In Teilprojekt A5 soll geklärt werden, ob die mineralischen Bestandteile, wie Na, K, Mg, Ca, Al oder Fe, der Kohle katalytisch aktiv sind und somit Einfluss auf den Oxyfuel-Verbrennungsprozess nehmen. Neben dem Verbrennungsprozess in O2 werden die beschleunigte Einstellung des Boudouard-Gleichgewichts und die Kohlevergasung mit H2O berücksichtigt, die durch Volumenvergrößerung erheblichen Einfluss auf das Strömungsfeld in Flammen nehmen können. Es sollen reale Kohlen aber insbesondere auch synthetische Modellkohlenstoffe untersucht werden, was eine schrittweise Steigerung der Komplexität der untersuchten Systeme erlaubt.
MAN Energy Solutions entwickelt in dem hier vorliegenden Projekt einen Verdichter axialer Bauweise für die Eigenschaften von CO2, also einem molekular schweren Gas. Dieser Verdichter muss hohe Volumenströme verarbeiten, wie sie insbesondere in Kraftwerksanlagen entstehen. Zu den wichtigsten Optionen bei der Vermeidung von Umweltbelastungen durch den weltweit ansteigenden CO2-Ausstoss gehört die CCS-Technologie; diese unterscheidet verschiedene Verfahren zur CO2-Abscheidung wie die Abtrennung nach Kohlevergasung (Pre-Combustion / IGCC) oder die Abscheidung nach dem Verbrennungsprozess (Post Combustion). Eines jedoch eint diese Verfahren: die Notwendigkeit von CO2-Verdichtern für den Transport des Treibhausgases vom Kraftwerk zum Speicherort und zum Verpressen der entstandenen CO2-Massen. Eine intelligente Lösung zur Förderung großer CO2-Volumina liegt in der Vorverdichtung mittels eines geeigneten Axialverdichters und der damit einhergehenden Reduktion des Volumenstroms sowie anschließender Verdichtung auf den Enddruck mittels eines Radialverdichters. Die Vorteile eines Axialverdichters für CO2 sind dabei die sehr hohen Wirkungsgrade, die Möglichkeit der Verdichtung großer Volumenströme in einem einzigen Verdichtergehäuse, die Wärmenutzung aus der Kompression in Kraftwerksprozessen und die mechanische Zuverlässigkeit des Kompressors. Die Kombination von hohen Wirkungsgraden, Zwischenkühlungen und dem Eintrag von Abwärme in den Prozess resultiert in einem geringstmöglichen Energieverbrauch für die Verdichtung. Im Rahmen des Forschungsprojektes werden die Grundlagen der Axialverdichterauslegung für CO2 erarbeitet, auf deren Basis transsonische Prozessverdichter zur Förderung großer CO2-Volumina ausgelegt werden können. Da mit der CO2-Verdichtung mittels eines Axialverdichters Neuland betreten wird, ist sowohl eine Verifikation der numerischen Werkzeuge als auch eine Validierung der angewandten Modelle zwingend erforderlich. Zu diesem Zweck wird ein Versuchsverdichter entwickelt, welcher durch eine umfangreiche Instrumentierung und ein intelligentes Messprogramm alle erforderlichen Messdaten bereitstellt. Die hier weiterentwickelte Technologie zur Verdichtung schwerer Gase mittels eines großen Axialverdichters eignet sich daneben auch für den Einsatz in großskaligen Produktionsanlagen zur Kompression von Kohlenwasserstoffen, Erdgas sowie Stickoxiden oder Wasserstoff. Diese Grundstoffe sind vor dem Hintergrund eines globalen Bevölkerungswachstums ebenso essentieller Bestandteil wirtschaftlichen Wachstums und sozialen Wohlstandes wie eine stabile und ausreichend dimensionierte Energieversorgung. Für die vornehmlichen Standorte dieser Anlagen im asiatischen, afrikanischen und südamerikanischen Raum spielt die Verfügbarkeit der hier entwickelten Technologien also eine nicht unbedeutende Rolle bei der langfristigen Entwicklung von Schwellen- zu Industrienationen.
Im Vorhaben soll die Schlackebadvergaser (British Gas Lurgi - BGL)-Vergasung auf Basis theoretischer Studien (unter anderem durch Modellierung) sowie durch experimentelle Untersuchungen im Labor und im Pilotanlagenmaßstab für hocheffiziente, emissionsarme Kohlevergasung mit CO2-Abtrennung (IGCC)-Kraftwerke und flexible Polygeneration-Anwendungen sollen optimiert werden. Dazu ist die Teer-Öl-Ausbeute für IGCC-Kraftwerkanwendungen zu minimieren (Brenngas-BGL-Konzept). Für Polygeneration-Konzepte (Polygen-BGL-Konzept) mit chemischer Synthesegasnutzung und Erzeugung eines erdöläquivalenten Teer-Öl-Gemisches (einsetzbar in der Chemieindustrie oder als speicherbarer Spitzenbrennstoff) ist sie zu maximieren.
Objective: Development and test operation of a new waste utilization system (radiation boiler) and of further new components for pressurized entrained flow gasification (PRENFLO). The new components besides the radiation boiler were a candle filter (dry dedusting of PRENFLO raw gas), a fly ash recycle system, a catalytic COS hydrolysis and a raw gas desulfurization system (MDEA process). General Information: The partial oxidation of solid fuels according to the entrained-flow principle (PRENFLO process) is an exothermic process, approx. 20 per cent of the gross calorific value of the fuel being converted into sensible heat. Utilization of this large quantity of heat released is indispensible for the energetically optimum of the PRENFLO process in industrial-scale applications. The raw gas leaves the gasifier at a temperature of approx. 1400 deg. C, highly laden - about 160 g/m3 (24 bar) with small molten or doughy ash particles. The heat utilization concept realized to date at Krupp Koppers comprises the cooling of raw gas at the outlet of the gasifier with quench gas to temperatures of less than 1000 deg. C resulting in higher heat losses at temperatures below 250 deg. C. The hot gas quenching can be avoided by using the new waste heat utilization system for dust-laden PRENFLO raw gas with high optical density. It is based on a radiation boiler with built-in heat exchange elements, the arrangement of which takes account of the temperature and flow profile of the hot raw gas leaving the reactor. Results from the operation of a 48 t/d PRENFLO plant with regard to slag separation in the gasifier, effectiveness of mechanical dedusting devices, decoupling of radiation boiler from gasifier to take account of the vibrational properties (mechanical cleaning device for heat exchangers), and theoretical investigations on heat exchange for optically dense fluids indicated the possibilities of preventing energy losses by quench gas cooling of raw gas. Optimization of the system with regard to the spacing of the heat exchange elements, the cleaning and the geometry of the system result in lower overall height and anticipate efficiency improvements if the system is applied in a CC-power plant. The dry dedusting of PRENFLO gas allows fly ash recycling to the gasifier, thereby a total slagging of the coal ash and a total carbon conversion can be achieved. A high effective filtering system reduces heat losses with the raw gas, when hot dedusted gas from the filter is recycled as quench gas. A candle filter and a pneumatic fly ash recycle system was planned, built and tested. For the desulfurization of the PRENFLO gas a catalytic COS hydrolysis (conversion of COS to H2S) and a H2S absorber (MDEA process) were installed in the test plant to proof the reliability of these process stages for PRENFLO gas in a wide range of operating conditions and to take account of the gas and solid traces in the gas to be treated. Testing and optimization of the waste heat...
Ziel des Vorhabens ist es, das fuer ein breites Brennstoffband geeignete GSP-Flugstrom-Vergasungsverfahren in ein zu errichtendes Demonstrationskraftwerk mit kombinierter Gas- und Dampfturbinenanlage zu integrieren. Als Planungsgrundlage wird von einer Kraftwerksleistung von 170 MWel ausgegangen. Die Untersuchung erstreckt sich insbesondere auf die Auslegung und optimale Schaltung der Anlagenkomponenten hinsichtlich einer geringen Umweltbelastung und eines hohen Gesamtwirkungsgrades. Auf diese Weise soll ein generelles Konzept fuer eine praktikable Nutzung des GSP-Verfahrens in Kombikraftwerken zur kostenguenstigen Stromerzeugung entwickelt werden.
Es werden Menge und Qualiaet der bei der Kohlevergasung im Prototyp 'Ruhr 100' anfallenden Abwaesser ermittelt. Mit Hilfe von Versuchen werden die Parameter erarbeitet, die fuer die Auslegung einer Anlage zur Abwasseraufbereitung benoetigt werden.
Dieses Projekt ist ein Folgeprojekt des vorangegangenen CO2free SNG, welches sich auf die Erzeugung von Erdgassubstitut (SNG) aus Kohle durch Methanierung von Synthesegas aus der Kohlevergasung konzentrierte. Die derzeitigen Systeme zur Herstellung von SNG aus Kohle basieren auf großskaligen Anlagen wie Flugstromvergasern und einer aufwändigen Reinigung des Synthesegases. Dabei wird meist eine kalte Gasreinigung bei -40 bis -70 C mit Hilfe des Rectisol-Prozesses durchgeführt, die mit signifikanten Exergieverlusten und einem hohen technischen Aufwand verbunden sind. Allerdings erfordert die Einspeisung ins Gasnetz eher Anlagen im mittleren Leistungsbereich aufgrund der lokal begrenzten Einspeisemöglichkeiten. Das CO2freeSNG Projekt zielt daher auf innovative Anlagenlösungen für die SNG Herstellung aus Kohle im mittleren Leistungsbereich ab, die auf einer deutlich vereinfachten Gasreinigung bei erhöhten Temperaturen basieren. Das vorangegangene CO2free SNG Projekt hat die Wirtschaftlichkeit solcher Anlagen in Kombination mit einer Gasreinigung sowie CO2 Abscheidung durch eine Karbonatwäsche demonstriert. Als Fortsetzung dieses Projekts wird eine Versuchsanlage mit einer Leistung von 150 KW der kompletten Prozesskette am EVT aufgebaut, um die technologische Basis für die dann folgende Demonstration in kommerzieller Größe zu legen.
Das IGCC Kraftwerk ist eine geeignete Kraftwerkstechnologie um auf Basis des Energieträgers Kohle die veränderliche Einspeisung Erneuerbarer Energien in der zukünftigen Energieversorgung auszugleichen. In grundlagenorientierten Forschungsvorhaben HotVeGas werden Konzepte für zukünftige Kraftwerks- und Speichertechnologien evaluiert und neue Kraftwerkskomponenten entwickelt. In Forschungsvergaseranlagen sollen die Reaktionsabläufe unter industriell relevanten Bedingungen experimentell untersucht werden, um bestehende Vergasungstechnologien zu optimieren, zukünftige Technologien zu entwickeln und geeignete Brennstoffe zu charakterisieren. Die Experimente zielen dabei auf die Vergasungskinetik und das Ascheverhalten bei hohen Temperaturen und Drücken ab. Weiterhin werden in statischen und dynamischen Simulationen neue Kraftwerksschaltungen, Zwischenspeichertechnologien und Lastfähigkeitskonzepte entwickelt und bewertet, wobei auch der Einsatz neuer Komponenten wie z.B. einem Membran-Shift-Reaktor betrachtet wird. Für die Validierung von eigens entwickelten CFD Modellen von Vergasungsanlagen werden die experimentell gewonnenen Daten herangezogen, um weiterführende Ansätze für neue Kraftwerkskomponenten zu finden.
Ziel ist es, Grundlagen und Konzepte für die Entwicklung zukünftiger integrierter Hochtemperaturvergasungsprozesse bereitzustellen. Dabei soll auf eine möglichst hohe Flexibilität bei der Brennstoffauswahl, eine optimale Integration von synthesegasbasierten Prozessen mit konventioneller und erneuerbarer Stromerzeugung sowie Möglichkeiten chemischer Speicher fokussiert werden. Die Arbeitspakete gliedern sich in die Pakete Grundlagenuntersuchungen, Komponentenentwicklung und Systembetrachtungen. Im Paket Grundlagen sollen die Pyrolyse- und Vergasungskinetiken verschiedener Brennstoffe (Kohle und Co-Feeds) ermittelt, der Löser 'coalFoam' weiterentwickelt sowie Prozessschlacken und Laboraschen charakterisiert und modelliert werden. Im Paket Komponentenentwicklung sollen ein Modellfall für einen großtechnischen Flugstromvergaser mittels CFD simuliert, das Asche-/Schlackeverhalten durch thermodynamische Modellierung abgebildet und Optionen zur Quenchkonvertierung Flow-Sheet-Modellierung untersucht werden. Im Paket Systembetrachtungen werden der Einsatz verschiedener Brennstoffe (Kohle und Co-Feeds) für die Vergasung technologisch bewertet und neue Konzepte zur Kopplung synthesegasbasierter Prozessketten mit der konventionellen (fossilen und erneuerbaren) Stromerzeugung sowie Konzepte zur Zwischenspeicherung regenerativen Überschussstroms in synthesegasbasierten Chemikalien technologisch und wirtschaftlich betrachtet. In die Konzepte werden die Ergebnisse des Pakets Komponentenentwicklung eingebunden und Kombinationen separater CO-Konvertierungsverfahren mit der Quenchkonvertierung auf technische und wirtschaftliche Vorteile geprüft.