Funds for the central coordination of the research unit 'INUIT' (Ice Nucleation research UnIT) are requested within this proposal. The project serves the coordination and administration of the research unit as well as the promotion of cooperation and communication among the individual scientific projects of the unit. An annual status seminar is organized and conducted within this project. The funds for measures to promote gender equality are managed and measures for training of young researchers are coordinated. Within the project special sessions at international conferences or publication of special issues are initiated. A central data base to store and provide the data from all the various field and laboratory activities to all members of the research unit is maintained within the project. A comprehensive inter-comparison of the results of the ice nucleating properties of the common set of test aerosols studied by the various methods is conducted. An INUIT web page is set up and maintained. To support the INUIT spokesperson in conducting these tasks, staffing for a halftime position of a scientific administrator is applied for.
Background: Ghanas transition forests, neighbouring savannahs and timber plantations in the Ashanti region face a constant degradation due to the increased occurrence of fires. In most cases the fires are deliberately set by rural people for hunting purposes. Main target is a cane rat, here called grasscutter (Thryonomys swinderianus), whose bushmeat is highly esteemed throughout the country. The animal is a wild herbivorous rodent of subhumid areas in Africa south of the Sahara. The grasscutter meat is an important source of animal protein. Existing high-value timber plantations (mainly Teak, Tectona grandis) are affected by fires for hunting purposes. Thus resulting in growth reduction, loss of biomass or even complete destruction of the forest stands. It became obvious that solutions had to be sought for the reduction of the fire risk. Objectives: Since 2004 the Institute for World Forestry of the Federal Research Centre for Forestry and Forest Products, Hamburg, Germany is cooperating with a Ghanaian timber plantation company (DuPaul Wood Treatment Ltd.) the German Foundation for Forest Conservation in Africa (Stiftung Walderhaltung in Afrika) and the Center for International Migration with the purpose to improve the livelihood of the rural population in the surroundings of the forest plantation sites and simultaneously to safeguard and improve the timber plantations. The introduction of grasscutter rearing systems to local farmers accompanied by permanent agricultural and agroforestry practices appeared to be a promising approach for the prevention of fires in the susceptible areas. Additionally a functioning grasscutter breeding system could contribute to the improvement of food security, development of income sources and the alleviation of poverty. The following measures are implemented: - Identification of farmers interested in grasscutter captive breeding, - Implementation of training courses for farmers on grasscutter rearing, - Delivery of breeding animals, - Supervision of rearing conditions by project staff, - Development of a local extension service for monitoring activities, - Evaluation of structures for grasscutter meat marketing. Results: After identification of key persons for animal rearing training courses were successfully passed and animals were delivered subsequently. Further investigations will evaluate the effects of the grasscutter rearing in the project region. This will be assessed through the - Acceptance of grasscutter rearing by farmers, - Success of the animal caging, - Reproduction rate, - Meat quality, - Marketing success of meat, - Reduction of fire in the vicinity of the timber plantations, - Improvement of peoples livelihood.
CleanOil consists on the introduction into the market of an innovative filtration solution to treat and reuse the produced water (PW), a highly polluted oily wastewater which is the largest volume byproduct associated to oil and gas production. The solution will allow achieving up to 80% reduction of water demand for oil extraction through the reuse of up to 99% of the PW, and will be based on a proprietary product - ceramic nanomembranes with an innovative production process - installed in a fully integrated solution with the equipment, instrumentation and advanced fouling monitoring and control tools and software. The project aims to achieve three objectives: (1) reducing the target membrane price up to 4 times, thanks to the upscaling of the nanomembrane production process, (2) launching worldwide highly competitive and cost-effective filtration solutions for the treatment and reuse of PW and (3) international consolidation through the new subsidiaries and strategic partners in high potential markets, aiming for a 3% share of the Likuid's target industrial filtration market, doubling the existing actual staff and achieving a tenfold increase in EBITDA profit by 2020. Likuid has identified two market segments targeted by its innovative solution: onshore, with 680 Mill.€ target market (USA, Canada, Colombia, Mexico) and offshore, with 490 Mill.€ target market (North Europe and LATAM). Potential customers for Likuid's solution are (a) the intermediary EPC, OEM and OFS companies and (b) oil producers, as end-users of the technology. In the project, onshore segment will be addressed with a Canadian demonstration for SAGD and tailing ponds and offshore segment is related to a demo study with Petrobras, who has already tested Likuid's membranes. Successfull demonstration will boost the market uptake of the new highly-efficient and cost-effective Likuid's solution, thus helping European cutting-edge technologies to position in the lead of sustainable O&G production.
The BECA (Balanced European Conservation Approach - ICT services for resource saving in social housing) project addresses the need to reduce energy consumption in European social housing by a very significant amount to meet overall emission reduction targets. To substantially reduce peak and overall demand for energy and water across EU social housing, BECA will develop a full set of innovative services for resource use awareness and resource management. Balance is achieved by addressing not only energy but water, by including all key energy forms - electricity, gas and heating - and by including strong activities in Eastern Europe as well as in the North, South and West of the EU. Social housing organisations in 7 European countries (Germany, Italy, Spain, Sweden, Bulgaria, Czech Republic, Serbia) and their partners are cooperating in the project to provide ICT-based energy management and energy awareness services directly to social housing tenants and service operators. Services will be piloted by approx. 5,000 social housing tenants across 7 sites in 7 European countries. Sustained reductions in resource use are to be achieved through usable ICT-based services directly to tenants, as well as by effective monitoring and control of local power generation and, for district heating, the full heat delivery chain. Intensive work will be addressed to optimising services for tenants and maximising impact on resource use behaviour. Service requirements will be investigated with tenants and staff and service prototypes based on initial use cases will be subject to user testing within the first year of the project. Results are used to finalise service design in a second iteration of use case definition and service specification lasting some 8 months, cumulating in implementation of operational services at all the 7 pilot sites. Pilots at sites will operate for at least 14 months; lead sites will be identified to being operation early and provide example solutions to others. The consortium, led by social housing providers and public authorities includes global ICT and service providers and distribution network operators working with local consultants and specialist advisors to carry out all steps in service implementation.
Narrative description of Project: SPLASH has been the name of the European Union Water Initiative European Research Area Network (EUWI Era-Net). This network project has been developed and implemented by a consortium of 15 ministries, funding agencies and national research and technological development authorities from 11 European countries. Objective: The overall aim of SPLASH has been to improve water research for poverty reduction and thus to contribute to achieving the Millennium Development Goals (MDGs). SPLASH objective has been to improve the effectiveness of European funded research on water for development and to develop the capacity of local organizations to coordinate and communicate their research activities. The project focus was Africa and the Mekong region. SPLASH focussed on the following specific objectives: - To coordinate existing national and regional research programmes to minimise duplication and identify gaps; - To design collaborative research programmes which address identified needs; - To speed up knowledge sharing between researchers and practitioners; - To map good research management to maximise use of resources; - To support the transfer of research into practice. Description of actual services provided by your staff within the assignment: In close collaboration with the Austrian Development Agency HYDROPHIL experts worked with other European agencies on the implementation of several Work Packages (WP) and specifically was responsible for the fulfilment of WP4 - Engagement of Main Actors (i.e., from Africa and the Mekong region). HYDROPHIL conducted regional stakeholder consultations in Western Africa (Ouagadougou, Burkina Faso), Eastern Africa (Kisumu, Kenya) and in the Mekong Basin (Phnom Penh, Cambodia).
The aim of this project is to co-ordinate research on environmental management reform to improve sustainability in the farming, fisheries and aquaculture industries. By decreasing pollution and the nuisance value of wastes, and by promoting more efficient waste handling, production, waste recycling, and lower input systems, in line with best management practices, the objectives of the ETAP will be achieved. It is aimed at T4.6.2 of thematic priority 5. The specific objectives of this CA are to: - Assemble the latest relevant information on environmental management in the farming, fisheries and aquaculture industries, and to identify key players in the European Research Area, and in INCO countries, to prepare for future projects - Document the current state of the art, and to acquaint members, and the research community in Europe and in INCO countries, with the latest developments in environmental management research - Map current research activities within the ERA - Identify barriers that prevent effective environmental management and sustainability - Survey national and European legislation and policies - Develop a set of guidelines and recommendations of best practice to help to decrease the environmental impact of the farming, fisheries and aquaculture industries. To assist implementation of these guidelines through two technology transfer workshops - Provide an online European database, linked to existing web sites and databases of specialist groups - Promote exchange of European researchers - Promote collaboration with the farming, fisheries and aquaculture industries - Make recommendations for future research - Disseminate knowledge via the specialised web site, technology transfer workshops and the staff exchange programme.
Intention of the study is to compare conventional systems for flow control in combined sewer systems with control systems based on fuzzy logic. The objective of both control strategies is to reduce the combined sewer overflow volume by an optimization of the utilized storage capacities of combined sewer overflow tanks. Conventional real time control of flow in urban drainage systems based on rules is in common use. The Effluent of combined overflow basins, for example, can be adjusted as a function of the water level in the storage tank. Additionally, the hydraulic conditions at other significant points in a sewer system or at the waste water treatment plant can be considered. Therefore, control systems are based on a large number of rules. Instead of conventional control systems it is possible to use control strategies based on fuzzy logic. Fuzzy control combines the simple rules of an expert system with a flexible specification of output parameters. Especially for the control of complex sewer systems, demanding an extensive matrix of different rules, it can be favourable to use fuzzy control. Fuzzy control enables to integrate available operating experiences in an intelligible rule base and avoids abrupt changes of the controlled parameters. In waste water treatment fuzzy control was successfully implemented to improve treatment processes during operation. The possibility to integrate operating experiences of technical staff into the rule base of a fuzzy controller and the flexible reaction of fuzzy logic on dif-ferent combinations of input parameters, led to positive results. So far, fuzzy control has only rarely been used for flow control in sewer systems. ITWH Hannover tested the application of fuzzy control for two differently structured combined sewer systems in order to minimize the storm water overflow volume. The comparison of the studies were solely based on the simulation of uncontrolled and fuzzy - controlled sewer systems for single storm events. In both cases the overflow volume could be re-duced significantly by the use of fuzzy control. The interest of the studies was focused on the initial state in comparison with the state affected by fuzzy control. The objective of the investigation reported here, has been the comparison of a conventional rule based flow control with a fuzzy based flow control. In spite of a similar rule base fuzzy control obviously enables a more flexible sizing of the outflow. The use of fuzzy logic to control several basins in a complex sewer systems helps to avoid sudden and intense changes of the controlled effluents. This leads to steady and proportionate conditions and reduces the overflow volume. In the combined sewer system investigated, a conventional rule based and a fuzzy logic system is generated to control three combined sewer overflow tanks. The control process intends a better utilization of storage capacity to reduce overflow volume
In spite of rapid development in all area of applied biotechnology all over the world, Egyptian universities and scientific institution somehow are still behind. Biotechnology provides a library of advanced scientific tools in all sectors of human activities including drug development, biomedicine, plant improvement and bio-pesticides, so biotechnology is expected to contribute massively in global economy. In our project we will develop strong educational Joint master degree in different area of biotechnology (JM-Biotech), based on Bologna system that will contributing to the reform of Egyptian higher education system. The project will ensure the ability of Egyptian universities partners to offer the new degree based on successful course materials, teaching methods, advanced equipped labs and well trained faculty staff with strong support of EU partners' expertise and experience. Our wider objective is to establish a new joint Master degree in biotechnology applied to agri- science, environment and pharmacology, this 3 areas are closely related to each other on academic and industrial level the robust developed curriculum will create a new generation of young Egyptian graduates and scientists with new skills and visions, contributing in solving many existing problems in industry in different areas using the most advanced biotechnology methods which help in solving employability problem and some economic issues in Egypt. Our specific objectives are: 1. Establishing a new joint master degree in selected areas of biotechnology based on development of 12 elective courses in selected area of Biotechnology) and update 8 available ones. 2. Support the developed curriculum with new teaching skills and methods by training. 3. Improving EG partners' laboratories by new advanced Biotech equipment and tools. 4. Establish biotechnology center in each EG partners to guarantee project dissemination and sustainability.
Research Questions: Does the implementation of climate change mitigation policies in developing countries always involve a trade-off between economic development, poverty reduction, and climate protection, or is there space for 'win-win policies'? This question is relevant for todays fast-growing middle-income economies, which are already or will soon become very significant contributors to global warming. The project will analyse these economies from three different angles: a comparative politics perspective on domestic climate governance and mitigation policy options, an economics perspective on the poverty and distributional impact of mitigation policies, and an international relations perspective on the global discourse surrounding mitigation and economic development (see project in RP 4). The project staff will cooperate closely with domestic partner institutions in South Africa, Mexico and Thailand, the three case study countries. Contribution to International Research: Despite the increasing role of todays developing world in GHG emissions, 'climate and development' research to date has largely focused on developing countries vulnerability and adaptation to climate change, and on climate-related transfers in these countries, such as those of the Joint Implementation and the Clean Development Mechanism (CDM). Meanwhile, the critical issue of mitigation is slowly making its entrance into climate negotiation rooms. This focus on mitigation requires a shift in the analytical perspective. While the technological and natural science perspectives that tend to dominate the climate change discourse are clearly important, a social science perspective is warranted as well. This is particularly true because of the latters usefulness in analysing the possible trade-offs between mitigation and socio-economic development. Research Design and Methods: The project adopts a multidisciplinary social science approach with a comparative and global perspective. While they will remain firmly theoretically and methodologically grounded in their respective disciplines, the three study areas - (1) domestic climate governance, (2) poverty and distributional impacts of mitigation policies, (3) global perspective and the mitigation-development discourse - will interact continuously. The investigation of domestic climate governance will rely mainly on qualitative methods. These will include interviews with policy-makers, experts and practitioners to investigate their motivations and the driving and constraining forces behind their actions in climate change mitigation policy processes. We then plan to assess the poverty and distributional impacts of mitigation policies (possibly including most NAMAs) in the three case study countries using incidence-focused general equilibrium models, simulation models based on micro-data, and a combination of these two modelling approaches. usw.
| Origin | Count |
|---|---|
| Bund | 21 |
| Land | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 21 |
| Text | 1 |
| License | Count |
|---|---|
| geschlossen | 1 |
| offen | 21 |
| Language | Count |
|---|---|
| Deutsch | 6 |
| Englisch | 17 |
| Resource type | Count |
|---|---|
| Keine | 16 |
| Unbekannt | 1 |
| Webseite | 5 |
| Topic | Count |
|---|---|
| Boden | 11 |
| Lebewesen und Lebensräume | 14 |
| Luft | 12 |
| Mensch und Umwelt | 21 |
| Wasser | 15 |
| Weitere | 22 |