modellen oft nicht gut dargestellt und schwer zu beobachten. Kürzlich wurde gezeigt, dass sich während der Haupttrockensaison im Juni und September im westlichen Zentralafrika eine ausgedehnte niedrige Wolkenbedeckung (engl. „low cloud cover“, LCC) entwickelt. Eine derart wolkige Haupttrockenzeit ist in den feuchten Tropen einzigartig und erklärt wahrscheinlich die dichtesten immergrünen Wälder in der Region. Da paläoklimatische Studien auf eine Instabilität hinweisen, kann jede Verringerung des LCC aufgrund des Klimawandels einen Kipppunkt für die Waldbedeckung darstellen. Daher besteht ein dringender Bedarf, das Auftreten, die Variabilität und die bioklimatischen Auswirkungen des LCC in westlichen Zentralafrika besser zu verstehen.Um diese Ziele zu erreichen, wurde ein Konsortium aus französischen, deutschen und gabunischen Partnern aufgebaut, zu dem Meteorologen, Klimatologen und Experten für Fernerkundung und Waldökologie gehören. Die meteorologischen Prozesse, welche die Bildung und Auflösung der LCC im Tagesgang steuern, werden anhand von zwei Ozean-Land-Transekten auf der Grundlage einer synergistischen Analyse von historischen In-situ Beobachtungen, von Daten einer Feldkampagne und anhand von atmosphärischen Modellsimulationen untersucht. Die Ergebnisse werden mit einem kürzlich entwickelten konzeptionellen Modell für LCC im südlichen Westafrika verglichen.Die intrasaisonale bis interannuale Variabilität des LCC wird durch die Analyse von In-Situ-Langzeitdaten und Satellitenschätzungen quantifiziert. Unterschiede im Jahresgang des LCC (d.h. jahreszeitlicher Beginn und Rückzug, wolkenarme Tage) und die Ausdehnung ins Inland werden dokumentiert. Ansätze, die auf Wettertypen und äquatorialen Wellen basieren, werden verwendet, um intrasaisonale Variationen des LCC zu verstehen. Die Auswirkungen lokaler und regionaler Meeresoberflächentemperaturen auf die LCC-Entwicklung und ihre Jahr-zu-Jahr Variabilität werden bewertet, wobei statistische Analysen und spezielle Sensitivitätsversuche mit einem regionalen Klimamodell verknüpft werden.Schließlich wird der Einfluss von LCC auf die Licht- und Wasserverfügbarkeit bzw. die Waldfunktion anhand von In-Situ-Messungen untersucht. Die Ergebnisse werden mit Messungen aus der nördlichen Republik Kongo, wo die Trockenzeit sonnig ist, sowie mit einem einfachen Wasserhaushaltsmodells, das an die Region angepasst ist, verglichen. Die Wasserhaushaltsanalysen sollen die Kompensations- oder Verstärkungseffekte von Regen im Vergleich zur potenziellen Evapotranspiration, beide moduliert durch die LCC, auf das Wasserdefizit aufzeigen.Die Ergebnisse von DYVALOCCA werden zum ersten konzeptionellen Modell für Wolkenbildung und -auflösung im westlichen Zentralafrika führen und eine Hilfestellung für die Bewertung von Klimawandel-Simulationen mit Blick auf potentielle Kipppunkte für die immergrünen Regenwälder in der Region geben.
Das Werkzeug der Erdbeobachtung wird auf verschiedenen Skaleneben genutzt, um Methodenentwicklungen voranzutreiben. Langjährige Erfahrungen des DLR-DFD in der skalenübergreifenden Nutzung und Auswertung von Satellitendaten und umfangreichen Satellitendaten-Zeitreihen verschiedenster Sensoren für globale, kontinentale, regionale und lokale Anwendung zur Beschreibung und Quantifizierung des Globalen Wandels werden zusammengeführt mit der langjährigen Erfahrung aus der forstlich fokussierten Fernerkundung, eingebracht durch die Kooperationspartner aus den forstlichen Forschungsanstalten der beteiligten Bundesländer Thüringen und Bayern, sowie Baden-Württemberg, Niedersachsen, Hessen, Sachsen-Anhalt und Schleswig-Holstein. Durch die Beteiligung der 4 Partner, die die forstliche Forschung in 7 Bundesländern vertreten, wird ca. 65% des deutschen Waldes abgedeckt. Die Kooperation ermöglicht eine zielgerechte, praxisnahe Herangehensweise kombiniert aus den Bedürfnissen der kooperierenden Länder, dem Wissen aller Beteiligten, um das Potential und der Grenzen der Fernerkundung und dem Wissen der forstlichen Institutionen der Länder, welche Interessen auf Bundes-, Landes- und Regionalebene bestehen. Gemeinsam wird mit robusten Methoden der Fernerkundung, wie anerkannten Technologien des maschinellen Lernens, an der Generierung und Weiterentwicklung praxis-relevanter Informationsprodukte für die raumzeitliche Erfassung von klimabedingten Schädigungen am Wald in Deutschland gearbeitet. Auf Landesebene wird auf Schädigungen an Laubhölzer in Bayern und in Thüringen auf die Ursachendifferenzierung von Schädigungen fokussiert. Auf der regionalen Ebene kann z.B. durch die Integration hoch genauer in-situ-Daten der beteiligten Projektpartner eine qualitative Prüfung ermöglicht und Herangehensweisen entwickelt und getestet werden, um relevante Informationen auf andere Skalenebenen zu übertragen.
Änderungen der Verteilung von Spurenstoffen wie Wasserdampf und Ozon, sowie die Verteilung von Zirruspartikeln in der unteren Stratosphäre/oberen Troposphäre (UTLS) haben einen großen Einfluss auf den Strahlungsantrieb. Unsicherheiten in der Beschreibung von Mischungsprozessen führen zu großen Unsicherheiten der Abschätzung des Strahlungsantriebs und sind deshalb von großer Bedeutung für die Quantifizierung des Klimawandels. Deshalb ist es wichtig, physikalische und chemische Prozesse (z.B. Austauschprozesse von Luftmassen, Zirrusbildung) zu quantifizieren, die die Zusammensetzung der UTLS bestimmen. Die sogenannte 'overworld' oberhalb von Theta=380K beeinflusst unmittelbar die Zusammensetzung der extratropischen Stratosphäre im Sommer durch Luftmassen, die aus der Region der asiatischen Monsunzirkulation stammen. Brechende planetare Wellen transportieren Monsun beeinflusste Luft in höhere Breiten, wo sie zum dortigen Wasserdampf- und Spurenstoffbudget beitragen. Die untere Grenze der UTLS, die extratropische Tropopausenschicht (ExTL), wird durch schnellen und effizienten bidirektionalen (quasi-isentropen) Austausch mit der Troposphäre gekennzeichnet. Die obere Grenze der der ExTL korrespondiert mit der Lage der Tropopauseninversionsschicht (TIL), die eine Region erhöhter statischer Stabilität oberhalb der Tropopause darstellt. Der Einfluss infrarotaktiver Tracer wie Wasserdampf oder Ozon auf die Temperaturstruktur macht die TIL zu einem sensitiven Indikator für Änderungen des Wasserdampf- oder Ozongehaltes oder auch Änderungen der Tropopausen Temperatur. Diese wirkt auf den Wasserdampfgehalt, der wiederum die statische Stabilität beeinflusst. WISE untersucht den Zusammenhang zwischen Zusammensetzung und der dynamischen Struktur der UTLS innerhalb der folgenden vier Hauptthemen:- Zusammenhang zwischen TIL und Spurengasverteilung in der unteren Stratosphäre- Wellenbrechung von planetaren Wellen und Wasserdampftransport in die extratropische untere Stratosphäre - Halogenierte Substanzen und deren Effekt auf Ozon in der UTLS- Nichtsichtbare Zirruspartikel und deren Effekt auf die UTLSBei WISE werden diese Themen mit einer neuartigen Nutzlast untersucht, die 2D- und 3D-Messungen von Spurenstoffen und Temperatur, Dropsondendaten und hochaufgelöste in-situ Spurengasmessungen vereint. Eine einzigartige Kombination von Limb- und Nadirmessngen wird verwendet, um die Eigenschaften optisch dünner Zirren in der UTLS Region zu untersuchen. Hochpräzise in-situ Daten erlauben detaillierte Untersuchungen zu Mischungsprozessen mit hoher Auflösung, sowie Zeitskalen und Altersbestimmung der Luft. WISE wird im September / Oktober stattfinden, und daher unmittelbar den Einfluss des sich auflösenden Monsuns auf die extratropische UTLS vermessen. Durch die Kombination mit Lagrange'schen und prozessorientierten Modellen wird der relative Beitrag verschiedener Quellregionen als auch Transportzeitskalen und Prozesse quantifiziert.
Niederschlag ist eine wichtige, aber schlecht verstandene Komponente unseres Klimasystems. Die genauen Prozesse, durch die Eiskristalle, flüssiges Wasser, Wolkendynamik und Aerosolpartikel bei der Niederschlagsbildung zusammenwirken, sind nicht ausreichend verstanden. Da überall außer über den subtropischen Ozeanen der meiste Niederschlag in Wolken über die Eisphase gebildet wird, sind die Prozesse der Schneefallbildung nicht nur in den polaren, sondern auch in den mittleren Breiten von großer Bedeutung: Wachstum in übersättigter Luft führt zu unzähligen Kristallformen, die von Temperatur, Feuchtigkeit und deren turbulenten Schwankungen abhängen. Durch Aggregation verbinden sich einzelne Kristalle zu komplexen Schneeflocken. Bereifung beschreibt das Anfrieren kleiner Tröpfchen an den Eiskristallen, so dass diese schnell an Masse gewinnen. Dadurch ist die Form der Schneeteilchen - wenn sie beobachtet wird, bevor das Teilchen zu einem Regentropfen schmilzt - ein Fingerabdruck der vorherrschenden Prozesse während der Schneefallbildung. In EMPOS schlagen wir vor, diese Fingerabdrücke zu nutzen, um zu quantifizieren, wie die verschiedenen Prozesse der Schneefallbildung zu Masse oder Häufigkeit des Gesamtniederschlag beitragen. Zu diesem Zweck werden wir die Datenprodukte des innovativen Video In Situ Snowfall Sensors (VISSS) weiterentwickeln, um Riming und Aggregation während einer speziellen Messkampagne in Hyytiälä, Finnland, zu quantifizieren. Die Beobachtungen werden mit dem ICON-Modell verglichen, in welches das fortschrittliche P3 Mikrophysikschema (Predicted Particle Properties) mit einem neuartigen Ansatz zur Behandlung von bereiften Partikeln implementiert ist. Durch dieses kombinierte Beobachtungs- und Modellierungsprojekt wird es möglich zu quantifizieren, wie die einzelnen Wolkenprozesse an der Schneefallbildung beteiligt sind, und zwar in Bezug auf die Häufigkeit des Auftretens und die Gesamtschneemasse. Darüber hinaus werden wir diese Wolkenprozesse in Abhängigkeit von makrophysikalischen Wolkeneigenschaften wie Wolkentiefe und synoptischen Einflüssen analysieren. Auf der Grundlage von Vergleichen zwischen Modell und Beobachtungen, die sowohl mittels Fallstudien als auch für einen längeren Zeitraum durchgeführt werden, werden wir die Schneefallsimulation in ICON im Standard-Zweimomentenschema und im P3-Mikrophysikschema bewerten und verbessern.
The Sternfahrt-10 of the MOSES campaign, from 29th August until the 15th of September 2023, had two objectives. One was to follow the dispersion of pollutants, previously observed during the Elbe-Freshwater and Elbe-Tidal cruises, transported by the Elbe water into the North Sea. And second, on this occasion, the distribution of the Elbe water within the German Bight should be followed. To realize this, two drifter groups were deployed in the southern and, respectively, northern branch of the Elbe valley, which were continuously monitored by scientists at the Hereon institute. Further, the drifters were subsequently followed by three ships (RV Ludwig Prandtl, RV Littorina, RV Mya II), for in total three weeks, to measure hydrographic parameters multiple times along their journey. Additionally, to this stationary sampling, basic hydrographic parameters and dissolved methane were measured continuously along the tracks (content of the presented dataset). To ensure the comparability of the data from all three vessels a container was transferred from ship to ship. This "MOSES laboratory-container" was equipped with several sensors, amongst others a pocket FerryBox and a Greenhouse Gas Analyser (Los Gatos). The Ludwig Prandtl started the campaign on August 29th in Cuxhaven and deployed the drifters in the respective areas of the Elbe outflow section of the German Bight. Until the 1st of September the crew followed the drifters to sample this water body. Not all drifters could be reached every day, because it was too shallow, in this case the vessels occupied MOSES hydrographic stations from previous Sternfahrt cruises. On September 4th the vessel Littorina took over and started the second part of the campaign navigating from Cuxhaven to Heligoland covering as many drifter positions as possible. Until the 7th of September the crew sampled in the north eastern part of Heligoland up to Büsum. The handover of the container for the last episode of the cruise took place in Heligoland to the vessel Mya II. From there the crew navigated on September 12th towards west off the island Amrum. In the following days until September 14th, they sampled west off Heligoland to west off St. Peter-Ording. For more details about the exact tracks of the ships, have a look at the added map. More detailed information about the MOSES project and the Sternfahrten, see article cited in references.
Die Relevanz von Unsicherheitsanalysen in der Hydrogeology ist vergleichsweise groß aufgrund der Tatsache, dass Aquifereigenschaften oft sehr heterogen sind und meist nur wenige in-situ Daten zu deren Charakterisierung zu Verfügung stehen. Die Bayes'sche Statistik ist hervorragend geeignet, um solche Analysen durch zu führen. Verglichen mit klassicher, frequentistischer Statistik lassen sich Unsicherheiten deutlich einfacher modellieren, können Wahrscheinlichkeitsaussagen auch für Einzelfälle getroffen werden und Hintergrundwissen von ex-situ Messungen konsistent mittels der A-priori-Verteilung repräsentiert werden. In der Praxis werden allerdings sowohl Unsicherheitsanalyse wie auch Aquifercharakterisierung nur selten mit Bayes'schen Methoden durchgeführt. Der wahrscheinlich wichtigste Hinderungsgrund ist dabei die Schwierigkeit die A-priori-Verteilung zu bestimmen, welche die (Un)sicherheit bzgl. der Aquifereigenschaften ausdrückt bevor in-situ Daten berücksichtigt wurden. In diesem Projekt werde ich dieses Problem angehen, in dem ich (i) einen Arbeitsablauf zur Bestimmung der A-priori-Verteilung ausarbeite und (ii) den Einfluss solch einer Verteilung untersuche. Im ersten Teil werde ich Gebrauch machen von dem hierarchischem Bayes'schen Modell zur Bestimmung von A-priori-Verteilungen, welches in einer Zusammenarbeit zwischen der Arbeitsgruppe von Prof. Yoram Rubin und mir entwickelt wurde. Um dieses Modell mit einem umfangreichen und repräsentativen Datensatz zu versorgen, werde ich es mit einer etablierten Datenbank hydrogeologischer Messungen koppeln. Dadurch wird es möglich informative A-priori-Verteilungen zu bestimmen, welche das Hintergrundwissen von ex-situ Messungen repräsentieren. Im zweiten Teil werde ich den Einfluss dieser informativen A-priori-Verteilungen auf Fragen der Unsicherheitsreduktion und des resultierenden Datenwertes untersuchen. Dazu werde ich eine Reihe von klassischen Meß- und Interpretationsverfahren mit einem Bayes'schen Aquivalent vergleichen. Dabei wird vor allem die Frage des relativen Datenwertes im Mittelpunkt stehen. Relativ bezieht sich hierbei auf den Einfluss von in-situ Daten verglichen mit den ex-situ Daten, welche in der A-priori-Verteilung enthalten sind. Die Ergebnisse dieses Projektes werden demnach helfen einen konsistenten und reproduzierbaren Arbeitsablauf zur Ableitung hydrogeologischer A-priori-Verteilungen zu etablieren sowie deren Einfluss auf Fragen der Unsicherheitsreduktion und des relativen Datenwertes von in-situ Messungen zu bestimmen. Des Weiteren werden die Ergebnisse dazu dienen die Vorteile sowie mögliche Nachteile Bayes'scher Methoden für die hydrogeologische Unsicherheitsanalyse zu verstehen. Dadurch werden die Herausforderungen klar, die zu überwinden sind, um Bayes'sche Statistik zu einem allgemein genutztem Standard für hydrogeologische Unsicherheitsanalysen werden zu lassen.
Das Werkzeug der Erdbeobachtung wird auf verschiedenen Skaleneben genutzt, um Methodenentwicklungen voranzutreiben. Langjährige Erfahrungen des DLR-DFD in der skalenübergreifenden Nutzung und Auswertung von Satellitendaten und umfangreichen Satellitendaten-Zeitreihen verschiedenster Sensoren für globale, kontinentale, regionale und lokale Anwendung zur Beschreibung und Quantifizierung des Globalen Wandels werden zusammengeführt mit der langjährigen Erfahrung aus der forstlich fokussierten Fernerkundung, eingebracht durch die Kooperationspartner aus den forstlichen Forschungsanstalten der beteiligten Bundesländer Thüringen und Bayern, sowie Baden-Württemberg, Niedersachsen, Hessen, Sachsen-Anhalt und Schleswig-Holstein. Durch die Beteiligung der 4 Partner, die die forstliche Forschung in 7 Bundesländern vertreten, wird ca. 65% des deutschen Waldes abgedeckt. Die Kooperation ermöglicht eine zielgerechte, praxisnahe Herangehensweise kombiniert aus den Bedürfnissen der kooperierenden Länder, dem Wissen aller Beteiligten, um das Potential und der Grenzen der Fernerkundung und dem Wissen der forstlichen Institutionen der Länder, welche Interessen auf Bundes-, Landes- und Regionalebene bestehen. Gemeinsam wird mit robusten Methoden der Fernerkundung, wie anerkannten Technologien des maschinellen Lernens, an der Generierung und Weiterentwicklung praxis-relevanter Informationsprodukte für die raumzeitliche Erfassung von klimabedingten Schädigungen am Wald in Deutschland gearbeitet. Auf Landesebene wird auf Schädigungen an Laubhölzer in Bayern und in Thüringen auf die Ursachendifferenzierung von Schädigungen fokussiert. Auf der regionalen Ebene kann z.B. durch die Integration hoch genauer in-situ-Daten der beteiligten Projektpartner eine qualitative Prüfung ermöglicht und Herangehensweisen entwickelt und getestet werden, um relevante Informationen auf andere Skalenebenen zu übertragen
Das Werkzeug der Erdbeobachtung wird auf verschiedenen Skaleneben genutzt, um Methodenentwicklungen voranzutreiben. Langjährige Erfahrungen des DLR-DFD in der skalenübergreifenden Nutzung und Auswertung von Satellitendaten und umfangreichen Satellitendaten-Zeitreihen verschiedenster Sensoren für globale, kontinentale, regionale und lokale Anwendung zur Beschreibung und Quantifizierung des Globalen Wandels werden zusammengeführt mit der langjährigen Erfahrung aus der forstlich fokussierten Fernerkundung, eingebracht durch die Kooperationspartner aus den forstlichen Forschungsanstalten der beteiligten Bundesländer Thüringen und Bayern, sowie Baden-Württemberg, Niedersachsen, Hessen, Sachsen-Anhalt und Schleswig-Holstein. Durch die Beteiligung der 4 Partner, die die forstliche Forschung in 7 Bundesländern vertreten, wird ca. 65% des deutschen Waldes abgedeckt. Die Kooperation ermöglicht eine zielgerechte, praxisnahe Herangehensweise kombiniert aus den Bedürfnissen der kooperierenden Länder, dem Wissen aller Beteiligten, um das Potential und der Grenzen der Fernerkundung und dem Wissen der forstlichen Institutionen der Länder, welche Interessen auf Bundes-, Landes- und Regionalebene bestehen. Gemeinsam wird mit robusten Methoden der Fernerkundung, wie anerkannten Technologien des maschinellen Lernens, an der Generierung und Weiterentwicklung praxis-relevanter Informationsprodukte für die raumzeitliche Erfassung von klimabedingten Schädigungen am Wald in Deutschland gearbeitet. Auf Landesebene wird auf Schädigungen an Laubhölzer in Bayern und in Thüringen auf die Ursachendifferenzierung von Schädigungen fokussiert. Auf der regionalen Ebene kann z.B. durch die Integration hoch genauer in-situ-Daten der beteiligten Projektpartner eine qualitative Prüfung ermöglicht und Herangehensweisen entwickelt und getestet werden, um relevante Informationen auf andere Skalenebenen zu übertragen.
Origin | Count |
---|---|
Bund | 63 |
Land | 2 |
Schutzgebiete | 1 |
Wirtschaft | 1 |
Wissenschaft | 19 |
Type | Count |
---|---|
Förderprogramm | 53 |
Messwerte | 16 |
Strukturierter Datensatz | 16 |
Text | 1 |
unbekannt | 9 |
License | Count |
---|---|
geschlossen | 10 |
offen | 69 |
Language | Count |
---|---|
Deutsch | 60 |
Englisch | 29 |
Resource type | Count |
---|---|
Datei | 16 |
Keine | 37 |
Webseite | 26 |
Topic | Count |
---|---|
Boden | 68 |
Lebewesen & Lebensräume | 68 |
Luft | 56 |
Mensch & Umwelt | 79 |
Wasser | 74 |
Weitere | 76 |