BACKGROUND: The Kingdom of Jordan belongs to the ten water scarcest countries in the world, and climate change is likely to increase the frequency of future droughts. Jordan is considered among the 10 most water impoverished countries in the world, with per capita water availability estimated at 170 m per annum, compared to an average of 1,000 m per annum in other countries. Jordan Government has taken the strategic decision to develop a conveyor system including a 325 km pipe to pump 100 million cubic meters per year of potable water from Disi-Mudawwara close to the Saudi Border in the south, to the Greater Amman area in the north. The construction of the water pipeline has started end of 2009 and shall be finished in 2013. Later on, the pipeline could serve as a major part of a national water carrier in order to convey desalinated water from the Red Sea to the economically most important central region of the country. The conveyor project will not only significantly increase water supplies to the capital, but also provide for the re-allocation of current supplies to other governorates, and for the conservation of aquifers. In the context of the Disi project that is co-funded by EIB two Environmental and Social Management Plans have been prepared: one for the private project partners and one for the Jordan Government. The latter includes the Governments obligation to re-balance water allocations to irrigation and to gradually restore the protected wetlands of Azraq (Ramsar site) east of Amman that has been depleted due to over-abstraction by re-directing discharge of highland aquifers after the Disi pipeline becomes operational. The Water Strategy recognizes that groundwater extraction for irrigation is beyond acceptable limits. Since the source is finite and priority should be given to human consumption it proposes to tackle the demand for irrigation through tariff adjustments, improved irrigation technology and disincentive to water intensive crops. The Disi aquifer is currently used for irrigation by farms producing all kinds of fruits and vegetables on a large scale and exporting most of their products to the Saudi and European markets and it is almost a third of Jordan's total consumption. The licenses for that commercial irrigation were finished by 2011/12. Whilst the licenses will be not renewed the difficulty will be the enforcement and satellite based information become an important supporting tool for monitoring. OUTLOOK: The ESA funded project Water management had the objective to support the South-North conveyor project and the activities of EIB together with the MWI in Jordan to ensure the supply of water for the increasing demand. EO Information provides a baseline for land cover and elevation and support the monitoring of further stages. usw.
NANOINSULATE will develop durable, robust, cost-effective opaque and transparent vacuum insulation panels (VIPs) incorporating new nanotechnology-based core materials (nanofoams, aerogels, aerogel composites) and high-barrier films that are up to four times more energy efficient than current solutions. These new systems will provide product lifetimes in excess of 50 years suitable for a variety of new-build and retrofit building applications. Initial building simulations based on the anticipated final properties of the VIPs indicate reductions in heating demand of up to 74Prozent and CO2 emissions of up to 46Prozent for Madrid, Spain and up to 61Prozent and 55Prozent respectively for Stuttgart, Germany for a building renovation which reduces the U-value of the walls and roof from 2.0 W m-2 K-1 to 0.2 W m-2 K-1. This reduction could be achieved with NANOINSULATE products that are only 25 mm thick, giving a cost-effective renovation without the need of changing all the reveals and ledges. Similarly, significant reductions in U-values of transparent VIPs (3 W m-2 K-1 to 0.5 W m-2 K-1) are shown by substituting double glazed units in existing building stock. Six industrial & four research based partners from seven EU countries will come together to engineer novel solutions capable of being mass produced. Target final manufacturing costs for insulation board (production rates above 5 million m2/year) are less than 7 m-2 for a U-value of 0.2 W m-2 K-1. NANOINSULATE will demonstrate its developments at construction sites across Europe. A Lifecycle Assessment, together with a safety and service-life costing analysis, will be undertaken to prove economic viability. NANOINSULATE demonstrates strong relevance to the objectives and expected impacts of both the specific call text of the Public-Private Partnership Energy-efficient Buildings topic New nanotechnology-based high performance insulation systems for energy efficiency within the 2010 NMP Work Programme and the wider NMP & Energy Thematic Priorities. Prime Contractor: Kingsplan Research and Developments Ltd.; Kingscourt; Irland.
This SNF proposal seeks funding for the continuation of the Swiss contribution to the Lake Van Drilling Project executed by the International Continental Scientific Drilling Program (ICDP). Among other previous Swiss ICDP engagements, the Lake Van Drilling project was pivotal in triggering the newly established SNF-supported Swiss membership in ICDP. Further, the SNF Swiss contribution is a central building block of the entire ICDP PaleoVan initiative. Lake Van is the fourth-largest terminal lake in the world, extending 130 km WSW-ENE 1674 m above sea level on a high plateau in eastern Anatolia, Turkey. The lake is surrounded by active volcanoes within a tectonically active area and it is known to accumulate fluids emanating from the Earths mantle. The partly annually-laminated sedimentary record down to 220 m depth recovered from Lake Van during the ICDP PaleoVan drilling operations in 2010 has been shown to be an excellent palaeoclimate and palaeoenvironment archive. The continuous, high-resolution continental sequence, which covers several glacial-interglacial cycles (greater than 500 kyr), represents a unique possibility to investigate in detail the climatic, environmental, and volcanic changes that occurred in the Near East, the cradle of human civilization, during much of the Quaternary Period. Furthermore, the sediments contain an invaluable record of past earthquake activities, allowing the construction of a catalogue of prehistoric earthquakes and making it possible to study fluid transport in the continental crust that was triggered by seismic events. In this context, the societal vulnerability of the area to seismic hazards was dramatically documented by the occurrence of the devastating earthquake of magnitude 7.2 close to the city of Van on 23 October 2011 (hereafter referred to as the VE11 earthquake). This unfortunate and tragic event offers a unique opportunity to calibrate the past seismic events recorded in the sediments of Lake Van and the related emission of fluids from the solid earth to a modern seismic analogue. Sediment and fluid transport triggered by this major seismic event need to be quantified in order to calibrate the sedimentological record, which is targeted by the follow-up field campaign proposed within this project extension. The continuation of the Swiss initiative, embedded in the overarching ICDP drilling project on Lake Van, encompasses all the 5 initial research modules (A-E) of the ongoing SNF project (200021-124981). Within this proposal extension, the extended modules (A*-E*) will focus on key issues and new developments that expand the initial topics, with a special emphasis on the recent major earthquake VE11 and its biogeochemical and sedimentological implications. At the same time, this extension will also allow the results that have already been acquired to be further analysed and written up for publication by the project team. A large number of publications is foreseen. (...)
BOmobil - so heißt der Elektrokleintransporter, den die Hochschule Bochum mit den Partnern Composite Impulse, Delphi, Scienlab, den Stadtwerken Bochum und dem TÜV NORD, gefördert im Rahmen des Wettbewerbs ElektroMobil.NRW serienreif entwickelt. Die Anforderungen von klein- und mittelständigen Unternehmen für den Regionalverkehr der Zukunft bestimmen das Konzept. Elektromobilitat und ansprechendes Design müssen sich nicht ausschließen, das beweist das BOmobil. Technologisch zeigt der Prototyp eine radikale Abwendung von herkömmlichen Automobilkonzepten: keine zentrale Antriebseinheit mehr - stattdessen Radnabenmotoren. So entsteht Raum für die Neugestaltung des Innenraums. Zwei Sitzplätze, Platz für eine Normgitterbox, Höchstgeschwindigkeit ca. 130 km/h, Reichweite mehr als 150 Kilometer - Elektromobilität für den Alltag. Alle Komponenten des elektrischen Antriebsstrangs werden im sogenannten Skateboard untergebracht, der tragenden Struktur, die aus Aluminium-Leichtbau-Profilen genietet und geklebt wird. Diese Variante des Aufbaus ermöglicht eine hochfeste Struktur, die für einen Kleintransporter die nötige Crash-Sicherheit bietet und flexible Aufbauvarianten zulässt. Die Batterie, die Traktionswechselrichter und die Motoren sind organisch zueinander angeordnet. So lassen sich kurze Leitungswege und ein niedriger Schwerpunkt realisieren. Durch die selbst entwickelten Radnabenmotoren wird das Antriebsmoment dort generiert, wo es benötigt wird und die eingesparte Antriebseinheit im Aufbau vergrößert das Ladevolumen des Fahrzeugs. Für die Batterie kommt die Lithium-Eisen-Phosphat-Technologie zum Einsatz. Das nötige enge Temperaturband für deren Betrieb wird im Rahmen des Thermomanagement des Fahrzeuges realisiert. Die Auswahl geeigneter thermisch isolierender Karosserie- und Scheibenwerkstoffe ist dabei von zentraler Bedeutung, um eine aktive Kühlung bzw. Heizung in deutlich geringerem Maße als in konventionellen Fahrzeugen erforderlich zu machen. Die Karosserie wird aus ABS-Kunststoff und Faserverbund-Kunststoff gefertigt. Die Kunststoffbauteile haben sowohl strukturelle, als auch warme- und geräuschdämmende Funktion. Während in konventionellen Fahrzeugen Einscheiben-Sicherheits- und Verbundglas eingesetzt wird, erfolgt im BOmobil soweit möglich die Verwendung von Kunststoffscheiben. Zur Kostenreduktion werden für das Fahrwerk Standardkomponenten des OPEL Zafira verwendet.
Die Entwicklungsmechanismen der Industrieparks in Deutschland und China unterscheiden sich deutlich. In China dienen die Industrieparks als das herausragende Instrument nationaler Wirtschaftspolitik mit dem Ziel der Förderung des Wirtschaftswachstums, während die Entwicklung in Deutschland auf den industriellen Strukturwandel von werks- zu netzwerkbezogenen Produktionsstrategien zurückzuführen ist. Um die Industrieparks ökonomisch und ökologisch effektiv und effizient zu managen, sind innovative Managementstrukturen und -Instrumente nötig. Aufgrund der unterschiedlichen treibenden Kräfte werden in China fast ausschließlich staatliche Managementmodelle eingesetzt, wohingegen in Deutschland die Industrieparks überwiegend privatwirtschaftlich betrieben werden. Somit folgen die chinesischen Modelle hauptsächlich dem Top-Down -Ansatz, während in Deutschland der Bottom-Up -Ansatz dominiert. Die verschiedenen Modelle sind durch spezifische Strategien und Instrumente gekennzeichnet, die zu unterschiedlichen Rollen des Park Managements führen und dabei stark die ausgewählten Strukturen und Prozesse für die Entwicklung des integrierten Ressourcenmanagements in Industrieparks beeinflussen. In diesem Projekt werden Industrieparks als Interorganizationsnetzwerke untersucht, in denen flexible Organisations- und Ablaufstrukturen aufgebaut und geeignete Management-instrumente implementiert werden müssen, um die verfügbaren Ressourcen und Beziehungen zwischen den Stakeholdern effektiv und effizient zu managen. Industrieparks laufen einen Lebenszyklus mit den Phasen von Planung und Bau, Rekrutierung und Betrieb durch, in welchen spezifische strategische und operative Managementaufgaben auszuführen sind. Das Ziel des Projekts ist es, den Einfluss der unterschiedlichen Modelle auf das integrierte Ressourcenmanagement in Industrieparks anhand der Fallbeispiele in Deutschland und China zu analysieren und Implikationen für Strukturen und Instrumente zum Netzwerk- und Ressourcenmanagement in Industrieparks zu entwickeln.
Nachhaltiges Bauen und Sanieren ist ein zentrales Handlungsfeld zur Erreichung von Umweltzielen. Zugleich handelt es sich um ein Arbeitsfeld mit enormen Potenzialen und bietet wegen seiner Transdisziplinarität für Beschäftigte verschiedenster Disziplinen Entwicklungsperspektiven. Aufgrund der Komplexitivität des Themenfeldes sind Kooperationen zwischen AkteurInnen notwendig und wünschenswert, diese gestalten sich jedoch durch die derzeit besonders stark ausgeprägte Wettbewerbssituation (Konzentrazionsprozesse, Arbeitsplatzabbau etc.) im Baubereich schwierig. Darüber hinaus sind Frauen speziell im Baubereich unterrepräsentiert. Lösungsansätze für verbesserte Kooperationen im Baubereich sind nötig, damit die Potenziale, die das Segment des nachhaltigen Bauens in sich birgt, genützt werden können. Ziel des vorliegenden Projekt ist es, ein Modell zu entwickeln, um in einem transdisziplinären Prozess die Netzwerkbildung des nachhaltigen Bauens und Sanierens zu erforschen und daraus Handlungsempfehlungen für künftige Netzwerkbildungen abzuleiten. Das Projekt trägt dadurch dazu bei, vorhandene Beschäftigungs- und Umweltpotenziale im Bereich des nachhaltigen Bauens besser nutzbar zu machen. Erprobt wird das Modell anhand des Netzwerkes 'Stärkefeld Nachhaltiges Bauen, das vom Eco und Co-Ökotechnik Netzwerk Steiermark in Kooperation mit dem Projekt WINBAU initiiert wird. Der Erfolg der Netzwerkbildung kann durch das Forschungsprojekt langfristig optimiert werden. Ein wichtiges Ziel liegt in der Vermittlung des entwickelten und gesammelten Wissens über Netzwerkbildung zwischen WissenschaffterInnen und PraktikerInnen. Insbesondere werden folgende Projektziele verfolgt: Erarbeitung eines transdisziplinären Forschungsansatzes zur Analyse und Dokumentation von transdisziplinären Netzwerkbildungen; Darstellung des Kommunikations- und Wissensmanagements im Netzwerk 'Stärkefeld Nachhaltiges Bauen und Ableitung von Empfehlungen für die Transferierbarkeit von tacit knowledge; Entwicklung von geschlechtergerechten Strategien im Bereich des nachhaltigen Bauens; Nutzbarmachung der Forschungsergebnisse auf interaktive Weise für WissenschaffterInnen und AkteurInnen im Bereich des nachhaltigen Bauens und Sanierens.
Projektziel war die experimentelle Untersuchung der Vertikalstruktur der konvektiven Grenzschicht im Grossraum Wien mittels Radiosonde, Fesselballon, Sodar, Schwebeballonen und Motorseglern. Der umfangreiche Datensatz wurde zur Bestimmung von Mischungshoehen, der Untersuchung der Struktur von Thermikblasen sowie zur Validierung von Trajektorienberechnungen verwendet. Die gemessenen Mischungshoehen wurden mit Modellergebnissen (OML, Daenemark) verglichen. Unterschiede, die sich bei der Verwendung verschiedener Methoden ergeben (Radiosonden - Sodar - Modell), konnten erklaert werden, eine allgemeingueltige Messmethode bzw. ein entsprechender Modellansatz fehlt noch (auch international). Die Vertikalgeschwindigkeit wurde waehrend der Messkampagne mit dem Sodar und den Schwebeballonen erfasst. Beide Instrumentarien messen im Mittel mehr aufwaerts als abwaerts gerichtete Vertikalgeschwindigkeiten. Weiters wurde die Struktur von Thermikblasen anhand der Messdaten untersucht und eine Methode gefunden, mit der die Genauigkeit von Trajektorien erhoeht werden konnte.
Flowering time is strongly regulated by the circadian clock, which drives photoperiodic flowering. We recently explored natural allelic diversity of the clock in the dicot Arabidopsis and found a 'memory' of the proceeding environment. Furthermore, we showed that clock variation has a large role in directing flowering time under field conditions. Cloning of one circadian quantitative trait locus revealed variation at the flowering-time gene EARLY FLOWERING 3 (ELF3). Here we will further explore allelic variation in clock genes to define key loci that direct photoperiodic flowering. Firstly, we will complete the construction of new Arabidopsis recombinant inbred populations derived from accessions originating from extremely differing latitudes, and map the genomes of these lines at kilobase resolution. These populations will be scored for variation in the clock and flowering time; dynamic correlations will be constructed. Together, components underling clock-gene variation that directs seasonal flowering will be identified. Secondly, we will examine the molecular genetics of circadian control of flowering in the monocot barley using existing and newly generated variation at barley ELF3. This gene is the likely direct regulator of the seasonality locus Ppd-H1. This second program should reveal dicot/monocot clock conservations and identify allelic variation at the circadian-clock gene ELF3 that could be directly used in barley breeding programs.
Mankind is approaching a crisis in energy generation and utilization. Traditional fossil fuel reserves are diminishing and legislative issues regarding CO2 emission will make use of existing lower grade reserves unattractive. New technologies have to be developed to satisfy the ever-increasing energy demand and to maximize efficient energy usage. The materials chemist, through the design of new materials with novel properties and by controlling interfacial interactions between materials, will play a crucial role in these endeavours and in enabling the paradigm shift that is required. This project is centred around two core and inter-related issues (i) energy generation from photovoltaics using sunlight and (ii) efficient lighting devices based on light-emitting electrochemical cells (LECs) and organic light emitting diodes (OLEDs). Both of these topics are areas of intense activity world-wide. Within Europe the PIs research group is one of the leaders in the field. However, as research efforts in these areas are proving successful and proof-ofprinciple systems are being established and optimized, a new factor needs to be addressed. State of the art photovoltaic devices based upon the dye-sensitized solar cell (DSC) most frequently utilize inorganic dyes comprising ruthenium complexes of oligopyridine ligands. The projected next generation mass market OLEDs and prototype LECs are based upon iridium complexes containing cyclometallated pyridine ligands. A traditional criticism of these approaches related to the costs of the raw materials although this is in reality low compared to the costs of other components. However, the price reflects in part the availability of these metals and in this respect devices based upon ruthenium (1 ppb by atom in Earth crust) or iridium (0.05 ppb by atom in Earth crust) are unsustainable. This project is concerned with the development of complexes based upon abundant and sustainable first row transition metals to replace second and third row transition metals in these devices. Initial efforts will centre upon complexes of copper(I) and zinc(II) which have well-established photochemistry and photophysics making them suitable for such applications. The PI has already established proof-of-principle for the replacement of ruthenium by copper in DSCs and is a world leader in this technology. The work on the two projects will involve (i) materials synthesis and characterization (ii) computational modelling (iii) device construction and testing and (iv) property optimization.
| Origin | Count |
|---|---|
| Bund | 47 |
| Type | Count |
|---|---|
| Förderprogramm | 47 |
| License | Count |
|---|---|
| offen | 47 |
| Language | Count |
|---|---|
| Deutsch | 16 |
| Englisch | 41 |
| Resource type | Count |
|---|---|
| Keine | 37 |
| Webseite | 10 |
| Topic | Count |
|---|---|
| Boden | 36 |
| Lebewesen und Lebensräume | 42 |
| Luft | 33 |
| Mensch und Umwelt | 47 |
| Wasser | 32 |
| Weitere | 47 |