BACKGROUND: The Kingdom of Jordan belongs to the ten water scarcest countries in the world, and climate change is likely to increase the frequency of future droughts. Jordan is considered among the 10 most water impoverished countries in the world, with per capita water availability estimated at 170 m per annum, compared to an average of 1,000 m per annum in other countries. Jordan Government has taken the strategic decision to develop a conveyor system including a 325 km pipe to pump 100 million cubic meters per year of potable water from Disi-Mudawwara close to the Saudi Border in the south, to the Greater Amman area in the north. The construction of the water pipeline has started end of 2009 and shall be finished in 2013. Later on, the pipeline could serve as a major part of a national water carrier in order to convey desalinated water from the Red Sea to the economically most important central region of the country. The conveyor project will not only significantly increase water supplies to the capital, but also provide for the re-allocation of current supplies to other governorates, and for the conservation of aquifers. In the context of the Disi project that is co-funded by EIB two Environmental and Social Management Plans have been prepared: one for the private project partners and one for the Jordan Government. The latter includes the Governments obligation to re-balance water allocations to irrigation and to gradually restore the protected wetlands of Azraq (Ramsar site) east of Amman that has been depleted due to over-abstraction by re-directing discharge of highland aquifers after the Disi pipeline becomes operational. The Water Strategy recognizes that groundwater extraction for irrigation is beyond acceptable limits. Since the source is finite and priority should be given to human consumption it proposes to tackle the demand for irrigation through tariff adjustments, improved irrigation technology and disincentive to water intensive crops. The Disi aquifer is currently used for irrigation by farms producing all kinds of fruits and vegetables on a large scale and exporting most of their products to the Saudi and European markets and it is almost a third of Jordan's total consumption. The licenses for that commercial irrigation were finished by 2011/12. Whilst the licenses will be not renewed the difficulty will be the enforcement and satellite based information become an important supporting tool for monitoring. OUTLOOK: The ESA funded project Water management had the objective to support the South-North conveyor project and the activities of EIB together with the MWI in Jordan to ensure the supply of water for the increasing demand. EO Information provides a baseline for land cover and elevation and support the monitoring of further stages. usw.
SHAPE-RISK aims at optimising the efficiency of integrated risk management in the context of the sustainable development of the European process industry. The proposal addresses sustainable waste management and hazard reduction in production, storage and manufacturing. The main deliverable of the SHAPE-RISK process will be recommendations to design future cleaner and safer industrial systems. These recommendations will be discussed and endorsed by the Industry. And finally an agenda of actions, approved by Industry, will be done. The goal is to support life-cycle safety and minimisation of accident, pollution and emissions, from the producer of raw materials to the end-product delivered by the industrial installation. In operational terms, SHAPE-RISK aims at structuring a network with the organisations providing technical support to the Authorities in charge of the SEVESO II, IPPC and ATEX directives. This network organised in a Co-ordination Action will interact with the other stakeholders: Industry, the Public, representatives of Communities, International Organisation and NGOs. In 3 years, the result of SHAPE-RISK will be an integrated approach of the different components of risk management and the optimisation of the resources devoted to risk control (environment protection and accident prevention). It will be achieved by enhancing synergy between European, national and regional programmes, and also by taking into account the needs of the pre-accession countries. SHAPE-RISK will result in the dissemination of knowledge and in the specification of research activities to address innovative breakthrough that will serve the construction of safer and cleaner industrial systems. SHAPE-RISK then contributes to the integration and reinforcement of the European Research Area in risk prevention.
Kurzbeschreibung: Um die Bauzeit neuer, unterirdisch geführter Verkehrswege zu verkürzen und in einigen Fällen eine wirtschaftlich vertretbare Realisierung überhaupt zu ermöglichen, wird oft der Einsatz einer Tunnelbohrmaschine (TBM) angestrebt. Druckhaftes Gebirge kann, wenn in häufigen Intervallen oder entlang eines langen Streckenabschnittes angetroffen wird, die Wirtschaftlichkeit oder gar die Machbarkeit eines TBM-Vortriebes in Frage stellen. Ausgehend von grundlagenorientierten Forschungsergebnissen, die in den letzten Jahren an der ETH Zürich erhalten wurden, sollen beim vorliegenden Forschungsprojekt Entscheidungsgrundlagen erarbeitet und Hilfsmittel für die Projektierung bereitgestellt werden. Bei der Beurteilung der Machbarkeit eines maschinellen Vortriebes in einem konkreten Fall stützt sich der Projektingenieur auf Erfahrungen, Plausibilitätsüberlegungen und tunnelstatische Berechnungen. Die Arbeitspakete des Forschungsvorhabens tragen Rechnung diesen Grundlagen der Entscheidungsfindung. In einer ersten Phase werden die Erfahrungen aus ausgeführten Projekten, die im Schrifttum dokumentiert sind, aufgearbeitet und nach einheitlichen Gesichtspunkten dargestellt. Anschließend werden für die verschiedenen TBM-Typen die geotechnischen und verfahrenstechnischen Zusammenhänge verstanden, die spezifischen Gefährdungen und tunnelseitigen Lösungsansätze dargestellt, die relevanten Einflussfaktoren gegliedert und die zahlreichen Wechselwirkungen strukturiert und qualitativ analysiert. In einer dritten Phase, ausgehend von den bereits geleisteten Forschungsarbeiten der ETH Zürich, werden ausgewählte Fragestellungen vertieft studiert. Projektziele: Projektziele: Erarbeitung von Entscheidungsgrundlagen und Bereitstellung von Hilfsmitteln für die Projektierung von TBM-Vortrieben in druckhaftem Gebirge: - Aufarbeitung und einheitliche Darstellung von Erfahrungen aus ausgeführten Projekten, die im Schrifttum dokumentiert sind; - Verstehen der geotechnischen und verfahrenstechnischen Zusammenhänge, Darstellung der spezifischen Gefährdungen und der tunnelseitigen Lösungsansätze Gliederung der relevanten Einflussfaktoren und Strukturierung der zahlreichen Wechselwirkungen; - Herstellung von Nomogrammen, welche die einfache Ermittlung der für das Vermeiden eines Verklemmens des Schildes erforderlichen Vorschubkraft bzw. die Beurteilung der Gefahr 'Schildblockierung' ermöglichen und somit eine zweckmäßiges Hilfsmittel für die Projektierungsarbeit in der Praxis darstellen; - Gewinn von Erkenntnissen über die Vor- und Nachteile der verschiedenen Maschinentypen und Ausbaukonzepte je nach Tunneldurchmesser.
Ziel des Forschungs- und Entwicklungsprojekts ist die Planung und Umsetzung eines integralen Energie- und Sanierungskonzepts für das 1887 in Braunschweig eröffnete Herzog-Anton-Ulrich-Museum. Unter Mitwirkung aller Projektbeteiligten werden die für die Sanierung relevanten Themengebiete Bauphysik, Raumklima, Heizung und Lüftung, Tages- und Kunstlicht untersucht. Der Einhaltung der für die Exponate maßgeblichen geringen Toleranzen in Bezug auf Feuchte und Temperatur kommt in diesem Zusammenhang besondere Bedeutung zu. Durch das Sanierungskonzept soll eine erhebliche Reduktion des Heizenergie- und elektrischen Stromverbrauchs erreicht werden (Heizenergie: - 35 Prozent, Strom für Beleuchtung, Belüftung und Befeuchtung: - 50 Prozent ). Weiterhin sollen die thermische und visuelle Behaglichkeit und die konservatorischen Randbedingungen für die Exponate verbessert werden. Dabei stehen eine Verbesserung der Gebäudehülle (Herstellung der Luftdichtheit, Einsatz optimierter Verglasungen etc.) und die Vermeidung sommerlicher Überhitzung im Vordergrund. Zur Umsetzung einer weitestgehend natürlichen Klimatisierung wird auch die Reaktivierung des vorhandenen Hypokausten-Systems geprüft. Die Konzepte werden seit Oktober 2000 durch Messungen und Computersimulationen geprüft und validiert. Nach der Sanierung folgt eine einjährige Monitoring- und Evaluierungsphase. Das Sanierungsprojekt für das Herzog-Anton-Ulrich Museum zeigt die vielfältigen Möglichkeiten, wie im behutsamen Umgang mit historischer Bausubstanz die klimatischen und visuellen Anforderungen an Museen optimiert und gleichzeitig erhebliche Energieeinsparungen realisiert werden können.
Das Vorhaben wurde im Rahmen der deutsch-indonesischen Kooperation auf dem Gebiet der wissenschaftlichen Forschung und technologischen Entwicklung durchgeführt. Hierbei sollte der indonesische Partner kurzfristig in den Bau moderner Windkraftanlagen eingearbeitet werden. Bei der Lieferung der beiden Anlagen stand die Nutzung der erzeugten Energie mit im Vordergrund. Es wurde ein Konzept für den Betrieb von Eiserzeugungsanlagen ohne Zwischenspeicherung der elektrischen Energie erstellt. Die Ergebnisse aus dem Testbetrieb zeigten, dass die realisierte Betriebskonzeption voll funktionstüchtig ist. Nach entsprechender Ausbildung war der indonesische Partner in der Lage, die Windkraftanlagen selbständig zu installieren.
Flowering time is strongly regulated by the circadian clock, which drives photoperiodic flowering. We recently explored natural allelic diversity of the clock in the dicot Arabidopsis and found a 'memory' of the proceeding environment. Furthermore, we showed that clock variation has a large role in directing flowering time under field conditions. Cloning of one circadian quantitative trait locus revealed variation at the flowering-time gene EARLY FLOWERING 3 (ELF3). Here we will further explore allelic variation in clock genes to define key loci that direct photoperiodic flowering. Firstly, we will complete the construction of new Arabidopsis recombinant inbred populations derived from accessions originating from extremely differing latitudes, and map the genomes of these lines at kilobase resolution. These populations will be scored for variation in the clock and flowering time; dynamic correlations will be constructed. Together, components underling clock-gene variation that directs seasonal flowering will be identified. Secondly, we will examine the molecular genetics of circadian control of flowering in the monocot barley using existing and newly generated variation at barley ELF3. This gene is the likely direct regulator of the seasonality locus Ppd-H1. This second program should reveal dicot/monocot clock conservations and identify allelic variation at the circadian-clock gene ELF3 that could be directly used in barley breeding programs.
Mankind is approaching a crisis in energy generation and utilization. Traditional fossil fuel reserves are diminishing and legislative issues regarding CO2 emission will make use of existing lower grade reserves unattractive. New technologies have to be developed to satisfy the ever-increasing energy demand and to maximize efficient energy usage. The materials chemist, through the design of new materials with novel properties and by controlling interfacial interactions between materials, will play a crucial role in these endeavours and in enabling the paradigm shift that is required. This project is centred around two core and inter-related issues (i) energy generation from photovoltaics using sunlight and (ii) efficient lighting devices based on light-emitting electrochemical cells (LECs) and organic light emitting diodes (OLEDs). Both of these topics are areas of intense activity world-wide. Within Europe the PIs research group is one of the leaders in the field. However, as research efforts in these areas are proving successful and proof-ofprinciple systems are being established and optimized, a new factor needs to be addressed. State of the art photovoltaic devices based upon the dye-sensitized solar cell (DSC) most frequently utilize inorganic dyes comprising ruthenium complexes of oligopyridine ligands. The projected next generation mass market OLEDs and prototype LECs are based upon iridium complexes containing cyclometallated pyridine ligands. A traditional criticism of these approaches related to the costs of the raw materials although this is in reality low compared to the costs of other components. However, the price reflects in part the availability of these metals and in this respect devices based upon ruthenium (1 ppb by atom in Earth crust) or iridium (0.05 ppb by atom in Earth crust) are unsustainable. This project is concerned with the development of complexes based upon abundant and sustainable first row transition metals to replace second and third row transition metals in these devices. Initial efforts will centre upon complexes of copper(I) and zinc(II) which have well-established photochemistry and photophysics making them suitable for such applications. The PI has already established proof-of-principle for the replacement of ruthenium by copper in DSCs and is a world leader in this technology. The work on the two projects will involve (i) materials synthesis and characterization (ii) computational modelling (iii) device construction and testing and (iv) property optimization.
The aim of BioBuild is to use biocomposites to reduce the embodied energy in building facade, supporting structure and internal partition systems by at least 50Prozent over current materials with no increase in cost. This will lead to a step change in the use of sustainable, low carbon construction materials, by replacing aluminium, steel, FRP, brick and concrete in buildings. Facades are widely used in construction, primarily to protect and insulate the internal structure. Internal partitions are used to divide space, carry utilities and provide thermal and acoustic insulation. The current materials used such as aluminium, steel, brick and concrete are energy intensive to produce and have high embodied energy. FRP is an alternative construction material, benefitting from low weight, formability and simple manufacturing, allowing low material content structures and innovative design. However, typical resin and glass fibre are non-renewable, energy intensive to synthesise. Biocomposites overcome these drawbacks, whilst maintaining the benefits, being based on natural fibres and bioresins which have low embodied energy and cost. Biocomposites are renewable and sustainable resin and reinforcement structures. The resins in this project are furan and cashew nut oil based with reinforcing fibres of flax and jute. Bast fibres have lower environmental impacts than glass, concerning climate change and energy but have similar properties. Biocomposites are used commercially in automotive interior parts, but for outdoor applications they can degrade due to moisture absorption and bio-degradation. BioBuild will develop biocomposites and construction products with a life span of 40 years, by protecting the fibres with novel treatments and coatings. The result of the project will be a low cost, lightweight, durable and sustainable biocomposite building system, with full technical and environmental validation, offering low embodied energy construction materials.
NANOINSULATE will develop durable, robust, cost-effective opaque and transparent vacuum insulation panels (VIPs) incorporating new nanotechnology-based core materials (nanofoams, aerogels, aerogel composites) and high-barrier films that are up to four times more energy efficient than current solutions. These new systems will provide product lifetimes in excess of 50 years suitable for a variety of new-build and retrofit building applications. Initial building simulations based on the anticipated final properties of the VIPs indicate reductions in heating demand of up to 74Prozent and CO2 emissions of up to 46Prozent for Madrid, Spain and up to 61Prozent and 55Prozent respectively for Stuttgart, Germany for a building renovation which reduces the U-value of the walls and roof from 2.0 W m-2 K-1 to 0.2 W m-2 K-1. This reduction could be achieved with NANOINSULATE products that are only 25 mm thick, giving a cost-effective renovation without the need of changing all the reveals and ledges. Similarly, significant reductions in U-values of transparent VIPs (3 W m-2 K-1 to 0.5 W m-2 K-1) are shown by substituting double glazed units in existing building stock. Six industrial & four research based partners from seven EU countries will come together to engineer novel solutions capable of being mass produced. Target final manufacturing costs for insulation board (production rates above 5 million m2/year) are less than 7 m-2 for a U-value of 0.2 W m-2 K-1. NANOINSULATE will demonstrate its developments at construction sites across Europe. A Lifecycle Assessment, together with a safety and service-life costing analysis, will be undertaken to prove economic viability. NANOINSULATE demonstrates strong relevance to the objectives and expected impacts of both the specific call text of the Public-Private Partnership Energy-efficient Buildings topic New nanotechnology-based high performance insulation systems for energy efficiency within the 2010 NMP Work Programme and the wider NMP & Energy Thematic Priorities. Prime Contractor: Kingsplan Research and Developments Ltd.; Kingscourt; Irland.
| Origin | Count |
|---|---|
| Bund | 47 |
| Type | Count |
|---|---|
| Förderprogramm | 47 |
| License | Count |
|---|---|
| offen | 47 |
| Language | Count |
|---|---|
| Deutsch | 16 |
| Englisch | 41 |
| Resource type | Count |
|---|---|
| Keine | 37 |
| Webseite | 10 |
| Topic | Count |
|---|---|
| Boden | 36 |
| Lebewesen und Lebensräume | 46 |
| Luft | 33 |
| Mensch und Umwelt | 47 |
| Wasser | 32 |
| Weitere | 47 |