Die Trennung von Lanthanoiden und Actinoiden ist ein wichtiges technisches Problem und darüber hinaus von großem wissenschaftlichem Interesse. Dies vor allem darum, weil sich die dreiwertigen Actinoiden und Lanthanoiden in ihrem Komplexierungsverhalten sehr ähnlich sind. In den letzten Jahren hat sich gezeigt, dass die leicht erhöhte Weichheit der Actinoiden und damit der erhöhte kovalente Charakter der Actinoiden-Donoren Bindungen der wichtigste Unterschied in bezug auf selektive Komplexierungen ist. Für technische Anwendungen kommen praktisch nur Extraktionen aus stark sauren wässrigen Lösungen (HNO3) in organische Phasen mit mehrzähnigen Aminen in Frage. Im Projekt sollen sechszähnige Liganden mit dem Bispidingerüst synthetisiert und untersucht werden. Molekulares Modellieren soll zur Optimierung der Liganden verwendet werden, und die Derivate sollen auch in bezug auf ihre Löslichkeiten und die Protonisierungskonstanten optimiert werden.
Ziel des Projektes ist es, die gebundenen Rückstände des Fungizids Cyprodinil, die in Weizenstroh bis zu 45 Prozent und in Körnern bis zu 30 Prozent des applizierten Wirkstoffs betragen können, bezüglich ihrer Struktur und der Art der Bindung zu charakterisieren. Die in den unlöslichen Pflanzenfraktionen festgelegten Rückstände sollen durch klassische Aufschlüsse und, als zu entwickelnde neue Methode, durch Silylierung freigesetzt, in organische Lösungsmittel überführt und mit hochauflösender NMR-Spektroskopie sowie mit chromatographischen Methoden untersucht werden. Weiterhin sind Festkörper-NMR-Untersuchungen der Rückstände in festen Pflanzenproben und -fraktionen vorgesehen. Cyprodinil wird für die geplanten NMR-Untersuchungen vom Hersteller, Novartis, an geeigneten Molekülpositionen mit 13C markiert. Für die Lokalisation und quantitative Erfassung der Rückstände wird zusätzlich 14C-markierter Wirkstoff eingesetzt. Um größere Mengen von Metaboliten und gebundenen Rückständen für die geplanten Charakterisierungen herzustellen, soll Cyprodinil auch in Weizen-Zellkulturen inkubiert werden. Zur Verminderung der NMR-Untergrundsignale der Pflanzenmatrix ist vorgesehen, die Inkubation in Pflanzen bzw. Zellkulturen durchzuführen, deren natürlicher 13C-Gehalt abgereichert wurde. Für spektroskopische Vergleichsmessungen ist die Kopplung des Fungizids an synthetische Ligninpolymere geplant.
Beim mikrobiellen Umsatz von organischen Verbindungen wird ein beträchtlicher Anteil des Kohlenstoffs zunächst zum Aufbau von Biomasse durch Bakterien genutzt. Diese Biomasse unterliegt nach ihrem Absterben wieder einem Abbau durch andere Mikroorganismen. In diesem Prozess werden Fragmente der abgestorbenen Zellen entweder selbst wieder zum Substrat für andere Organismen oder direkt in der Bodenmatrix festgelegt. Damit tragen sie substanziell zur Bildung der organischen Bodensubstanz (SOM) bei. Im Rahmen der geplanten Arbeiten sollen vorwiegend durch Markierungsexperimente mit stabilen und radioaktiven Isotopen die mikrobiellen Umsatzraten und die Bildung von Huminstoffen aus bakterieller Biomasse und fraktionierten Zellbestandteilen wie auch aus mikrobiellen Mineralisationsprodukten wie CO2 und NH4 in Modellböden des Schwerpunktprogrammes detailliert untersucht werden. Dazu wird die Transformation isotopisch markierter Biomassebestandteile (14C; 13C; 15N) in Bodenbioreaktoren untersucht. Die festgelegten und umgewandelten Produkte der markierten Biomasse sollen in den verschiedenen Partikel- und Huminstofffraktionen des Bodens bilanziert und mit isotopenchemischen und strukturchemischen Methoden charakterisiert werden. Damit können der stoffliche Beitrag der Biomasse an der Bildung von Huminstoffen im Boden bilanziert und Konversionsfaktoren sowie Raten für die Stoffverteilung abgeschätzt werden. Ergebnisse aus ersten Versuchen lassen zudem auf einen signifikanten Einbau von Kohlenstoff aus CO2 in die SOM schließen. Daraus könnte sich eine Neubewertung von Tracerexperimenten zur Bildung von gebundene Resten aus Xenobiotika ergeben. Im zweiten Schritt sollen Methoden zur Ermittlung der Struktur und Funktionalität der festgelegten Biopolymere entwickelt werden. Besonderes Augenmerk wird auf die Festlegung von Zellwandbestandteilen, Strukturproteinen und Nukleinsäuren gelegt.
Ziel des Forschungsvorhabens ist es, die Stabilität molekularer Strukturbausteine der organischen Substanz in Böden direkt zu bestimmen sowie den entsprechenden Kohlenstoffumsatz zu modellieren. Diese grundlegenden Informationen sind notwendig um den Stoffaustausch der organischen Substanz von Böden mit atmosphärischem CO2 abzuschätzen. Hierzu soll die von uns entwickelte Kopplung von Strukturanalyse und Isotopenverhältnis-Messung an Pyrolysebruchstücken eingesetzt werden. Anhand der natürlichen 13C-Markierung, die durch die Umstellung des 'Ewigen Roggens' auf Maismonokultur erfolgte, sollen Umsatzraten für die Strukturbausteine der organischen Substanz in Böden berechnet werden und durch substanzspezifische 14C-Altersbestimmung verifiziert werden. Dies ist notwendig, um anderen Kohlenstoffquellen wie z.B. hetero-, chemo- oder autotrophe CO2-Fixierung sowie weitere Stabilisierungsmechanismen (z.B. physikalische) aufklären zu können. In enger Kooperation mit anderen AG's des SPP sollen unsere Ergebnisse dazu beitragen, molekulare Mechanismen der Stabilisierung und ihre Regulation aufzuklären. Schließlich sollen unsere Ergebnisse genutzt werden, um das CENTURY-Modell weiterzuentwickeln.
Lipide haben wahrscheinlich große Bedeutung für die Stabilisierung organischer Substanz in Böden, sie wurden aber bisher mittels moderner strukturchemischer und isotopischer Methoden nur wenig untersucht. Durch die Kombination dieser Methoden sollen erstmals gleichzeitg Aussagen über Herkunft (Pflanzen, Bakterien, Pilze) und Umsatzraten (d13C) der Lipide auf molekularer Ebene ermöglichen. Der Nutzungswechsel von Roggen- (C3-) zu Mais-Monokultur (C4-Pflanze) markierte die zugeführte Biomasse strukturell und isotopisch. Die Nutzung von Rückstellproben ermöglicht eine über vier Jahrzehnte zeitlich aufgelöste Auswertung dieses landwirtschaftlichen Freilandversuchs. Die Lipide sollen mit einer Kombination moderner struktureller, spektroskopischer und isotopischer Analysetechniken der Bodenchemie, organischen Geochemie und Biochemie untersucht werden. Untersuchungen sollen an Gesamtböden und ausgewählten PartikelgrößenFraktionen erfolgen. Die Bodenlipide werden erstmalig über eine automatisierte sequentielle Flüssigkeitschromatographie in folgende Fraktionen getrennt: a) Aliphaten, b) Ketone/Alkohole, c) Fettsäuren, d) Aromaten, e) basische Lipide und f) hochpolare Biopolymere. Diese Fraktionen sollen anschließend strukturell identifiziert (13C NMR, GC-MS) und die Fraktionen a) bis c) gesamt- und komponentenspezifisch (GC-irmMS) d 13C-isotopisch charakterisiert werden.
Im Forschungsvorhaben werden mikrobielle Umsetzungsreaktionen organischen Materials in Böden quantitativ und qualitativ untersucht. Ziel ist es, die genaue Strukturaufklärung der beteiligten organischen Komponenten durchzuführen und deren exakte Abbauwege zu kennzeichnen. Die angestrebten Untersuchungen auf molekularer Ebene erlauben neben der genauen Bilanzierung des Kohlenstoffumsatzes eine gezielte Strukturaufklärung der beteiligten Komponenten mittels konventioneller GC-MS und GC-Isotope-Ratio Technik. Durch den Einsatz von 13C-markierten Tracersubstanzen soll aufgezeigt werden, (1) inwieweit der Abbau der organischen Substanz direkt zur Bildung von CO2 führt, (2) welcher Anteil in mikrobielle Biomasse überführt wird und, als wichtigster Aspekt, (3) in welcher Form organische Substanzen und deren mikrobielle Transformationsprodukte als makromolekulare organische Fraktionen im Boden verbleiben. Die strukturchemischen Untersuchungen werden Indikationen zur Abgrenzung zwischen den Einträgen aus mikrobieller Biomasse und Streu liefern.
Sauerstoffmangel im Wurzelbereich ist einer der wichtigsten abiotischen Stressfaktoren, der Wachstum und Konkurrenz von Baumarten in Waldökosystemen bestimmt. Daher ist das Verständnis von Adaptationsmechanismen toleranter Pflanzen von großer ökologischer und ökonomischer Bedeutung. Physiologische Anpassungsstrategien umfassen die Vermeidung der Akkumulation phytotoxischer Verbindungen, modifizierte Genexpression, sowie die Aufrechterhaltung der Energieversorgung. Im vorliegenden Projekt sollen unter Einsatz molekularbiologischer Techniken die ökophysiologischen Grundlagen der Überflutungstoleranz der Baumart Pappel näher untersucht werden. Hierzu sollen transgene Pappellinien mit organspezifisch modulierter Expression der Wurzel-Pyruvatdecarboxylase (PDC), Blatt-Alkoholdehydrogenase (ADH) und Blatt-Aldehyddehydrogenase (ALDH) erzeugt werden. Die Genexpression dieser Pappeln soll molekular (mRNA und Western) und physiologisch (Enzymaktivitäten) charakterisiert und die isolierten Gene sequenziert werden. In einem vergleichenden physiologischen Ansatz soll durch Studien an überflutungstoleranten (Pappel, Stieleiche) und -sensitiven Spezies (Buche, Traubeneiche) der Energie-, C-, und N-Haushalt der Bäume unter Sauerstoffmangel charakterisiert werden.
norganische Funktionsmaterialien spielen innerhalb der Schlüsseltechnologien des 21. Jahrhunderts, etwa im Bereich der Informationstechnik oder der Energieerzeugung und -speicherung, eine zentrale Rolle. Dabei sind komplex strukturierte multifunktionelle Materialien auf rein anorganischer Basis sowie im Verbund mit organischen Anteilen zur Weiterentwicklung dieser Technologien von wesentlicher Bedeutung. Die Erzeugung solcher Materialien mit definierter Struktur und Stöchiometrie über die konventionelle Prozesstechnik, die in der Regel bei erhöhten Temperaturen und/oder Drücken sowie unter erheblichem verfahrenstechnischen Aufwand abläuft, stößt hierbei jedoch an ihre Grenzen. Demgemäß ist die Suche nach neuen Verfahren, die eine Generierung von diesen Materialien bei Umgebungsbedingungen und mit reduziertem prozesstechnischen Aufwand ermöglichen, derzeit Gegenstand weltweiter Forschungsanstrengungen. Für die Bildung von komplex strukturierten anorganischen Festkörpern bei Umgebungsbedingungen liefert die belebte Natur eindrucksvolle Beispiele. So entstehen durch Biomineralisationsprozesse Stoffe wie etwa Calciumphosphat oder -carbonat, deren Bildung genetisch determiniert ist und durch die Wechselwirkung mit Biomolekülen gesteuert wird, wobei unter anderem Selbstorganisationsprozesse eine Rolle spielen. Die hierdurch entstehenden anorganischen Materialien besitzen multifunktionelle Eigenschaften, wobei deren Eigenschaftsspektrum durch den Einbau von bioorganischen Komponenten erweitert wird. Wenngleich viele technisch relevante Materialien bei diesen natürlichen Prozessen keine Rolle spielen, ergeben sich hieraus unmittelbar aussichtsreiche Perspektiven zur Generierung neuer anorganischer Funktionsmaterialien durch spezifische molekulare Interaktionen zwischen bioorganischen und anorganischen Stoffen. Das Hauptziel dieses Schwerpunktprogramms ist daher die Übertragung von Prinzipien der Biomineralisation auf die Generierung von anorganischen Funktionsmaterialien und von deren Hybriden mit bioorganischen Anteilen. Zur Erreichung dieses Ziels werden Arbeiten durchgeführt (1) zur In-vitro- und In-vivo-Synthese anorganischer Funktionsmaterialien und deren Hybride mit bioorganischen Molekülen in Form von Schichten oder 3D-Strukturen, (2) zur Charakterisierung der Bildungsprozesse und der Struktur der Materialien sowie (3) zur Bestimmung und zum Design von deren physikalischen und chemischen Eigenschaften. Diese experimentellen Untersuchungen werden weiterhin durch Arbeiten zur Modellierung der Materialbildung, -struktur und -eigenschaften begleitet.
In Suedbrasilien treten Oesophagus-Carcinome gehaeuft auf. Durch molekulare Analyse von Tumoren dieses Risikogebietes, insbesondere die Erfassung von p53-Mutationsmustern, wird versucht, Hinweise fuer die moegliche Beteiligung definierbarer Typen von Umweltfaktoren bei der Entstehung dieser Tumoren zu erarbeiten.
Im Rahmen dieses Forschungsvorhabens sollen die Mengen der Wurzelexsudate in einem im Labor modellierten Grünlandökosystem quantifiziert werden. Die Untersuchungen sollen genaue Kenntnis über die Teilkomponenten der Rhizodeposition und der Bodenatmung erbringen. Zur präzisen Quantifizierung der Teilkomponenten der Rhizodeposition wird die Translokation von14C-Assimilaten in den Boden von einem für Grünlandökosystem typischen Vertreter - Lolium perenne - verfolgt. Dabei werden drei aus der Literatur bekannte Methoden mit eigenen Modifikationen und einer selbst entwickelten Methode verglichen. Diese Methoden stützen sich auf die Prinzipien: der Isotopenverdünnung, der Markierung verschiedener Pools in parallelen Varianten, der kurzfristigen Inhibierung der Mikroorganismenaktivität und der zeitlichen Trennung von Prozessen mit verschiedenen Geschwindigkeiten. Die anderen Kapitel der Habilitationsschrift werden folgenden Teilprozessen der Transformation der niedermolekularen organischen Substanzen im Boden anhand der Ergebnisse früherer Untersuchungen des Antragsstellers gewidmet: 1) den Geschwindigkeiten des mikrobiellen Abbaus der niedermolekularen organischen Substanzen 2) ihrer Verwertung durch die Bodenmikroorganismen 3) Dynamik des Einbaus in die Humusfraktionen und Rezyklierung der Humusfraktionen durch die niedermolekularen organischen Substanzen 4) Aufnahme von niedermolekularen organischen Substanzen durch die Pflanzen (kurz) 5) ihre Migration im Boden (kurz) Ein spezielles Kapitel wird der Transformation der Aminosäuren - den wichtigsten N-haltigen organischen Substanzen im boden - gewidmet. Die experimentellen Ergebnisse werden in der Habilitation zu einem Gesamtkonzept der Transformation der niedermolekularen organischen Substanzen im Boden zusammengefasst.
Origin | Count |
---|---|
Bund | 190 |
Wissenschaft | 2 |
Type | Count |
---|---|
Förderprogramm | 190 |
License | Count |
---|---|
offen | 190 |
Language | Count |
---|---|
Deutsch | 171 |
Englisch | 31 |
Resource type | Count |
---|---|
Keine | 138 |
Webseite | 52 |
Topic | Count |
---|---|
Boden | 109 |
Lebewesen & Lebensräume | 131 |
Luft | 78 |
Mensch & Umwelt | 188 |
Wasser | 85 |
Weitere | 190 |