In Teilprojekt A5 soll geklärt werden, ob die mineralischen Bestandteile, wie Na, K, Mg, Ca, Al oder Fe, der Kohle katalytisch aktiv sind und somit Einfluss auf den Oxyfuel-Verbrennungsprozess nehmen. Neben dem Verbrennungsprozess in O2 werden die beschleunigte Einstellung des Boudouard-Gleichgewichts und die Kohlevergasung mit H2O berücksichtigt, die durch Volumenvergrößerung erheblichen Einfluss auf das Strömungsfeld in Flammen nehmen können. Es sollen reale Kohlen aber insbesondere auch synthetische Modellkohlenstoffe untersucht werden, was eine schrittweise Steigerung der Komplexität der untersuchten Systeme erlaubt.
MAN Energy Solutions entwickelt in dem hier vorliegenden Projekt einen Verdichter axialer Bauweise für die Eigenschaften von CO2, also einem molekular schweren Gas. Dieser Verdichter muss hohe Volumenströme verarbeiten, wie sie insbesondere in Kraftwerksanlagen entstehen. Zu den wichtigsten Optionen bei der Vermeidung von Umweltbelastungen durch den weltweit ansteigenden CO2-Ausstoss gehört die CCS-Technologie; diese unterscheidet verschiedene Verfahren zur CO2-Abscheidung wie die Abtrennung nach Kohlevergasung (Pre-Combustion / IGCC) oder die Abscheidung nach dem Verbrennungsprozess (Post Combustion). Eines jedoch eint diese Verfahren: die Notwendigkeit von CO2-Verdichtern für den Transport des Treibhausgases vom Kraftwerk zum Speicherort und zum Verpressen der entstandenen CO2-Massen. Eine intelligente Lösung zur Förderung großer CO2-Volumina liegt in der Vorverdichtung mittels eines geeigneten Axialverdichters und der damit einhergehenden Reduktion des Volumenstroms sowie anschließender Verdichtung auf den Enddruck mittels eines Radialverdichters. Die Vorteile eines Axialverdichters für CO2 sind dabei die sehr hohen Wirkungsgrade, die Möglichkeit der Verdichtung großer Volumenströme in einem einzigen Verdichtergehäuse, die Wärmenutzung aus der Kompression in Kraftwerksprozessen und die mechanische Zuverlässigkeit des Kompressors. Die Kombination von hohen Wirkungsgraden, Zwischenkühlungen und dem Eintrag von Abwärme in den Prozess resultiert in einem geringstmöglichen Energieverbrauch für die Verdichtung. Im Rahmen des Forschungsprojektes werden die Grundlagen der Axialverdichterauslegung für CO2 erarbeitet, auf deren Basis transsonische Prozessverdichter zur Förderung großer CO2-Volumina ausgelegt werden können. Da mit der CO2-Verdichtung mittels eines Axialverdichters Neuland betreten wird, ist sowohl eine Verifikation der numerischen Werkzeuge als auch eine Validierung der angewandten Modelle zwingend erforderlich. Zu diesem Zweck wird ein Versuchsverdichter entwickelt, welcher durch eine umfangreiche Instrumentierung und ein intelligentes Messprogramm alle erforderlichen Messdaten bereitstellt. Die hier weiterentwickelte Technologie zur Verdichtung schwerer Gase mittels eines großen Axialverdichters eignet sich daneben auch für den Einsatz in großskaligen Produktionsanlagen zur Kompression von Kohlenwasserstoffen, Erdgas sowie Stickoxiden oder Wasserstoff. Diese Grundstoffe sind vor dem Hintergrund eines globalen Bevölkerungswachstums ebenso essentieller Bestandteil wirtschaftlichen Wachstums und sozialen Wohlstandes wie eine stabile und ausreichend dimensionierte Energieversorgung. Für die vornehmlichen Standorte dieser Anlagen im asiatischen, afrikanischen und südamerikanischen Raum spielt die Verfügbarkeit der hier entwickelten Technologien also eine nicht unbedeutende Rolle bei der langfristigen Entwicklung von Schwellen- zu Industrienationen.
Dieses Projekt ist ein Folgeprojekt des vorangegangenen CO2free SNG, welches sich auf die Erzeugung von Erdgassubstitut (SNG) aus Kohle durch Methanierung von Synthesegas aus der Kohlevergasung konzentrierte. Die derzeitigen Systeme zur Herstellung von SNG aus Kohle basieren auf großskaligen Anlagen wie Flugstromvergasern und einer aufwändigen Reinigung des Synthesegases. Dabei wird meist eine kalte Gasreinigung bei -40 bis -70 C mit Hilfe des Rectisol-Prozesses durchgeführt, die mit signifikanten Exergieverlusten und einem hohen technischen Aufwand verbunden sind. Allerdings erfordert die Einspeisung ins Gasnetz eher Anlagen im mittleren Leistungsbereich aufgrund der lokal begrenzten Einspeisemöglichkeiten. Das CO2freeSNG Projekt zielt daher auf innovative Anlagenlösungen für die SNG Herstellung aus Kohle im mittleren Leistungsbereich ab, die auf einer deutlich vereinfachten Gasreinigung bei erhöhten Temperaturen basieren. Das vorangegangene CO2free SNG Projekt hat die Wirtschaftlichkeit solcher Anlagen in Kombination mit einer Gasreinigung sowie CO2 Abscheidung durch eine Karbonatwäsche demonstriert. Als Fortsetzung dieses Projekts wird eine Versuchsanlage mit einer Leistung von 150 KW der kompletten Prozesskette am EVT aufgebaut, um die technologische Basis für die dann folgende Demonstration in kommerzieller Größe zu legen.
Ziel ist es, Grundlagen und Konzepte für die Entwicklung zukünftiger integrierter Hochtemperaturvergasungsprozesse bereitzustellen. Dabei soll auf eine möglichst hohe Flexibilität bei der Brennstoffauswahl, eine optimale Integration von synthesegasbasierten Prozessen mit konventioneller und erneuerbarer Stromerzeugung sowie Möglichkeiten chemischer Speicher fokussiert werden. Die Arbeitspakete gliedern sich in die Pakete Grundlagenuntersuchungen, Komponentenentwicklung und Systembetrachtungen. Im Paket Grundlagen sollen die Pyrolyse- und Vergasungskinetiken verschiedener Brennstoffe (Kohle und Co-Feeds) ermittelt, der Löser 'coalFoam' weiterentwickelt sowie Prozessschlacken und Laboraschen charakterisiert und modelliert werden. Im Paket Komponentenentwicklung sollen ein Modellfall für einen großtechnischen Flugstromvergaser mittels CFD simuliert, das Asche-/Schlackeverhalten durch thermodynamische Modellierung abgebildet und Optionen zur Quenchkonvertierung Flow-Sheet-Modellierung untersucht werden. Im Paket Systembetrachtungen werden der Einsatz verschiedener Brennstoffe (Kohle und Co-Feeds) für die Vergasung technologisch bewertet und neue Konzepte zur Kopplung synthesegasbasierter Prozessketten mit der konventionellen (fossilen und erneuerbaren) Stromerzeugung sowie Konzepte zur Zwischenspeicherung regenerativen Überschussstroms in synthesegasbasierten Chemikalien technologisch und wirtschaftlich betrachtet. In die Konzepte werden die Ergebnisse des Pakets Komponentenentwicklung eingebunden und Kombinationen separater CO-Konvertierungsverfahren mit der Quenchkonvertierung auf technische und wirtschaftliche Vorteile geprüft.
Im Vorhaben soll die Schlackebadvergaser (British Gas Lurgi - BGL)-Vergasung auf Basis theoretischer Studien (unter anderem durch Modellierung) sowie durch experimentelle Untersuchungen im Labor und im Pilotanlagenmaßstab für hocheffiziente, emissionsarme Kohlevergasung mit CO2-Abtrennung (IGCC)-Kraftwerke und flexible Polygeneration-Anwendungen sollen optimiert werden. Dazu ist die Teer-Öl-Ausbeute für IGCC-Kraftwerkanwendungen zu minimieren (Brenngas-BGL-Konzept). Für Polygeneration-Konzepte (Polygen-BGL-Konzept) mit chemischer Synthesegasnutzung und Erzeugung eines erdöläquivalenten Teer-Öl-Gemisches (einsetzbar in der Chemieindustrie oder als speicherbarer Spitzenbrennstoff) ist sie zu maximieren.
Zum Vergleich der in COORETEC betrachteten Kraftwerksprozesse (GuD-, DKW-, Oxyfuel- und Oxycoal-Prozess, IGCC mit CO2-Abtrennung, DKW mit MEA) werden einheitliche Annahmen und Randbedingungen aufgestellt und Prozessanalysen durchgeführt. Aussagen über die heute machbaren Technologien sowie deren CO2-Vermeidungspotential werden getroffen. Aufgrund der großen Unterschiede zwischen den zu betrachtenden Prozessen müssen die Anlagen- und Betriebsparameter miteinander vergleichbar gestaltet werden. Dies umfasst die Identifizierung aller Parameter und die Definition realitätsnaher, standardisierter Werte für alle Einflussgrößen. Mittels Modellierung und Simulation werden Aussagen über die heute erreichbaren Wirkungsgrade und das Wirkungsgradpotential einzelner Technologien gemacht. Wesentliches Ergebnis der Studie ist es, Aussagen zu treffen, welche Prozesse unter realitätsnahen und vergleichbaren Randbedingungen das größte technische und wirtschaftliche Potenzial besitzen, den Klimaschutz schnellstmöglich voranzutreiben. Die hierbei entwickelten standardisierten Annahmen und Randbedingungen sollen auch bei der zukünftigen Untersuchung von alternativen Prozessen Anwendung finden.
Objective: To establish the performance of coal gasification trials based on the principle of the molten iron reactor. General Information: The process is based on the simultaneous carbonization and decarbonization of liquid iron. In a vessel containing a high -carbon iron bath (hot metal), pulverized coal and oxygen are injected through tuyeres installed in the bottom. Lime or converted slag, in ground form, can also be injected through the bottom tuyeres. In a simplified way the following process runs auto thermically at a temperature in the range 1450c - 1550c: - the volatile components of the coal escape and are cracked: - the carbon is dissolved in the iron: - the coal ash together with added materials, such as steel plant slag or lime, forms a basic final slag; - the sulphur introduced by the coal is bound in the basic reactor slag. As well as in the reactor dust: - the coal dissolved in the molten iron reacts with the oxygen and thus generated the product gas. Achievements: In the 60 T converter the coal rate in the trial was 15 to 20T/H of a 14. 4 per cent ash and 29. 5 per cent volatile coal. The trials have shown that the molten bath temperature was stable during the gasification. The gas composition and the main pollutants concentration are given in table 1. Table1: Composition and pollutants in the gas produced by the Klockner process. CO 64 per cent, CO2 2-3 per cent, H2 30-31 per cent, CH4 730PPM, N2 3 per cent, H2S 2-70PPM, COS 5-28PPM, SO2+SO3 0-42PPM, CL 0. 2-7. 1PPM, F 0-3. 6PPM, HCN 0-4. 2PPM, NH3 0. 1-0. 9PPM. NOX 0. 1-0. 5PPM. - Primarily from carrier gas for coal transportation. Due to the high process temperature of 1 400 up to 1 500 C, as well the function of the molten iron, higher molecular hydrocarbons (tars) were not present. The concentrations of chlorine, flour cyanide of hydrogen, ammonia and nitrogen oxides are extremely low. Also the sulphur concentrations are low. This is a particularly interesting feature of this process compared to other gasification processes. The dust quantity was in the range of 20 to 60G/NM3 but this quantity will be easily reduced to about 5MG/NM3 by the gas cleaning system applied in steel making. The recirculation of fines is considered. The results show that the carbon losses can be limited to 1 to 2 per cent and that desulphurisation of the gases occurs partly in the converter stack. In a longer trial (67 T of coal), the converter lining and the tuyeres are in an excellent condition. The slag produced although containing 3 per cent sulphur - is suitable for the production of concrete, as a material for road construction and as fertilizer. The research work has been continued with subsidies of the Federal German Research Ministry.
Bei den bisher verwendeten Kohleveredelungsmoeglichkeiten Verkokung, Vergasung, Verfluessigung und Verbrennung wird beim Umwandlungsprozess Energie in erheblichem Umfang entweder verbraucht oder abgegeben, dh an die Kohleveredelungsanlage wird in der Regel ein Kraftwerk fossiler oder nuklearer Art angekoppelt sein. Zielprodukte sind neben Strom die Veredelungsprodukte Gas, Treibstoff oder Chemierohstoff. Aufgabe des Vorhabens soll es sein, neue bzw verbesserte Kopplungsmoeglichkeiten zu finden, um zu technisch, oekonomisch und oekologisch ueberzeugenden Gesamtanlagenkonzepten zu gelangen. Dazu gehoeren folgende Arbeitspunkte: 1. Untersuchungen von Konzepten der Methanol- und indirekten Benzinerzeugung aus Kohle in Verbindung mit fossilen oder nuklearen Kraftwerken, 2. Untersuchungen zur Vorbehandlung von Kraftwerkskohle, 3. Untersuchungen zur Erdgasspaltung gekoppelt mit HTR, DWR, Gasturbinenanlage. Zielprodukte Gas, Methanol und NH3, 4. Erstellung von verfahrenstechnischen Rechenprogrammen als Hilfsmittel zur Konzeptauslegung, 5. Untersuchungen und Erarbeitung von Konzepten zur Gewinnung und Aufbereitung von Rohstoffen entsprechend den landesspezifischen Gegebenheiten (Rohstoffart, Vorkommen, Infrastruktur, Energiebedarf), 6. Untersuchungen und Erarbeiten von Verfahren zur Substitution von Oel (zB fuer die Duengemittelerzeugung), Nutzung organischer Stoffe (zB Pflanzen und Holz) fuer rohstoffarme Laender, 7. Untersuchungen zum Einsatz hochentwickelter Technologien mit Prozessdampfauskoppelung aus Kernkraftwerken in Entwicklungslaendern.
Im Forschungsvorhaben werden Untersuchungen an 6 m langen Rohren in einem Parameterbereich durchgefuehrt, der die moeglichen Dampfzustaende fuer den Dampferzeuger zur Rohrgaskuehlung beim GuD-Kraftwerk mit Kohlevergasung abdeckt. Ziel des Vorhabens ist das Erstellen von Rechenverfahren, die die Berechnung der Rohrwandtemperatur und des Druckverlustes sowohl fuer glatte Rohre bei ungleichfoermiger Beheizung ueber den Rohrumfang, als auch fuer geneigte, glatte Rohre sowie fuer senkrecht angeordnete innengerippte Rohre mit gleichfoermiger Beheizung ueber den Rohrumfang erlauben. Das Vorhaben dient der Erhoehung der Auslegungssicherheit und -genauigkeit von Dampferzeugersystemen, insbesondere im Zusammenhang mit der Einfuehrung neuer Technologien auf dem Kraftwerkssektor wie Kohlevergasung und Wirbelschichtfeuerung.
Aufbau und Betrieb einer kg/h-Versuchsapparatur bei BF bestehend aus Pyrolysereaktor und nachgeschaltetem Cracker fuer einen Druckbereich bis 200bar - ergaenzende Laboruntersuchungen zur Kohlenpyrolyse in Fortfuehrung der Arbeiten von Phase 1 und 2a - Erstellung reaktionstechnischer Modelle und Ingenieur-Studien hinsichtlich der vorgegebenen Zielrichtungen der Prozessentwicklung, d.h. Pyrolyse als Vorstufe zur Vergasung oder Verbrennung - zur Herstellung von Chemie-Rohprodukten - Abschaetzung technischer und wirtschaftlicher Aspekte hinsichtlich der Anwendung in Grossanlagen.