API src

Found 111 results.

Sonderforschungsbereich (SFB) 1211: Evolution der Erde und des Lebens unter extremer Trockenheit, Teilprojekt C04: Gipswüste & atmosphärischer Eintrag

Dieses Projekt konzentriert sich auf die Quellen und Raten atmosphärischer Deposition, sowie die Art und Kinetik von Phasenübergängen. Nitrate und Sulfate sind Ziele für die Bestimmung ihrer Quellen und Ablagerungsraten. Die wasserhaltigen und wasserfreien Polymorphe von Calciumsulfat sind das Hauptziel, um Phasenbeziehungen (als Funktion der Temperatur und der Wassermobilität) und die Kinetik der Transformation (Lösung/Fällung, Phasentransformation) zu untersuchen. Oberflächenelemente und untiefe Bodenelemente (Polygone, Krusten, Knollen, Keile) deuten auf die weit verbreitete, klimabedingte Transformationen von Sulfaten hin, die es zu untersuchen gilt.

AsFeP0 - A model concept for in situ investigation or arsenic and phosphate adsorption to predefined iron minerals and to characterize transformation processes of iron minerals

Shallow groundwater of the huge deltaic systems of Asia like the Red River Delta in Vietnam is often enriched in inorganic arsenic (As), threatening the health of millions of residents. The massive abstraction of groundwater in these areas locally causes an irreversible mixing of arsenic-free groundwater resources with arsenic-rich groundwater. Increased concentrations of competitive anions, especially phosphate (PO43-), decrease the immobilization capacity of the sediments. During transport, the mobility of dissolved As in local aquifers is strongly influenced by adsorption to sedimentary and ubiquitously occurring iron(oxyhydr)oxides. Additionally, arsenic-rich groundwater is often enriched in reduced iron (Fe2+) as well, which is capable to react with iron(oxyhydr)oxides, thereby inducing mineral transformations. Such transformations permanently affect the arsenic adsorption and immobilization capacity of the sediments.Within the scope of this research project, the underlying mechanisms related to As transport and the resulting threat to arsenic-free groundwater resources will be characterized in cooperation with the Swiss Federal Institute of Aquatic Science and Technology (Eawag). The research concept aims at assessing the complex interactions within the arsenic-iron-phosphate-system under field conditions at a study site next to the Red River. First, filtration experiments using local groundwater enriched in As and PO43- will be used to determine the As adsorption capacity of different and previously geochemically characterized iron(oxyhydr)oxides. In a second step, sample carrier containing As loaded iron(oxyhydr)oxides will be introduced into surface near aquifer parts of the study site (via existing groundwater monitoring wells). These samples will be exposed to local groundwater characterized by increased As, Fe2+ and PO43- concentrations for the following nine months. Using the in situ exposition of predefined iron(oxyhydr)oxides, it will be possible to distinguish potential mineral transformations and their influences on the As immobilization capacity of the respective iron(oxyhydr)oxides. By combining the results and outcomes of the field experiments, new and important conclusions regarding the mobility of As can be drawn. The data can be used to create a hydrochemical transport model describing reactive As transport within the investigation area. In addition, the results of the in situ exposition experiments will allow to draw conclusions in respective to the long term As immobilization capacity of different iron(oxyhydr)oxides, which is an essential information regarding in situ decontamination techniques.

Sonderforschungsbereich (SFB) 1211: Evolution der Erde und des Lebens unter extremer Trockenheit, Teilprojekt D02: Datierung von Evaporiten

Ziel dieses Projekts ist es, die 176Lu-176Hf und 238U-230Th Methodik für die Anwendung an Evaporitmineralen (Karbonat, Anhydrit, Gips, Bassanit) zu entwickeln. In Kombination würden diese Methoden das gesamte zu erwartendene Alterspektrum in der Atacama Wüste abdecken (einige Zehntausend bis Zehnermillionen Jahre).

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, DeepEarthshape - Reaktionsfronten in tiefem Regolith und deren Bildungsmechanismen

Die meisten Ökosysteme der Erde kommen in der 'tiefen Biosphäre' in permanenter Dunkelheit vor. Die Verwitterungszone - der unterirdische Teil der 'Critical Zone' - bildet einen aktiven Teil dieses Lebensraums. Wir werden die Formung dieser Zone mittels innovativer Isotopen- und geochemischer Methoden erforschen. Dieses Vorhaben ist Teil der 'DeepEarthshape' Projektgruppe, die Geochemie, Mikrobiologie, Geophysik, Geologie und Biogeochemie verbindet. 'DeepEarthshape' beruht auf den Erkenntnissen der ersten EarthShape Phase. An allen vier untersuchten Standorten ist die Verwitterungszone so tief, dass deren Basis in keinem der Bodenprofile angetroffen wurde. Jedoch wurden im gesamten Saprolith beträchtliche Mengen an mikrobieller Biomasse gefunden.Die Frage ist nun: wie trägt Niederschlag und Pflanzenbedeckung entlang des Earthshape-Transekts zur Formung der tiefen Verwitterungszone bei? Folgende Hypothesen werden geprüft: 1) die Verwitterungsfronten an den EarthShape-Standorten sind heute aktiv; 2) die Massenverluste durch Erosion und chemische Verwitterung werden durch die Abtiefung der Verwitterungsfront ausgeglichen; und 3) die Verwitterungszone umfasst eine Reihe von unterscheidbaren, komplexen Fronten, die unterschiedliche biogeochemische Prozesse widerspiegeln (z. B. Wasserinfiltration, Eisenoxidation, mikrobielle Aktivität und organischem Kohlenstoffkreislauf).Im Mittelpunkt aller DeepEarthshape Projekte steht eine Bohrkampagne, die durch geophysikalische Bildgebung der tiefen 'Critical Zone' ergänzt wird. An allen vier Standorten werden wir Bohrkerne entnehmen, die durch Boden und Saprolith hindurch bis in das unverwitterte Ausgangsgestein führen. Durch die innovative Kombination von Methoden der Uran-Zerfallsreihen (Bestimmung der Abtiefunggeschwindigkeit der Verwitterungsfront) mit in situ kosmogenem Beryllium-10 (Bestimmung der Abtragungsrate) werden wir das Gleichgewicht zwischen der Produktion von verwittertem Material in der Tiefe und dessen Verlust an der Oberfläche ermitteln. Zusätzlich werden wir die Tiefenverteilung von meteorischem kosmogenen 10Be als Proxy für die Wasserinfiltration und die des stabilen 9Be als Proxy für die silikatische Verwitterung in der Tiefe verwenden. Wir werden die mineralogische und chemische Zusammensetzung der Kerne beschreiben und Elementabreicherung, Dichte, Porosität, Öberfläche und den Redoxzustand von Eisen messen, um die Verwitterungsfronten zu lokalisieren. Mit den Ergebnissen können wir den Einfluss von Klima und Vegetation auf die Bildungsmechanismen der einzelnen Verwitterungsfronten bestimmen. Der relative Einfluss dieser zwei Faktoren wird anhand eines Massenbilanzmodells ermittelt, welches Verwitterungskinetik und Nährstoffbedarf der nachwachsenden Pflanzenmasse verknüpft. Dieses Vorhaben leitet somit einen Beitrag, mit dem der Einfluss der tiefen Biosphäre und der tiefen 'Critical Zone' auf den CO2-Entzug aus der Atmosphäre und damit das Klima der Erde bilanziert werden kann.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, DeepEarthShape - Geophysikalische Sondierung: Abbildung der Verwitterungsfront im tiefen Regolith mit seismischen und elektromagnetischen Methoden (GIDES)

Dieses Projekt ist Teil des interdisziplinären DeepEarthshape Verbunds zur Untersuchung der Verwitterungs- bzw. kritischen Zone (CZ) mit Bohrungen und geophysikalischen, geochemischen und mikrobiologischen Untersuchungen. Die CZ ist der oberste Teil der Erdkruste, wo Gesteine durch den Einfluss von Luft, Wasser oder biologischen Organismen mechanisch bzw. chemisch zersetzt werden. Die Mächtigkeit hängt vom Gleichgewicht zwischen Erosion und tiefen Verwitterungsprozessen ab. Die geochemische Charakterisierung der CZ hat gezeigt, dass sie viel tiefer ist als erwartet (ca. 30m). Obwohl in geringen Tiefen (1-2m) beachtliche Mengen an mikrobieller Biomasse und DNA gefunden wurden, die mit der Verwitterung zusammenhängen könnten, ist unser Verständnis der CZ und ihrer Prozesse immer noch begrenzt. Unklar sind die Tiefe der Verwitterung, die Prozesse und ihre jeweiligen Verursacher. Da die Eigenschaften der CZ mit dem Klima in Verbindung zu stehen scheinen, werden im Rahmen der DFG SPP 1803 vier Untersuchungsgebiete vorgeschlagen, die verschiedenen Klimazonen mit unterschiedlicher Vegetation, Niederschlagsmengen und Erosion angehören. Die langgestreckte Küste Chiles ist ein idealer Ort, um klimatische Abhängigkeiten im gleichen geologischen Komplex, der Küstenkordillere, zu untersuchen. Durch den Vergleich der Ergebnisse aus diesen vier Untersuchungsgebieten sollen schließlich Hypothesen für die CZ getestet werden, wie z.B. eine mögliche Verknüpfung der Verwitterungsfront mit rezenten klimagetriebenen Prozessen und der Erosion an der Oberfläche durch eine biogeochemische Rückkopplung oder mikrobielle Aktivität im tiefen Regolith durch organische Substanzen, die die Verwitterung vorantreiben. Die oberflächennahe Geophysik entwickelt sich zu einem wesentlichen Bestandteil der CZ-Untersuchungen, um hydro-geomorphologische und Verwitterungsfront-Modelle zu testen. Hier schlagen wir kombinierte geophysikalische Experimente mit P- und S-Wellen Seismik und flachen elektromagnetischen (Radiomagnetotellurischen) Messungen entlang von ca. 500m langen Profilen an allen vier Standorten vor. Die Hauptziele dieser geophysikalischen Experiment, sind a) die Abbildung der Tiefe der CZ und ihrer räumlichen Variation; b) der Zusammenhang von physikalischen Parametern mit denen, die in den Bohrkernen gefunden wurden; c) die Beurteilung, ob Bohrlochergebnisse für einen größeren Raum repräsentativ sind; d) der Vergleich von geophysikalischen Abbildern der CZ mit denen der hydro-geomorphologischen Modelle; e) das Bestimmen der Tiefe des Grundwasserspiegels und der Einfluss von Störungssystemen, die Wegsamkeiten für meteorische Wässer darstellen; f) die Kopplung seismischer Geschwindigkeiten mit elektrischen Leitfähigkeiten, um zuverlässige Schätzungen der Porosität zu erhalten und g) eine konsistente geologische Interpretation verschiedener geophysikalischer, geochemischer und mikrobiologischer Beobachtungen abzuleiten.

Formation of mega-glendonites in the aftermath of the Paleocene-Eocene thermal maximum

Glendonites are pseudomorphs after the mineral ikaite (CaCO3 x 6H2O) and composed of calcite (CaCO3). In the past, they have been used as a paleo-thermometer because the primary mineral ikaite, according to observations and experiments, seems to be formed at temperatures near freezing, high alkalinity and high phosphate concentrations in marine sediments. An enigmatic occurrence of the largest glendonites known world-wide, in the Early Eocene Fur Formation of northwestern Denmark offers the unique possibility to shed more light on the actual mechanism and controlling parameters of ikaite formation. Right in the aftermath of the Paleocene-Eocene thermal maximum, a time known for its global pertubation in the global carbon cycle, the formation of authigenic calcium carbonate concretions start in the Fur Formation. In a specific stratigraphic interval inbetween these concretions, the glendonites can be found. We will investigate if termperature changes or changes in geochemical parameters of the Danish Basin caused the sudden formation of ikaite during a time interval that was based on known paleoclimatic reconstructions (semi tropic) not favorable for ikaite formation.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, DeepEarthshape: Geomikrobiologie 'eisenmetabolisierende Bakterien als treibende Kraft für die Verwitterung von Silikat-Mineralen'

Jahrzehntelange Forschung hat die zentrale Rolle von Mikroorganismen für Verwitterungsprozesse in geologischen Systemen gezeigt. Dieser wichtige mikrobielle Beitrag liegt u.a. darin begründet, dass Mikroorganismen Redox-Umwandlungsprozesse von in Mineralien eingeschlossenen Metallen katalysieren können. Im Rahmen dieser bisherigen Untersuchungen wurden v.a. verschiedene Mikroorganismen untersucht, die Eisen(II)-Minerale oxidieren oder Eisenoxid-Minerale reduzieren können, oder es wurde der Effekt von Fe(III)-reduzierenden Mikroorganismen auf Eisen(III)-haltige Tonminerale analysiert. Diese Prozesse mögen wichtige Reaktionen in Verwitterungungsprozessen sein, allerdings sind die erwähnten Minerale selbst Verwitterungsprodukte. Eisen-metabolisierende Bakterien könnten allerdings auch in größerem Maße zur vorherigen Entstehung von verwittertem Bodenmaterial beitragen, allerdings ist die Bedeutung solcher Prozesse bisher nicht bestimmt. Die Ökologie dieser Bakterien in Relation zum Alterungsprozesses des Bodens ist so gut wie unbekannt. Dieses fehlende Wissen der ökologischen Bedeutung ist unter anderem darin begründet, dass Eisen-metabolisierende Bakterien trotz ihrem signifikanten Einfluss auf die Biogeochemie oft in etwas geringerer Zahl, relativ zur gesamten mikrobiellen Population, vorkommen, und dadurch schwieriger zu untersuchen sind. Um den zu erwartenden bedeutenden Effekt von Eisen-metabolisierenden Bakterien auf die Entwicklung des Bodens zu untersuchen, ist eine ausgewählte Kombination aus hochsensiblen molekularen- und wachstums-basierten Experimenten nötig, welche für diese speziellen Mikroorganismen angepasst und entwickelt werden müssen oder bereits entwickelt worden sind. Die Hypothese dieses Projekts ist deshalb, dass sich die Gemeinschaft der Eisen-metabolisierenden Bakterien mit der geologischen Umgebung während der Ausbildung des Bodens gemeinsam mit- und weiterentwickeln wird, und deren Aktivität wiederum die Rate der Bodenausbildung beschleunigen wird. Im Rahmen des hier beantragten Projekts schlagen wir vor, diese Prozesse anhand der drastischen klimatischen Gradienten der chilenischen Küstenkordillere zu untersuchen. Hier kann die Korrelation zwischen Abundanz, Verteilung und Identität der Eisen-metabolisierenden Bakterien und der Art der vorkommenden Eisenquelle entlang des vertikalen Bodenprofiles unter Einwirkung von vier verschiedenen Klimaregimen untersucht werden. Wir werden unter anderem Mikrokosmos-Experimente durchführen, um den Einfluss dieser Bakterien auf die Verwitterungsrate von Eisensilikaten und Raten von Mineraltransformationen zu quantifizieren. Letzten Endes wollen wir damit zeigen, wie diese Mikroorganismen zur Ausgestaltung der Erdoberfläche beitragen.

Schwerpunktprogramm (SPP) 1803: EarthShape: Earth Surface Shaping by Biota, Korrelation zwischen der Zusammensetzung mikrobieller Biofilme und der Verwitterung exponierter Felsoberflächen (Biodeterioration) entlang eines klimatischen und zeitlichen Gradienten in Chile

Mögliche Korrelationen zwischen der taxonomischen Zusammensetzung mikrobieller Biofilmen, die offene Felsen aus hartem magmatischen Gestein besiedeln, und einer Verwitterung bzw. Erosion der Felsoberflächen zu untersuchen sind wichtige Ziele dieses Projektes. Die Diversität sowohl phototrophe (Cyanobakterien, eukaryotische Algen) als auch heterotrophe (andere Prokaryoten und Mikropilze) Biofilm-Komponenten werden mit New Generation Sequencing (NGS) möglichst umfassend bestimmt. Zusätzlich werden auch Kulturen der phototrophen Biofilmorganismen untersucht. Veränderungen der mikrobiellen Lebensgemeinschaften auf und im Gestein werden entlang eines klimatischen Gradienten in Bezug auf Feuchtigkeit und Temperatur untersucht. Dazu dienen Proben von Biofilmen und Bohrkernen aus drei klimatisch unterschiedlichen Zonen in der Küsten-nahen Cordillera Region in Chile, d.h. den ausgewiesenen primären Schwerpunktuntersuchungsarealen des SPP 1803. Verschiedene Sukzessionsstadien der Biofilme ergeben zusammen mit Altersbestimmung anhand von 14C Beschleunigungs-Massenspektrometrie eine biologische Zeitskala. Für einen breiteren Einblick in die Funktionalität von Diversitätsveränderungen in den Biofilmen dienen sowohl hoch auflösende Flächenanalytik von Hartteilschnitten als auch biochemische Analysen zum Nachweis Signaturen mikrobiellen Stoffwechsels an der Schnittstelle Biofilm/Fels. Die räumliche Verteilung und relative Abundanzen der verschiedenen Organismengruppen innerhalb der Biofilme werden mithilfe der in situ Hybridisierung und Fluoreszenzmikroskopie untersucht. Parallel dazu werden exponierte künstliche Hartsteinsubstrate auf eine Entwicklung der Besiedelung und Verwitterung untersucht. Ebenfalls für das Erstellen einer biologischen Zeitskala der Verwitterung dienen Analysen von Detritus in nächster Nähe der untersuchten Felsen, d.h. Gesteinspartikel mit Biofilmen dar, die aufgrund der Verwitterung bereits vom Felskörper abgefallen sind. Die Zusammensetzung mikrobieller Gemeinschaften des Detritus gibt möglicherweise Hinweise auf den Beginn dessen Besiedlung und in einem späteren Stadium auch des Bodens, der sich aus dem Detritus bildet. Somit ergibt sich hier eine Schnittstelle von der biogenen Gesteinsverwitterung zur Besiedlung von Böden. Um Effekte der Erosion durch Biofilme untersuchen zu können und zur Etablierung einer geologischen Zeitskala dienen Analysen kosmogener Nuklide (CNA). Damit wird analysiert 1) ob und wenn ja welche Beziehungen zwischen der artlichen (OTU) Zusammensetzung der Biofilme und Erosion der Felsoberflächen bestehen und 2) eine graduelle Erosion der Oberfläche, d.h. Biodeterioration, stattfindet. In dem ariden nördlichen Untersuchungsgebiet (Atacama Wüste) sind auch Felsen ohne nachweisbaren Biofilm zu erwarten. Vergleiche der Konzentrationen kosmogener Nuklide von Proben mit und ohne Biofilm werden dann zeigen, ob und in wie fern Biofilme die Oberflächenverwitterung über lange Zeiträume hinweg beeinflussen.

Heterogene Photokatalyse: NOx-Reduktion und Kohlenwasserstoff-Oxidation an Halbleitern

Im Zusammenhang mit der Reinigung von durch Kohlenwasserstoffe bzw. Stickoxide belasteten Abgasen ist der Einsatz von Halbleitern, wie z.B. TiO2, als Photokatalysatoren vor allem deshalb interessant, weil die Verbrennungs- bzw. Reduktionsreaktionen bei Raumtemperatur ablaufen können. Die praktische Anwendung ist allerdings durch die bisher erreichten, noch zu geringen Katalysatoraktivitäten begrenzt. Im Rahmen des Projektes sollen der Einfluss von Lichtwellenlänge, Lichtintensität und Kristallitgröße auf Geschwindigkeit und Selektivität (z.B. NO2, NO, N2O, N2) der Umsetzung untersucht werden. Es umfasst die Katalyse aus Sicht der Technischen Chemie und das Problem der Herstellung und Charakterisierung nanokristalliner, d.h. grenzflächendominierter Materialien aus Sicht der Festkörper Physikochemie. Ziel dieser Zusammenarbeit ist es vor allem, am Beispiel ausgewählter Reaktionen die Einflüsse der Eigenschaften des Katalysatormaterials auf den Ablauf von mit Photohalbleitern katalysierten Gasreaktionen herauszuarbeiten und in einem Modell zusammenzuführen.

Die Bildung und Entwicklung des Erdmantels im Archaikum; Subkalzische Granate und Eklogite als älteste Zeitzeugen

Die Entstehung und das Wachstum der Archaischen Kerne von Kontinenten und die zeitliche und örtliche Entwicklung von Prozessen im subkratonischen Erdmantel und der darüber liegenden Kruste sind wichtige Eckpfeiler zum Verständnis der Stabilisierung von langlebigen kontinentalen Blöcken durch einen auftriebsfähigen Erdmantel. In einem vorherrschenden Modell wird der subkratonische Erdmantel als Restit von partiellem Schmelzen bei niedrigem Druck betrachtet, der durch Subduktion in Granatperidotit umgewandelt wurde. Eklogite und Granatperidotite des subkontinantalen lithosphärischen Mantels sind dementsprechend die subduzierten Schmelzprodukte. Um die Zeitlichkeit der partiellen Schmelzprozesse und von Wiederanreicherungsprozessen des Erdmantels unterhalb des Kaapvaalkratons einzugrenzen, haben wir bereits früher einzelne Körner von harzburgitischen, subkalzischen Granaten analysiert. Damit erhielten wir das Alter von definierten Ereignissen, die mit krustalen Ereignissen übereinstimmen und kein Kontinuum, wie es von Re Os Modellaltern angezeigt wird. Eklogite und Granatpyroxenite werden wie Peridotitxenolithe ebenfalls von Kimberliten durch die Archaische Kruste an die Erdoberfläche gefördert. Sie sind wegen ihrer möglichen sehr unterschiedlichen Entstehung und möglicher späteren Überprägungen sehr heterogen. Quälende Fragen sind die Art der Protolithe, deren Alter und das Alter der Eklogitisierung und der Bezug zu den Peridotiten. Wir fanden durch unsere Untersuchungen von Eklogiten und Granatpyroxeniten von Bellsbank (Kaapvaalkraton), dass eine Anzahl davon chemisch fast nicht modifizierte Teile subduzierter ozeanischer Kruste darstellen (= fast unveränderte Schmelz-zusammensetzungen, Plagioklas- und Klinopyroxenreiche Kumulate). Deren rekonstruierte Gesamtgesteinszusammensetzungen bilden eine Aufreihung in einem Lu Hf Isochronendiagramm. Drei Proben ergeben ein Alter von 4.12 +- 0.06 Ga mit eHfi = 3 (+-7), d.h. dem Verhältnis des Erdmantels zu dieser Zeit. Ein so hohes Alter findet man bisher nicht in der Kruste oder als Re Modellverarmungs-alter im Erdmantel. Lu Hf Modellalter von Granaten sind Minimumalter. Sie ergeben aber bereits Alter bis zu 3,5 Mrd. Jahre, was die hohen Alter bestätigt. Wir wollen unsere Arbeiten an subkalzischen Granaten auf weitere Lokalitäten des Kaapvaalkratons ausdehnen, um die detaillierte Geschichte des subkratonischen Erdmantels weiter zu erforschen, d.h. die Unterscheidung verschiedener Schmelz-regime, deren Zeitlichkeit und die Zeit der Modifikation des Erdmantels durch Metasomatose. Ein zweites Ziel ist die Verifizierung der 4.1 Mrd. Jahre Eklogitisochrone mit weiteren Proben aus Bellsbank. Wenn sie sich als richtig erweist, würde sie das höchste Alter darstellen, das jemals von einer Eklogitserie erhalten wurde. Dies hätte großen Einfluss auf Modelle zur Entstehung hadäischer Kruste und ihrer Erhaltung im lithosphärischen Erdmantel.

1 2 3 4 510 11 12