BACKGROUND: The Kingdom of Jordan belongs to the ten water scarcest countries in the world, and climate change is likely to increase the frequency of future droughts. Jordan is considered among the 10 most water impoverished countries in the world, with per capita water availability estimated at 170 m per annum, compared to an average of 1,000 m per annum in other countries. Jordan Government has taken the strategic decision to develop a conveyor system including a 325 km pipe to pump 100 million cubic meters per year of potable water from Disi-Mudawwara close to the Saudi Border in the south, to the Greater Amman area in the north. The construction of the water pipeline has started end of 2009 and shall be finished in 2013. Later on, the pipeline could serve as a major part of a national water carrier in order to convey desalinated water from the Red Sea to the economically most important central region of the country. The conveyor project will not only significantly increase water supplies to the capital, but also provide for the re-allocation of current supplies to other governorates, and for the conservation of aquifers. In the context of the Disi project that is co-funded by EIB two Environmental and Social Management Plans have been prepared: one for the private project partners and one for the Jordan Government. The latter includes the Governments obligation to re-balance water allocations to irrigation and to gradually restore the protected wetlands of Azraq (Ramsar site) east of Amman that has been depleted due to over-abstraction by re-directing discharge of highland aquifers after the Disi pipeline becomes operational. The Water Strategy recognizes that groundwater extraction for irrigation is beyond acceptable limits. Since the source is finite and priority should be given to human consumption it proposes to tackle the demand for irrigation through tariff adjustments, improved irrigation technology and disincentive to water intensive crops. The Disi aquifer is currently used for irrigation by farms producing all kinds of fruits and vegetables on a large scale and exporting most of their products to the Saudi and European markets and it is almost a third of Jordan's total consumption. The licenses for that commercial irrigation were finished by 2011/12. Whilst the licenses will be not renewed the difficulty will be the enforcement and satellite based information become an important supporting tool for monitoring. OUTLOOK: The ESA funded project Water management had the objective to support the South-North conveyor project and the activities of EIB together with the MWI in Jordan to ensure the supply of water for the increasing demand. EO Information provides a baseline for land cover and elevation and support the monitoring of further stages. usw.
Objective: SHIVA aims to reduce uncertainties in present and future stratospheric halogen loading and ozone depletion resulting from climate feedbacks between emissions and transport of ozone depleting substances (ODS). Of particular relevance will be studies of short and very short-lived substances (VSLS) with climate-sensitive natural emissions. We will perform field studies of ODS production, emission and transport in understudied, but critical, regions of the tropics using ship, aircraft and ground-based instrumentation. We will parameterize potential climate sensitivities of emissions based on inter-dependencies derived from our own field studies, and surveys of ongoing work in this area. We will study the chemical transformation of ODS during transport from the surface to the tropical tropopause layer (TTL), and in the stratosphere, using a combination of aircraft and balloon observations together with process-oriented meso-scale modelling. These investigations will be corroborated by space-based remote sensing of marine phytoplankton biomass as a possible proxy for the ocean-atmosphere flux of ODS. From this a systematic emission inventory of VSLS ODS will be established to allow construction of future-climate scenarios. The impact of climate-sensitive feedbacks between transport and the delivery of ODS to the stratosphere, and their lifetime within it, will be studied using tracer observations and modelling. Further global modelling will assess the contribution of all ODS, including VSLS (which have hitherto normally been excluded from such models) to past, present and future ozone loss. Here, the sensitivity of natural ODS emissions to climate change parameters will be used in combination with standard IPCC climate model scenarios in order to drive measurement-calibrated chemical transport model (CTM) simulations for present and future stratospheric ozone; to better predict the rate, timing and climate-sensitivity of ozone-layer recovery.
BOmobil - so heißt der Elektrokleintransporter, den die Hochschule Bochum mit den Partnern Composite Impulse, Delphi, Scienlab, den Stadtwerken Bochum und dem TÜV NORD, gefördert im Rahmen des Wettbewerbs ElektroMobil.NRW serienreif entwickelt. Die Anforderungen von klein- und mittelständigen Unternehmen für den Regionalverkehr der Zukunft bestimmen das Konzept. Elektromobilitat und ansprechendes Design müssen sich nicht ausschließen, das beweist das BOmobil. Technologisch zeigt der Prototyp eine radikale Abwendung von herkömmlichen Automobilkonzepten: keine zentrale Antriebseinheit mehr - stattdessen Radnabenmotoren. So entsteht Raum für die Neugestaltung des Innenraums. Zwei Sitzplätze, Platz für eine Normgitterbox, Höchstgeschwindigkeit ca. 130 km/h, Reichweite mehr als 150 Kilometer - Elektromobilität für den Alltag. Alle Komponenten des elektrischen Antriebsstrangs werden im sogenannten Skateboard untergebracht, der tragenden Struktur, die aus Aluminium-Leichtbau-Profilen genietet und geklebt wird. Diese Variante des Aufbaus ermöglicht eine hochfeste Struktur, die für einen Kleintransporter die nötige Crash-Sicherheit bietet und flexible Aufbauvarianten zulässt. Die Batterie, die Traktionswechselrichter und die Motoren sind organisch zueinander angeordnet. So lassen sich kurze Leitungswege und ein niedriger Schwerpunkt realisieren. Durch die selbst entwickelten Radnabenmotoren wird das Antriebsmoment dort generiert, wo es benötigt wird und die eingesparte Antriebseinheit im Aufbau vergrößert das Ladevolumen des Fahrzeugs. Für die Batterie kommt die Lithium-Eisen-Phosphat-Technologie zum Einsatz. Das nötige enge Temperaturband für deren Betrieb wird im Rahmen des Thermomanagement des Fahrzeuges realisiert. Die Auswahl geeigneter thermisch isolierender Karosserie- und Scheibenwerkstoffe ist dabei von zentraler Bedeutung, um eine aktive Kühlung bzw. Heizung in deutlich geringerem Maße als in konventionellen Fahrzeugen erforderlich zu machen. Die Karosserie wird aus ABS-Kunststoff und Faserverbund-Kunststoff gefertigt. Die Kunststoffbauteile haben sowohl strukturelle, als auch warme- und geräuschdämmende Funktion. Während in konventionellen Fahrzeugen Einscheiben-Sicherheits- und Verbundglas eingesetzt wird, erfolgt im BOmobil soweit möglich die Verwendung von Kunststoffscheiben. Zur Kostenreduktion werden für das Fahrwerk Standardkomponenten des OPEL Zafira verwendet.
The overall aim of this project is a comparative analysis of the genetic control of heterosis in oilseed rape (Brassica napus L.) by QTL mapping of heterosis-relevant loci in different B. napus mapping populations. In the Gießen project a doubled haploid (DH) mapping population that has been generated in preliminary work from a cross between two lines with high and low general combining ability, respectively, will be used for construction of a genome map containing a set of consensus SSR markers that also slow polymorphisms in another population segregating for heterotic effects, to be constructed by the University of Göttingen in a closely-integrated parallel project. Field trials of test hybrids from crosses between the individual DH lines of the respective populations with common male-sterile tester lines will enable the identification and dissection of QTL that correspond to the expression of heterosis. By using common markers it will be possible to align the genetic maps from the two populations, meaning that the positions, effects and interactions of the respective heterosisrelevant QTL identified in the two populations can be aligned and compared. Based on the results of the respective mapping experiments, the genetic control of heterosis in the two populations will be studied and compared. This will bring important information regarding the following to date unanswered questions: a) Are the same loci involved in the expression of heterosis in different oilseed rape populations, and if so which loci are involved and to what extend? b) What is the respective contribution of different genetic mechanism (dominance, overdominance or epistasis) to heterosis in oilseed rape, and is the genetic basis the same in different populations?
Globalization raised the importance of food safety and quality concerns. Developed countries implement precautionary food regulation policies to protect their affluent consumers from unsafe food imported from developing and transition countries. However, the alarming number of trade disputes at WTO evidences cases of abuse of such policies. While claims on protectionist nature of food regulations are valid in principle, yet there is little empirical evidence about their economic effects. The questions of 1) quantification of trade impact of food standards and 2) investigation of national food regulation systems are absolutely essential for the new trade agenda. These problems for developing countries are on the focus of trade policy debate, whereas for transition countries are not considered seriously. Such a research for these recently liberalized markets gains a special significance. - The proposed research will employ Gravity Model for quantitative estimation of impact of EU aflatoxin standards on transition countries- exports.- Russian food regulations for cereal value chain, their enforcement and monitoring mechanisms will be investigated through value chain and cost-benefit analysis.- Compliance of Russian norms with EU standards will be estimated applying comparative advantage analysis.The study area is Stavropol region of the Russian Federation. Local experts will contribute to the construction of the research data set and analysis. The results of the research will assist 1) international policy makers in designing new global trade agenda and 2) Russian producers, exporters and decision makers in improving cereal value chain.
Objective: Increasing awareness by the public opinion about environmental issues, energy and material conservation at all stages of product life (from raw materials to disposal/recycling) is putting the industry in general and the transport industry in particular under increased pressure to reduce CO2 emissions and save energy. Environmental protection and safety will be increasingly influenced by legislation. The European transport industry is estimated to generate 22 percent of the carbon dioxide emission. As the car population is expected to grow 40 percent by the year 2010 new tough targets for reducing emissions by 30 percent in 2010 are being set by the EU, against the state of the art technologies of 1995. It is generally agreed by the industry that reductions of this size will require a change in current technologies. Multi-material technology (sandwich and/or hybrid materials) is becoming increasingly important in new vehicle design. Public service vehicles (buses and coaches) are regarded as primary targets for application of sandwich construction and multi-materials. Public service vehicles (PSV) play a major role in the transportation industry of both industrialized and developing countries. The proposed project will be focused on the development of a novel technology to manufacture bus/coach bodies using sandwich multi-material panels. The main overall objectives of the project are: - Solving the problem of reducing weight and production costs of land transport vehicles through the development of a technology of modular bus/coach construction, using 'all composite' multi-material sandwich panels instead of steel/aluminium space frame lined with sheets of different materials. - Devise design methodologies that reduce production lead time through reduction of number of components, functional integration, and allowance for dismantling, easy repair and recycling. Primce Contractor: INEGI - Instituto de Engenharia Mecanica e Gestao Industrial, Leca do Balio, Portugal.
SHAPE-RISK aims at optimising the efficiency of integrated risk management in the context of the sustainable development of the European process industry. The proposal addresses sustainable waste management and hazard reduction in production, storage and manufacturing. The main deliverable of the SHAPE-RISK process will be recommendations to design future cleaner and safer industrial systems. These recommendations will be discussed and endorsed by the Industry. And finally an agenda of actions, approved by Industry, will be done. The goal is to support life-cycle safety and minimisation of accident, pollution and emissions, from the producer of raw materials to the end-product delivered by the industrial installation. In operational terms, SHAPE-RISK aims at structuring a network with the organisations providing technical support to the Authorities in charge of the SEVESO II, IPPC and ATEX directives. This network organised in a Co-ordination Action will interact with the other stakeholders: Industry, the Public, representatives of Communities, International Organisation and NGOs. In 3 years, the result of SHAPE-RISK will be an integrated approach of the different components of risk management and the optimisation of the resources devoted to risk control (environment protection and accident prevention). It will be achieved by enhancing synergy between European, national and regional programmes, and also by taking into account the needs of the pre-accession countries. SHAPE-RISK will result in the dissemination of knowledge and in the specification of research activities to address innovative breakthrough that will serve the construction of safer and cleaner industrial systems. SHAPE-RISK then contributes to the integration and reinforcement of the European Research Area in risk prevention.
LEnSE is a research project that responds to the growing need in Europe for assessing a building's sustainability performance. The project draws on the existing knowledge available in Europe on building assessment methodologies. LEnSE aims to develop a truly holistic methodology that addresses the overall, integrating concept of sustainability. The main objective of LEnSE is to develop a methodology for the assessment of the sustainability performance of existing, new and renovated buildings, which is broadly accepted by the European stakeholders involved in sustainable construction. This methodology will allow for future labelling of buildings, in analogy with the Energy Performance Directive. The work should result in increased awareness of the European stakeholders and will allow adequate policy implementation on sustainable construction. The project consists of three main themes. The first theme is the identification and scope of the issues which need to be included in a sustainability assessment. This has to be wide enough to be acceptable and limited enough to be practicable. A broad consensus on these issues will be reached through strategic consultation of the relevant stakeholders. The second theme is the actual development of the assessment methodology. The content of the assessment will be developed for a limited, but representative range of key issues. Guidelines on how to address local variations will be provided. This work will be validated by the development of a prototype tool and tested on case study buildings. The key stakeholders on the European and national level will be highly involved in the development of the methodology, to guarantee a wide acceptance and implementation of the project results. These consultations will include national meetings with stakeholders and trans-national expert workshops. Thematic -stepping stone- publications, will serve as strategic reference and discussion documents for the stakeholder consultation rounds. Prime Contractor: Centre Scientifique et Technique de la Construction; Bruxelles; Belgium.
Projektziel war die experimentelle Untersuchung der Vertikalstruktur der konvektiven Grenzschicht im Grossraum Wien mittels Radiosonde, Fesselballon, Sodar, Schwebeballonen und Motorseglern. Der umfangreiche Datensatz wurde zur Bestimmung von Mischungshoehen, der Untersuchung der Struktur von Thermikblasen sowie zur Validierung von Trajektorienberechnungen verwendet. Die gemessenen Mischungshoehen wurden mit Modellergebnissen (OML, Daenemark) verglichen. Unterschiede, die sich bei der Verwendung verschiedener Methoden ergeben (Radiosonden - Sodar - Modell), konnten erklaert werden, eine allgemeingueltige Messmethode bzw. ein entsprechender Modellansatz fehlt noch (auch international). Die Vertikalgeschwindigkeit wurde waehrend der Messkampagne mit dem Sodar und den Schwebeballonen erfasst. Beide Instrumentarien messen im Mittel mehr aufwaerts als abwaerts gerichtete Vertikalgeschwindigkeiten. Weiters wurde die Struktur von Thermikblasen anhand der Messdaten untersucht und eine Methode gefunden, mit der die Genauigkeit von Trajektorien erhoeht werden konnte.
Origin | Count |
---|---|
Bund | 47 |
Type | Count |
---|---|
Förderprogramm | 47 |
License | Count |
---|---|
offen | 47 |
Language | Count |
---|---|
Deutsch | 16 |
Englisch | 41 |
Resource type | Count |
---|---|
Keine | 37 |
Webseite | 10 |
Topic | Count |
---|---|
Boden | 38 |
Lebewesen und Lebensräume | 42 |
Luft | 33 |
Mensch und Umwelt | 47 |
Wasser | 32 |
Weitere | 47 |