In Teilprojekt A5 soll geklärt werden, ob die mineralischen Bestandteile, wie Na, K, Mg, Ca, Al oder Fe, der Kohle katalytisch aktiv sind und somit Einfluss auf den Oxyfuel-Verbrennungsprozess nehmen. Neben dem Verbrennungsprozess in O2 werden die beschleunigte Einstellung des Boudouard-Gleichgewichts und die Kohlevergasung mit H2O berücksichtigt, die durch Volumenvergrößerung erheblichen Einfluss auf das Strömungsfeld in Flammen nehmen können. Es sollen reale Kohlen aber insbesondere auch synthetische Modellkohlenstoffe untersucht werden, was eine schrittweise Steigerung der Komplexität der untersuchten Systeme erlaubt.
Bei der Haupttätigkeit der Blasius Schuster KG , Inspire-ID: https://registry.gdi-de.org/id/de.he.0945.de7.pf.eu_industrie/353535345) handelt es sich um Vergasung oder Verflüssigung von Kohle (NACE-Code: 38.21 - Behandlung und Beseitigung nicht gefährlicher Abfälle). Es wurden keine Freisetzungen oder Verbringungen nach PRTR berichtet zu: Freisetzung in die Luft, Freisetzung in das Wasser, Freisetzung in den Boden, Verbringung von Schadstoffen mit dem Abwasser, Verbringung gefährlicher Abfälle im Inland, Verbringung gefährlicher Abfälle im Ausland, Verbringung nicht gefährlicher Abfälle.
MAN Energy Solutions entwickelt in dem hier vorliegenden Projekt einen Verdichter axialer Bauweise für die Eigenschaften von CO2, also einem molekular schweren Gas. Dieser Verdichter muss hohe Volumenströme verarbeiten, wie sie insbesondere in Kraftwerksanlagen entstehen. Zu den wichtigsten Optionen bei der Vermeidung von Umweltbelastungen durch den weltweit ansteigenden CO2-Ausstoss gehört die CCS-Technologie; diese unterscheidet verschiedene Verfahren zur CO2-Abscheidung wie die Abtrennung nach Kohlevergasung (Pre-Combustion / IGCC) oder die Abscheidung nach dem Verbrennungsprozess (Post Combustion). Eines jedoch eint diese Verfahren: die Notwendigkeit von CO2-Verdichtern für den Transport des Treibhausgases vom Kraftwerk zum Speicherort und zum Verpressen der entstandenen CO2-Massen. Eine intelligente Lösung zur Förderung großer CO2-Volumina liegt in der Vorverdichtung mittels eines geeigneten Axialverdichters und der damit einhergehenden Reduktion des Volumenstroms sowie anschließender Verdichtung auf den Enddruck mittels eines Radialverdichters. Die Vorteile eines Axialverdichters für CO2 sind dabei die sehr hohen Wirkungsgrade, die Möglichkeit der Verdichtung großer Volumenströme in einem einzigen Verdichtergehäuse, die Wärmenutzung aus der Kompression in Kraftwerksprozessen und die mechanische Zuverlässigkeit des Kompressors. Die Kombination von hohen Wirkungsgraden, Zwischenkühlungen und dem Eintrag von Abwärme in den Prozess resultiert in einem geringstmöglichen Energieverbrauch für die Verdichtung. Im Rahmen des Forschungsprojektes werden die Grundlagen der Axialverdichterauslegung für CO2 erarbeitet, auf deren Basis transsonische Prozessverdichter zur Förderung großer CO2-Volumina ausgelegt werden können. Da mit der CO2-Verdichtung mittels eines Axialverdichters Neuland betreten wird, ist sowohl eine Verifikation der numerischen Werkzeuge als auch eine Validierung der angewandten Modelle zwingend erforderlich. Zu diesem Zweck wird ein Versuchsverdichter entwickelt, welcher durch eine umfangreiche Instrumentierung und ein intelligentes Messprogramm alle erforderlichen Messdaten bereitstellt. Die hier weiterentwickelte Technologie zur Verdichtung schwerer Gase mittels eines großen Axialverdichters eignet sich daneben auch für den Einsatz in großskaligen Produktionsanlagen zur Kompression von Kohlenwasserstoffen, Erdgas sowie Stickoxiden oder Wasserstoff. Diese Grundstoffe sind vor dem Hintergrund eines globalen Bevölkerungswachstums ebenso essentieller Bestandteil wirtschaftlichen Wachstums und sozialen Wohlstandes wie eine stabile und ausreichend dimensionierte Energieversorgung. Für die vornehmlichen Standorte dieser Anlagen im asiatischen, afrikanischen und südamerikanischen Raum spielt die Verfügbarkeit der hier entwickelten Technologien also eine nicht unbedeutende Rolle bei der langfristigen Entwicklung von Schwellen- zu Industrienationen.
Dieses Projekt ist ein Folgeprojekt des vorangegangenen CO2free SNG, welches sich auf die Erzeugung von Erdgassubstitut (SNG) aus Kohle durch Methanierung von Synthesegas aus der Kohlevergasung konzentrierte. Die derzeitigen Systeme zur Herstellung von SNG aus Kohle basieren auf großskaligen Anlagen wie Flugstromvergasern und einer aufwändigen Reinigung des Synthesegases. Dabei wird meist eine kalte Gasreinigung bei -40 bis -70 C mit Hilfe des Rectisol-Prozesses durchgeführt, die mit signifikanten Exergieverlusten und einem hohen technischen Aufwand verbunden sind. Allerdings erfordert die Einspeisung ins Gasnetz eher Anlagen im mittleren Leistungsbereich aufgrund der lokal begrenzten Einspeisemöglichkeiten. Das CO2freeSNG Projekt zielt daher auf innovative Anlagenlösungen für die SNG Herstellung aus Kohle im mittleren Leistungsbereich ab, die auf einer deutlich vereinfachten Gasreinigung bei erhöhten Temperaturen basieren. Das vorangegangene CO2free SNG Projekt hat die Wirtschaftlichkeit solcher Anlagen in Kombination mit einer Gasreinigung sowie CO2 Abscheidung durch eine Karbonatwäsche demonstriert. Als Fortsetzung dieses Projekts wird eine Versuchsanlage mit einer Leistung von 150 KW der kompletten Prozesskette am EVT aufgebaut, um die technologische Basis für die dann folgende Demonstration in kommerzieller Größe zu legen.
Im Vorhaben soll die Schlackebadvergaser (British Gas Lurgi - BGL)-Vergasung auf Basis theoretischer Studien (unter anderem durch Modellierung) sowie durch experimentelle Untersuchungen im Labor und im Pilotanlagenmaßstab für hocheffiziente, emissionsarme Kohlevergasung mit CO2-Abtrennung (IGCC)-Kraftwerke und flexible Polygeneration-Anwendungen sollen optimiert werden. Dazu ist die Teer-Öl-Ausbeute für IGCC-Kraftwerkanwendungen zu minimieren (Brenngas-BGL-Konzept). Für Polygeneration-Konzepte (Polygen-BGL-Konzept) mit chemischer Synthesegasnutzung und Erzeugung eines erdöläquivalenten Teer-Öl-Gemisches (einsetzbar in der Chemieindustrie oder als speicherbarer Spitzenbrennstoff) ist sie zu maximieren.
An Einsatzkohlen, isolierter Mineralsubstanz, Zwischenprodukten, Endprodukten sowie Abgaengen soll das Verhalten der die Kohle aufbauenden Macerale in Abhaengigkeit von Inkohlungsgrad und das Verhalten der sie begleitenden Minerale vor allem bei der Kohleverfluessigung, der Kohlevergasung und der Wirbelbettverbrennung untersucht werden. Abb. 1 gibt eine Uebersicht ueber die geplanten Untersuchungen und ihren zeitlichen Ablauf. Ziel des geplanten Forschungsvorhabens ist es, die Kenntnis ueber die Eigenschaften der Kohle bei wechselnder Zusammensetzung so zu erweitern, dass ausgehend von den verfuegbaren Lagerstaetteninhalten eine moeglichst optimale Kohlenauswahl nicht nur fuer die bisher praktizierten Technologien, sondern besonders auch fuer die in der Entwicklung befindlichen neuen Technologien getroffen werden kann.
Mittels des im Laboratorium entwickelten Verfahrens der katalytischen Niedertemperaturkonvertierung kann Biomasse zu Erdoel verwandten Brennstoffen in hoher Ausbeute umgesetzt werden: Biomasse, Abfallprodukte wie Klaerschlamm und Muell. Neben Kohlehydrierung und Kohlevergasung ist die katalytische Niedertemperaturkonvertierung von Biomasse das einzige alternative Verfahren, das zu Brennstoffen vom Erdoeltyp fuehrt. Das Verfahren wurde in einer technischen Demonstrationsanlage mit einem Durchsatz von 5 kg organische Trockensubstanz/Std. kontinuierlich durchgefuehrt. Das Verfahren ist energieautark und liefert darueberhinaus 10-20 kg Oel pro Kilogramm Klaerschlamm. Verfahrensparameter, Kinetik und chemischer Mechanismus wird untersucht.
Bei der Energiegewinnung aus heissen Abgasen technischer Prozesse oder bei der Verfeuerung von Biomasse oder Kohle stoesst man auf das Problem, dass diese Gase stark staub- oder partikelhaltig sind. Staubabscheider koennen zwar einen Teil der groesseren Partikel entfernen, die restlichen Teilchen bedrohen aber noch immer die zur Energieerzeugung nachgeschaltete Gasturbine. Neben der Aschenablagerung gefaehrdet vor allem die Erosion die Lebensdauer der Beschaufelung. Das Ziel der diesbezueglichen Forschungsarbeiten ist ist nun die experimentelle und theoretische Untersuchung der Stroemung staub- und partikelbeladener Gase in Turbinen, um neue Konstruktionen zu ermoeglichen, die unter solchen Betriebsbedingungen wirtschaftliche Lebenszeiten erreichen.