BACKGROUND: The Kingdom of Jordan belongs to the ten water scarcest countries in the world, and climate change is likely to increase the frequency of future droughts. Jordan is considered among the 10 most water impoverished countries in the world, with per capita water availability estimated at 170 m per annum, compared to an average of 1,000 m per annum in other countries. Jordan Government has taken the strategic decision to develop a conveyor system including a 325 km pipe to pump 100 million cubic meters per year of potable water from Disi-Mudawwara close to the Saudi Border in the south, to the Greater Amman area in the north. The construction of the water pipeline has started end of 2009 and shall be finished in 2013. Later on, the pipeline could serve as a major part of a national water carrier in order to convey desalinated water from the Red Sea to the economically most important central region of the country. The conveyor project will not only significantly increase water supplies to the capital, but also provide for the re-allocation of current supplies to other governorates, and for the conservation of aquifers. In the context of the Disi project that is co-funded by EIB two Environmental and Social Management Plans have been prepared: one for the private project partners and one for the Jordan Government. The latter includes the Governments obligation to re-balance water allocations to irrigation and to gradually restore the protected wetlands of Azraq (Ramsar site) east of Amman that has been depleted due to over-abstraction by re-directing discharge of highland aquifers after the Disi pipeline becomes operational. The Water Strategy recognizes that groundwater extraction for irrigation is beyond acceptable limits. Since the source is finite and priority should be given to human consumption it proposes to tackle the demand for irrigation through tariff adjustments, improved irrigation technology and disincentive to water intensive crops. The Disi aquifer is currently used for irrigation by farms producing all kinds of fruits and vegetables on a large scale and exporting most of their products to the Saudi and European markets and it is almost a third of Jordan's total consumption. The licenses for that commercial irrigation were finished by 2011/12. Whilst the licenses will be not renewed the difficulty will be the enforcement and satellite based information become an important supporting tool for monitoring. OUTLOOK: The ESA funded project Water management had the objective to support the South-North conveyor project and the activities of EIB together with the MWI in Jordan to ensure the supply of water for the increasing demand. EO Information provides a baseline for land cover and elevation and support the monitoring of further stages. usw.
Flowering time is strongly regulated by the circadian clock, which drives photoperiodic flowering. We recently explored natural allelic diversity of the clock in the dicot Arabidopsis and found a 'memory' of the proceeding environment. Furthermore, we showed that clock variation has a large role in directing flowering time under field conditions. Cloning of one circadian quantitative trait locus revealed variation at the flowering-time gene EARLY FLOWERING 3 (ELF3). Here we will further explore allelic variation in clock genes to define key loci that direct photoperiodic flowering. Firstly, we will complete the construction of new Arabidopsis recombinant inbred populations derived from accessions originating from extremely differing latitudes, and map the genomes of these lines at kilobase resolution. These populations will be scored for variation in the clock and flowering time; dynamic correlations will be constructed. Together, components underling clock-gene variation that directs seasonal flowering will be identified. Secondly, we will examine the molecular genetics of circadian control of flowering in the monocot barley using existing and newly generated variation at barley ELF3. This gene is the likely direct regulator of the seasonality locus Ppd-H1. This second program should reveal dicot/monocot clock conservations and identify allelic variation at the circadian-clock gene ELF3 that could be directly used in barley breeding programs.
NANOINSULATE will develop durable, robust, cost-effective opaque and transparent vacuum insulation panels (VIPs) incorporating new nanotechnology-based core materials (nanofoams, aerogels, aerogel composites) and high-barrier films that are up to four times more energy efficient than current solutions. These new systems will provide product lifetimes in excess of 50 years suitable for a variety of new-build and retrofit building applications. Initial building simulations based on the anticipated final properties of the VIPs indicate reductions in heating demand of up to 74Prozent and CO2 emissions of up to 46Prozent for Madrid, Spain and up to 61Prozent and 55Prozent respectively for Stuttgart, Germany for a building renovation which reduces the U-value of the walls and roof from 2.0 W m-2 K-1 to 0.2 W m-2 K-1. This reduction could be achieved with NANOINSULATE products that are only 25 mm thick, giving a cost-effective renovation without the need of changing all the reveals and ledges. Similarly, significant reductions in U-values of transparent VIPs (3 W m-2 K-1 to 0.5 W m-2 K-1) are shown by substituting double glazed units in existing building stock. Six industrial & four research based partners from seven EU countries will come together to engineer novel solutions capable of being mass produced. Target final manufacturing costs for insulation board (production rates above 5 million m2/year) are less than 7 m-2 for a U-value of 0.2 W m-2 K-1. NANOINSULATE will demonstrate its developments at construction sites across Europe. A Lifecycle Assessment, together with a safety and service-life costing analysis, will be undertaken to prove economic viability. NANOINSULATE demonstrates strong relevance to the objectives and expected impacts of both the specific call text of the Public-Private Partnership Energy-efficient Buildings topic New nanotechnology-based high performance insulation systems for energy efficiency within the 2010 NMP Work Programme and the wider NMP & Energy Thematic Priorities. Prime Contractor: Kingsplan Research and Developments Ltd.; Kingscourt; Irland.
While urban Indonesia is almost completely electrified, two-thirds of the rural population still lack access to electricity. In many cases, the mountainous rural areas are difficult to access and sparsely populated implying high investment costs for infrastructure extension. Against this background the German International Cooperation (GIZ) supports the implementation of micro hydro plants (MHP) in rural communities to supply the population with decentralized electricity. During its first project phase between 2006 and 2009, GIZ has supported the construction of 96 MHPs on two of the five main islands of Indonesia, Sulawesi and Sumatra. These activities have been funded as part of the Dutch-German Energy Partnership Energising Development (EnDev), an output-oriented programme that aims at providing modern energy to 6.1 million people in 21 countries. In a second project phase starting in 2010 (EnDev II), more than 200 micro-hydro schemes are planned to be supported. RWI has been assigned to assess the socio-economic impacts of electrification through MHP on household level through both a cross-sectional and a difference in differences approach. For this purpose, 800 households were interviewed in a first survey wave in September and November 2010. Half of them are located in 20 EnDev II villages that only got connected to an MHP after data collection. The remainder of the sample has already been using electricity at that time from a working micro hydro scheme supported within EnDev I. The second survey wave is scheduled for autumn 2012. The cross-sectional arm of the study allowed for gauging the impacts of the connection to an MHP already after the first wave at the end of 2010. For the electrified, hence, treated EnDev I households, comparable EnDev II households have been used as controls. Having follow-up data at hand at the end of 2012, difference in differences estimators can be applied to more rigorously assess the impacts of the connection to an MHP. In this approach, the EnDev I households already connected in 2010 and still connected in 2012 will serve as a reference group for the EnDev II households who got treated between the 2010 and 2012 survey. This prevents that changes induced by external influences (e.g. general economic development) are falsely ascribed to the treatment. For the reference group of EnDev II households it was found in 2010 that an important share already used 'pre-electrification' sources like generators or very simple traditional waterwheels - so called kincirs. The impact assessment will therefore not only illustrate the change from traditional energy sources like kerosene to electricity but also deliver impact findings on using a modern electricity source in comparison to pre-electrification sources that tend to be either costly and dirty (generators), or unstable and weak (kincir).
Globalization raised the importance of food safety and quality concerns. Developed countries implement precautionary food regulation policies to protect their affluent consumers from unsafe food imported from developing and transition countries. However, the alarming number of trade disputes at WTO evidences cases of abuse of such policies. While claims on protectionist nature of food regulations are valid in principle, yet there is little empirical evidence about their economic effects. The questions of 1) quantification of trade impact of food standards and 2) investigation of national food regulation systems are absolutely essential for the new trade agenda. These problems for developing countries are on the focus of trade policy debate, whereas for transition countries are not considered seriously. Such a research for these recently liberalized markets gains a special significance. - The proposed research will employ Gravity Model for quantitative estimation of impact of EU aflatoxin standards on transition countries- exports.- Russian food regulations for cereal value chain, their enforcement and monitoring mechanisms will be investigated through value chain and cost-benefit analysis.- Compliance of Russian norms with EU standards will be estimated applying comparative advantage analysis.The study area is Stavropol region of the Russian Federation. Local experts will contribute to the construction of the research data set and analysis. The results of the research will assist 1) international policy makers in designing new global trade agenda and 2) Russian producers, exporters and decision makers in improving cereal value chain.
Bio-EtOH is a research project in the Sixth Framework Programme FP6 of the EU with eight different partners from 4 European countries. The objective of this project is the development of a sophisticated new process for bio-fuel ethanol production with significant reduced energy consumption and savings in construction and operation costs of ethanol dehydration by using Membrane Technologies.
Ziel des Forschungs- und Entwicklungsprojekts ist die Planung und Umsetzung eines integralen Energie- und Sanierungskonzepts für das 1887 in Braunschweig eröffnete Herzog-Anton-Ulrich-Museum. Unter Mitwirkung aller Projektbeteiligten werden die für die Sanierung relevanten Themengebiete Bauphysik, Raumklima, Heizung und Lüftung, Tages- und Kunstlicht untersucht. Der Einhaltung der für die Exponate maßgeblichen geringen Toleranzen in Bezug auf Feuchte und Temperatur kommt in diesem Zusammenhang besondere Bedeutung zu. Durch das Sanierungskonzept soll eine erhebliche Reduktion des Heizenergie- und elektrischen Stromverbrauchs erreicht werden (Heizenergie: - 35 Prozent, Strom für Beleuchtung, Belüftung und Befeuchtung: - 50 Prozent ). Weiterhin sollen die thermische und visuelle Behaglichkeit und die konservatorischen Randbedingungen für die Exponate verbessert werden. Dabei stehen eine Verbesserung der Gebäudehülle (Herstellung der Luftdichtheit, Einsatz optimierter Verglasungen etc.) und die Vermeidung sommerlicher Überhitzung im Vordergrund. Zur Umsetzung einer weitestgehend natürlichen Klimatisierung wird auch die Reaktivierung des vorhandenen Hypokausten-Systems geprüft. Die Konzepte werden seit Oktober 2000 durch Messungen und Computersimulationen geprüft und validiert. Nach der Sanierung folgt eine einjährige Monitoring- und Evaluierungsphase. Das Sanierungsprojekt für das Herzog-Anton-Ulrich Museum zeigt die vielfältigen Möglichkeiten, wie im behutsamen Umgang mit historischer Bausubstanz die klimatischen und visuellen Anforderungen an Museen optimiert und gleichzeitig erhebliche Energieeinsparungen realisiert werden können.
Projektziel war die experimentelle Untersuchung der Vertikalstruktur der konvektiven Grenzschicht im Grossraum Wien mittels Radiosonde, Fesselballon, Sodar, Schwebeballonen und Motorseglern. Der umfangreiche Datensatz wurde zur Bestimmung von Mischungshoehen, der Untersuchung der Struktur von Thermikblasen sowie zur Validierung von Trajektorienberechnungen verwendet. Die gemessenen Mischungshoehen wurden mit Modellergebnissen (OML, Daenemark) verglichen. Unterschiede, die sich bei der Verwendung verschiedener Methoden ergeben (Radiosonden - Sodar - Modell), konnten erklaert werden, eine allgemeingueltige Messmethode bzw. ein entsprechender Modellansatz fehlt noch (auch international). Die Vertikalgeschwindigkeit wurde waehrend der Messkampagne mit dem Sodar und den Schwebeballonen erfasst. Beide Instrumentarien messen im Mittel mehr aufwaerts als abwaerts gerichtete Vertikalgeschwindigkeiten. Weiters wurde die Struktur von Thermikblasen anhand der Messdaten untersucht und eine Methode gefunden, mit der die Genauigkeit von Trajektorien erhoeht werden konnte.
Mankind is approaching a crisis in energy generation and utilization. Traditional fossil fuel reserves are diminishing and legislative issues regarding CO2 emission will make use of existing lower grade reserves unattractive. New technologies have to be developed to satisfy the ever-increasing energy demand and to maximize efficient energy usage. The materials chemist, through the design of new materials with novel properties and by controlling interfacial interactions between materials, will play a crucial role in these endeavours and in enabling the paradigm shift that is required. This project is centred around two core and inter-related issues (i) energy generation from photovoltaics using sunlight and (ii) efficient lighting devices based on light-emitting electrochemical cells (LECs) and organic light emitting diodes (OLEDs). Both of these topics are areas of intense activity world-wide. Within Europe the PIs research group is one of the leaders in the field. However, as research efforts in these areas are proving successful and proof-ofprinciple systems are being established and optimized, a new factor needs to be addressed. State of the art photovoltaic devices based upon the dye-sensitized solar cell (DSC) most frequently utilize inorganic dyes comprising ruthenium complexes of oligopyridine ligands. The projected next generation mass market OLEDs and prototype LECs are based upon iridium complexes containing cyclometallated pyridine ligands. A traditional criticism of these approaches related to the costs of the raw materials although this is in reality low compared to the costs of other components. However, the price reflects in part the availability of these metals and in this respect devices based upon ruthenium (1 ppb by atom in Earth crust) or iridium (0.05 ppb by atom in Earth crust) are unsustainable. This project is concerned with the development of complexes based upon abundant and sustainable first row transition metals to replace second and third row transition metals in these devices. Initial efforts will centre upon complexes of copper(I) and zinc(II) which have well-established photochemistry and photophysics making them suitable for such applications. The PI has already established proof-of-principle for the replacement of ruthenium by copper in DSCs and is a world leader in this technology. The work on the two projects will involve (i) materials synthesis and characterization (ii) computational modelling (iii) device construction and testing and (iv) property optimization.
| Origin | Count |
|---|---|
| Bund | 47 |
| Type | Count |
|---|---|
| Förderprogramm | 47 |
| License | Count |
|---|---|
| offen | 47 |
| Language | Count |
|---|---|
| Deutsch | 16 |
| Englisch | 41 |
| Resource type | Count |
|---|---|
| Keine | 37 |
| Webseite | 10 |
| Topic | Count |
|---|---|
| Boden | 36 |
| Lebewesen und Lebensräume | 46 |
| Luft | 33 |
| Mensch und Umwelt | 47 |
| Wasser | 32 |
| Weitere | 47 |