API src

Found 23 results.

Energiemanagement für Supercap-Brennstoffzellenfahrzeuge

Eine Brennstoffzelle als Primärenergiequelle mit einem Doppelschichtkondensator (Supercap) als Zwischenspeicher zu kombinieren ist ein vielversprechender Ansatz für zukünftige Elektrofahrzeuge. In Kooperation mit einem Fahrzeughersteller wurden verschiedene Strategien für ein Energiemanagement für die Kombination einer Brennstoffzelle mit einem Doppelschichtkondensatormodul entworfen und verglichen. Basierend auf der aktuellen Geschwindigkeit und Beschleunigung werden verschiedene Fahrzeugzustände bezüglich kinetischer Energie und Leistungsbedarf unterschieden. In Abhängigkeit von der verfügbaren Leistung von Supercaps und Brennstoffzelle wird eine optimale Leistungsaufteilung zwischen den beiden Energiequellen ermittelt. In Bremsphasen wird durch Rekuperation Energie zurückgewonnen und in den Supercaps gespeichert. Wenn die Supercaps vollgeladen sind oder ihre maximale Ladeleistung erreicht haben, übernehmen mechanische Bremsen die übrige Ladeleistung. Da diese Situation zu einem Energieverlust führt, sollte sie möglichst vermieden werden. Um immer die notwendige Beschleunigungsleistung und gleichzeitig auch ein Maximum an Rekuperation zu garantieren, wird der Ladezustand der Supercaps kontinuierlich und dynamisch an die kinetische Energie des Fahrzeugs angepasst. Verschiedene Strategien wurden in Matlab/Simulink mit einem Stateflow-Chart zur Abbildung der Zustände implementiert. Die verfügbare Supercapleistung wird mit Hilfe eines impedanzbasierten Modells für Supercaps berechnet. Mit diesen Strategiemodellen können die Leistungsfähigkeit der verschiedenen Strategien verglichen und die Einflüsse von Parametern untersucht werden. Ziel eines Energiemanagements ist es, den Wasserstoffverbrauch zu minimieren und die notwendige Leistung zu jeder Zeit sicherzustellen. Bei der Bewertung der Strategien wird der Wasserstoffverbrauch, die verlorene Bremsenergie und eine mögliche Geschwindigkeitsreduzierung verglichen. Mit einer optimalen Strategie können bis zu 23 Prozent Wasserstoff während eines definierten Fahrprofils gespart werden.

Netzorientiertes, kosteneffizientes Hochleistungsladesystem für den mittelständischen, gewerblichen ÖPNV im suburbanen Raum, Teilvorhaben: Erprobung auf Praxistauglichkeit im Normalverkehr

Netzorientiertes, kosteneffizientes Hochleistungsladesystem für den mittelständischen, gewerblichen ÖPNV im suburbanen Raum, Teilvorhaben: Intelligente Messstellen in E-Busladestation mit Energiespeicher

Netzorientiertes, kosteneffizientes Hochleistungsladesystem für den mittelständischen, gewerblichen ÖPNV im suburbanen Raum, Teilvorhaben: Hochstrom-HV-Box und Netzdienliches Depot-Ladesystem

Netzorientiertes, kosteneffizientes Hochleistungsladesystem für den mittelständischen, gewerblichen ÖPNV im suburbanen Raum, Teilvorhaben: Flywheel für Buffered HPC-Station

Netzorientiertes, kosteneffizientes Hochleistungsladesystem für den mittelständischen, gewerblichen ÖPNV im suburbanen Raum, Teilvorhaben: Wissenschaftliche Begleitung

Sicherheitsrelevante Untersuchungen zur Bentonitaufsättigung (SIRUB)

Mechanismen des Polysaccharid-Abbaus unter permanent kalten Bedingungen im südlichen Ozean

Das Südpolarmeer, auch Antarktischer oder Südlicher Ozean genannt, spielt eine bedeutende Rolle in der Funktion der Ozeane als biologische Kohlenstoff-Pumpe. Der Südliche Ozean ist für etwa 30% der globalen CO2-Aufnahme der Ozeane verantwortlich und damit entscheidend für die Pufferung von steigenden CO2-Konzentrationen in der Atmosphäre. Wie viel Kohlenstoff in den Ozeanen gespeichert werden kann, hängt stark vom Abbau und der Verwertung von Biopolymeren ab, die durch photosynthetische Primärproduzenten gebildet werden. Die molekularen und physiologischen Mechanismen des Abbaus komplexer Algen-Polysaccharide durch kälteangepasste Bakterien sind jedoch bisher nur ungenügend verstanden. Wir konnten ein psychrophiles marines Gammaproteobakterium, Pseudoalteromonas haloplanktis ANT / 505, aus der Antarktis isolieren, das eine Vielzahl an Polysacchariden verwerten kann. Das Bakterium, das in großer Zahl im Oberflächenwasser des Südlichen Ozeans nachweisbar ist, ist genetisch zugänglich. Wir schlagen dieses Bakterium als Modellorganismus zur Untersuchung von psychrophilen Anpassungsmechanismen des marinen Polysaccharid-Abbaus in den Polarregionen vor. Das Projekt zielt darauf ab, spezifische Mechanismen der marinen Polysaccharid-Verwertung dieses Modell-Bakteriums aufzuklären. Dabei wird die Verwertung von Pektin und Alginat im Mittelpunkt stehen. Das Projekt wird spezifische Oligosaccharid-Transport- und Verwertungsstrategien für Pektin und Alginat aufklären. Mithilfe proteogenomischer Analysen werden wir diese Protein-Funktionen vergleichend zu anderen Polysaccharid-Verwertungsmechanismen in P. haloplanktis untersuchen. Wir werden weiterhin prüfen, ob multi-modulare Enzyme eine erhöhte Wechselwirkung mit dem Substrat ermöglichen und so den Polysaccharid-Abbau in diffusionsoffenen marinen Habitaten unterstützen. Schließlich wird die Funktion extrazellulärer Vesikel und Oberflächenstrukturen beim Pektin- und Alginat-Abbau beispielhaft unter Niedrigtemperaturbedingungen untersucht. Das geplante Projekt wird biologische Prozesse untersuchen, die für den Kohlenstoffkreislauf im Südlichen Ozean relevant sind. Ein besseres Verständnis von Polysaccharid-Abbauprozessen im Südpolarmeer schafft die Voraussetzung für die Charakterisierung der Funktion der biologischen Pumpe im Südlichen Ozean unter den Bedingungen des Klimawandels.

Experimental investigations of soils in the context of underground nuclear waste disposal

This request R'Equip is within the context of a research project dealing with an experimental investigation of unsaturated soils behavior under very high temperature, suction, and pressure loadings. The aims of this research program require the development of a new specific apparatus adapted to these extreme testing conditions for LMS-EPFL. Defining the thermo-hydro-mechanical behavior of materials is one of the main modern issues in soil mechanics. In recent years, thermal-geomechanical problems have strongly increased as a result of the demand for new and enlarged types of applications such as high-level nuclear waste disposal, energy extraction from pressurized geothermal reservoirs, heat storage, zones around buried high-voltage cables, geothermal structures, and so on. For sure, one of the fundamental challenges in this field is an insight in the understanding of unsaturated soil behavior at high pressures and temperatures for host rocks and buffer materials for radioactive waste. Several of the leading research teams around the world have now implemented research programs in this area. The aim of the proposed research is therefore the development of a new multi-purpose triaxial cell able to perform tests on unsaturated materials for wide ranges of temperature (20-150 C) and cell pressure (up to 30 MPa) along with suction control. The LMS-EPFL is already involved in two important research projects in the field of the safety study of disposal for vitrified High Level Wastes. The TIMODAZ (Thermal Impact on the Damaged Zone around a Radioactive Waste Disposal in Clay Host Rocks) European project investigates the behavior of two host rocks (Boom Clay from Mol (Belgium) and Opalinus Clay from Mont Terri (Switzerland)) for high level waste repository and a collaboration with the NAGRA (National Cooperative for the Disposal of Radioactive Waste - Switzerland) characterizes the thermo-hydro-mechanical behavior of granular bentonite as a buffer material. To conduct these experimental programs in the best way, the laboratories need to acquire such a triaxial cell adapted for very high thermo-hydro-mechanical loadings. The decisiveness of these experimental programs is to use the test results to define for each material the parameters of ACMEG-TS (Advanced Constitutive Model for Environmental Geomechanics) model developed by the LMS, which takes into account at the same time the temperature and the suction effects on soil behavior. This model will permit to predict the evolution of the clay host rocks or the granular bentonite in order to take into account all the thermo-hydro-mechanical processes in the safety study of disposal for vitrified High Level Wastes.

ERA-Net WaterWorks - CLEARANCE - Ansatz der Kreislaufwirtschaft zur Reduzierung der Belastung von Flüssen durch Nährstoffe aus der Landwirtschaft unter Nutzung von kohlenstoffspeichernden Ökosystemen, Teilvorhaben 2: Nährstoffeinträge in Feuchtgebiets-Randzonen

Im Projekt CLEARANCE wird ein integrierter landschaftsökologischer, sozioökonomischer und politischer Rahmen für die Nutzung von 'wetland buffer zones' (WBZ) in einer Kreislaufwirtschaft der Wasserreinigung, Nährstoffwiederverwendung und landwirtschaftlicher Nutzung von Flusseinzugsgebieten entwickelt. Das IGB bearbeitet in CLEARANCE eins der sieben thematischen Arbeitspakete des Verbundvorhabens. Die Aufgaben sind zwei Projekt-Phasen zugeordnet A) Konsolidierung der Methode zur Quantifizierung der Einträge von P und N in WBZ und B) Quantifizierung der N- und P- Quellen und Fließwege in ausgewählten Fallbeispielen unter der Nutzung der in A etablierten Methode ('Lokal kalibriertes Modell'). Die Anpassung des empirischen Modells für die Projektgebiete erfolgt in enger Zusammenarbeit mit der Universität Warschau. Die spätere Quantifizierung der Einträge und schlussendlich der Austräge zu Berechnung der Stoffbilanzen erfolgt zusammen mit der Universität Aarhus.

1 2 3