In dem Projekt ist es das Hauptziel, bei Photooxidationen (Gegenwart von Luftsauerstoff und Bestrahlung mit sichtbarem Licht (solare Einstrahlung und kuenstliche Lichtquelle) Abwasserreinigung und Synthese von Feinchemikalien durchzufuehren. Dazu wurden bisher Photooxidationen der toxischen Substrate Thiole, Sulfid und Phenole durchgefuehrt. Durch Verwendung von Photosensibilisatoren, die im sichtbaren Bereich absorbieren, kann eine weitgehende Mineralisierung u.a. von Phenolen (auch chlorierten Phenolen) erreicht werden. Mit der solarphotochemischen Synthese von Feinchemikalien ist jetzt begonnen worden.
Eine Reihe von Herbiziden von unterschiedlicher chemischer Konstitution verhindert bei hoeheren Pflanzen die Chloroplastenentwicklung und Chlorophyllbildung und fuehrt zum Ausbleichen (Chlorose) der Blaetter, wenn das Herbizid in einem jungen Entwicklungsstadium einwirken kann. Unsere Untersuchungen gingen der Frage nach, welche biochemischen Schritte der Chloroplastenentwicklung bzw. der Chlorophyllsynthese durch die Herbizide blockiert oder geschaedigt werden und ob die verschiedenen Chlorosen-induzierenden Herbizide unterschiedliche oder gleiche Primaerwirkungen aufweisen. Unter der Einwirkung der Herbizide wird das Chlorophyll, das durchaus noch gebildet werden kann, im Licht photooxidativ zerstoert. Die gegenwaertigen Untersuchungen sollen die biochemischen und physiologischen Zusammenhaenge bei der photooxidativen Zerstoerung des Chlorophylls in Gegenwart der Herbizide aufklaeren helfen. Das Projekt soll damit einerseits zum Verstaendnis der Wirkungsweise der untersuchten Herbizide, zum anderen aber auch zum Verstaendnis der Mechanismen beitragen, die unter normalen physiologischen Bedingungen das Chlorophyll vor photooxydativer Zerstoerung schuetzen und stabilisieren.
Aufklaerung ueber erhoehte Aktivitaet krebserregender Kohlenwasserstoffe im elektronisch angeregten Zustand; Lichtreaktionen von 3,4 Benzpyren mit Proteinen, Aminosaeuren und Nucleinsaeuren; Photochemie der Oxidation von Kohlenwasserstoffen.
Verwendet man halbleitende Materialien als Elektroden in elektrochemischen Zellen, so beobachtet man, dass bei Belichtung - also auch bei Sonneneinstrahlung - Photostroeme auftreten. Die so in Elektroenergie umgewandelte Strahlungsenergie kann direkt oder zur Wasserzersetzung, das heisst zur Wasserstofferzeugung, verwendet werden. Der geschilderte Funktionsablauf ist experimentell in den verschiedenen Stufen wenig untersucht. Zunaechst sollen moeglichst billige Halbleitermaterialien als Elektroden praepariert in elektrochemischen Solarzellen eingesetzt werden. Mit amorphen Halbleitern sollten kostenguenstige Anlagen erstellbar sein. Das Elektrodenmaterial selbst darf bei den auftretenden Photopotentialen nicht zersetzt werden.
Untersuchung klimarelevanter Prozesse im mesoskaligen Bereich durch die Erfassung meteorologischer Groessen und Spurenstoffe mit Hilfe von bodengebundenen, flugzeug-, ballon- oder satellitengetragenen Instrumenten. Dazu gehoeren die Entwicklung und Erprobung neuer Verfahren und Messgeraete zur Fernerkundung atmosphaerischer Parameter. Mit Ballonmessungen werden die photochemischen Umsetzungen und der Tagesgang von Spurenstoffen in der Atmosphaere verfolgt. Beitraege zu umweltrelevanten Problemen (z.B. Ozonloch) ergeben sich aus den bodengebundenen Spurengasmengen. Teilziele sind: Einsatz von Michelson-Interferometern, Erprobung bodengebundener Fernmessverfahren fuer Messungen in der Troposphaere (SODAR, RADAR, RASS), Verfahren zur Gewinnung von Landoberflaechenparametern, meteorologischen Vertikalprofilen und Spurengasverteilungen aus Satellitendaten, Untersuchung von Transportvorgaengen und zeitlichem Verlauf von Konzentrationsaenderungen und photo-chemischen Umsetzungen.
Bevölkerungsreiche Ballungszentren stellen konzentrierte Quellen für anthropogene Emissionen dar. Das Ziel der HALO-Mission EMeRGe ist die Untersuchung der Transportwege und der Umwandlungsprozesse der gas- und partikelförmigen Emissionen in den Abluftfahnen solcher Ballungszentren in der freien und oberen Troposphäre. Dieses Teilprojekt legt den Schwerpunkt auf die chemische Charakterisierung der Partikelphase mittels Aerosolmassenspektrometrie sowie auf die Untersuchung der Wolkenaktivierungseigenschaften der Partikel. Mit einem Compact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS) und einem Single Particle Soot Photometer (SP2) kann die chemische Zusammensetzung und die photochemische Prozessierung der Aerosolpartikel nahezu vollständig erfasst werden. Mikrophysikalische Partikeleigenschaften wie Größenverteilung und Anzahlkonzentrationen in verschiedenen Größenbereichen tragen zur Charakterisierung der Partikel bei. Die größenselektierten Messungen der Wolkenaktivierungseigenschaften der Partikel werden im Zusammenhang mit der beobachteten Änderung der chemischen Zusammensetzung (Oxidation) betrachtet, so dass der Einfluss der Emissionen auf die Wolkenbildung untersucht werden kann. Weiterhin wird untersucht, ob die Emissionen bis in die obere Troposphäre oder sogar in die Tropische Übergangschicht (Tropical Transition Layer, TTL) gelangen können, wodurch sie für den weiteren Transport in die untere Stratosphäre zur Verfügung stünden.
L'evolution d'une masse d'air sous l'influence du rayonnement solaire fait l'objet de speculations dont la verification experimentale s'avere problematique. L'utilisation d'un ballon a air chaud qui, tout en la perturbant au minimum, est entraine par la masse d'air devrait permettre de donner des indications interessantes sur la validite des theories en vigueur. Dans un premier temps l'equipement du ballon a air chaud permettra la mesure de l'ozone et du dioxyde d'azote. (FRA)
Schutz bei sichtbarem Licht Bei der Betrachtung möglicher Risiken des sichtbaren Lichts stehen die Augen im Vordergrund. Das Warn- und Schutzsystem des Körpers trägt dazu bei, die Augen vor zu viel Licht zu schützen. Auch geeignete Sonnenbrillen können dabei helfen. Licht emittierende Produkte (wie z.B. Lampen und Lampensysteme, Laserpointer) müssen Sicherheitsstandards einhalten. Bei der Betrachtung möglicher Risiken des sichtbaren Lichts stehen die Augen im Vordergrund, vor allem photochemische Wirkungen auf die Netzhaut. Thermische, das heißt durch Erwärmung bedingte Schäden sind zwar ebenfalls möglich, benötigen aber höhere Strahlungsintensitäten. Warn- und Schutzsystem des Körpers Normalerweise wird der Blick in eine (zu) helle Lichtquelle als unangenehm empfunden. Es empfiehlt sich nicht, dieses Gefühl zu ignorieren und bewusst aus kurzem Abstand in eine helle Strahlungsquelle zu schauen. Dies gilt vor allem für Kinder, bei denen die Durchlässigkeit der Augenlinse für sichtbares Licht (und für UV -A-Strahlung) größer ist als bei Erwachsenen. Eine wichtige Schutzfunktion erfüllt die Iris: Sie reguliert den Lichteinfall durch Eng- oder Weitstellung der Pupille und schützt das Auge so vor Überreizung (Hell- oder Dunkeladaptation). Auch unwillkürliche oder absichtliche Reaktionen wie Kopf- und Augenbewegungen können dazu beitragen, die Augen vor zu viel Licht zu schützen. Der Lidschlussreflex Der Lidschlussreflex schützt das Auge vor allem vor Austrocknung und vor Schädigung durch Fremdkörper. Er wird aber ebenfalls durch starken Lichteinfall ausgelöst. Eine im Auftrag der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin ( BAuA ) durchgeführte Untersuchung zeigte jedoch, dass dieser Reflex nur bei einer Minderheit der Probanden tatsächlich auftrat. Er darf also nicht überschätzt werden. Sonnenbrillen Eine geeignete Sonnenbrille kann die Augen nicht nur vor UV -Strahlung und Blendung schützen, sondern auch den die Netzhaut erreichenden Blaulichtanteil vermindern. Sicherheit von Lampen und Lampensystemen Blaulichtgefährdung Bei der Beurteilung der photobiologischen Sicherheit von Lampen und Lampensystemen steht meist die sogenannte Blaulichtgefährdung im Vordergrund. Unter Blaulichtgefährdung versteht man das Risiko einer photochemischen Schädigung der Netzhaut oder des retinalen Pigmentepithels (RPE) durch energiereiches Licht. Der Hersteller eines Produktes hat zu gewährleisten, dass das Produkt bei bestimmungsgemäßem Gebrauch für die Nutzerinnen und Nutzer ungefährlich ist. Bei der Beurteilung der Sicherheit stützt er sich auf Gesetze wie das Produktsicherheitsgesetz und in der Regel – je nach Art des Produktes - auf einschlägige, möglichst spezifische Normen. Gefährdungspotenzial: Aufteilung in 4 Risikogruppen Für die photobiologische Sicherheit von Lampen und Lampensystemen gilt die Norm DIN EN 62471. Nach dieser Norm werden Lampen und Lampensysteme vier Risikogruppen zugeordnet. Risikogruppen für Lampen und Lampensysteme Risikogruppe Photobiologische Gefahr 0 (freie Gruppe) Kein Risiko 1 Geringes Risiko 2 Mittleres Risiko 3 Hohes Risiko Für Allgemeinbeleuchtung nicht vorgesehen Bei der freien Gruppe (Gruppe 0) besteht kein Risiko. Die Risikogruppen 1, 2 und 3 stehen für steigendes Gefährdungspotenzial. Die genauen Voraussetzungen für die jeweiligen Gruppenzuordnungen sind in der Norm beschrieben. Beurteilt werden Risiken aufgrund von UV -Strahlung, Risiken für die photochemische und thermische Netzhautgefährdung sowie für die Gefahr aufgrund von Infrarotstrahlung. Die meisten für die Allgemeinbeleuchtung eingesetzten Lichtquellen fallen in die sogenannte Freie Gruppe oder in die Risikogruppe 1. Manche lichtemittierenden Dioden ( LED ) können, wie Messungen der Bundesanstalt für Arbeitsschutz und Arbeitsmedizin ( BAuA ) zeigen, auch in die Risikogruppe 2 fallen. Es kommt allerdings immer darauf an, ob die pure Leuchtdiode vermessen wird, die Lampe, in der die Diode verbaut ist, oder die fertige Leuchte. Bei der Einordnung in Risikogruppen werden "normale Einschränkungen durch das Verhalten" (Risikogruppe 1) beziehungsweise "Abwendreaktionen" (Risikogruppe 2) vorausgesetzt. Lampen der Risikogruppe 3 stellen sogar für flüchtige oder kurzzeitige Bestrahlung eine Gefahr dar. Die Risikogruppe 3 ist daher für die Allgemeinbeleuchtung nicht vorgesehen. Im Rahmen des Ressortforschungsprojekts "Messung und Bewertung für die Allgemeinbevölkerung relevanter optischer Strahlenquellen - Abschätzung von Risiken für das Auge" wurden verschiedene am Markt verfügbare Verbraucherprodukte wie Laserpointer, Fahrrad- oder Taschenlampen und Gartenlaser untersucht. Dabei wurde besonderes Augenmerk auf eine mögliche Blaulichtgefährdung und auf Blendung gelegt. Unter anderem wurde festgestellt, dass mehrere der untersuchten Fahrradlampen und LED-Taschenlampen gemäß der Norm DIN EN 62471 der Risikogruppe 2 (mittleres Risiko) zuzuordnen sind, ohne mit entsprechenden Sicherheits- bzw. Warnhinweisen versehen zu sein ( Abschlussbericht ). Arbeitsschutz Viele Menschen sind beruflich natürlicher oder künstlicher optischer Strahlung ausgesetzt. Hier greift das rechtliche Regelwerk des Arbeitsschutzes. So legt zum Beispiel die Verordnung zum Schutz der Beschäftigten vor Gefährdungen durch künstliche optische Strahlung ( OStrV ) unter Bezugnahme auf die europäische Richtlinie 2006/25/EG auch für die Wellenlängen des sichtbaren Lichts Grenzwerte für Arbeitnehmer fest, die nicht überschritten werden dürfen. Stand: 07.10.2025
<p>Die Höhe der Ozon-Spitzenkonzentrationen und die Häufigkeit sehr hoher Ozonwerte haben seit Mitte der 1990er-Jahre deutlich abgenommen. Der Zielwert zum Schutz der menschlichen Gesundheit wird jedoch weiterhin überschritten. Im Unterschied zu der Entwicklung der Spitzenwerte nahmen die Ozon-Jahresmittelwerte in städtischen Wohngebieten im gleichen Zeitraum zu.</p><p>Überschreitung von Schwellenwerten</p><p>Um gesundheitliche Risiken für die Bevölkerung bei kurzfristiger <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Exposition#alphabar">Exposition</a> gegenüber erhöhten Ozonkonzentrationen auszuschließen, legt die <a href="https://www.bmuv.de/gesetz/39-verordnung-zur-durchfuehrung-des-bundes-immissionsschutzgesetzes/">39. BImSchV</a> Informations- und Alarmschwellenwerte fest (siehe Tab. „Zielwerte, langfristige Ziele und Alarmschwellen für den Schadstoff Ozon“). Der Informationsschwellenwert von 180 Mikrogramm pro Kubikmeter (µg/m³), gemittelt über eine Stunde, dient dem Schutz der Gesundheit besonders empfindlicher Bevölkerungsgruppen. Bei der Überschreitung des Alarmschwellenwertes von 240 µg/m³, gemittelt über eine Stunde, besteht ein Gesundheitsrisiko für die Gesamtbevölkerung.</p><p>Seit 1995 hat die Zahl der Stunden mit Ozonwerten über 180 beziehungsweise 240 µg/m³ deutlich abgenommen (siehe Abb. „Überschreitungsstunden der Informationsschwelle (180 µg/m³) für bodennahes Ozon, Mittelwert über ausgewählte Stationen“ und Abb. „Überschreitungsstunden der Alarmschwelle (240 µg/m³) für bodennahes Ozon, Mittelwert über ausgewählte Stationen)“). Diese Abnahme ist von zwischenjährlichen Schwankungen überlagert, die auf die jährlich schwankenden meteorologischen sommerlichen Witterungsbedingungen zurückzuführen sind. Besonders deutlich ist dies im Jahr 2003 erkennbar. Im Sommer 2003 wurde eine außergewöhnlich langanhaltende Wettersituation beobachtet, welche die Ozonbildung begünstigte. Der Ozonsommer 2003 ist daher hinsichtlich der Spitzenwerte ein Sonderfall.</p><p>Verglichen mit dem Jahr 1990 sind die Emissionen der Ozonvorläuferstoffe (Stickstoffoxide und flüchtige organische Verbindungen ohne Methan) in Deutschland bis 2023 um 70 % beziehungsweise 75 % zurückgegangen (siehe <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/stickstoffoxid-emissionen">„Stickstoffoxid-Emissionen“</a> und <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/emission-fluechtiger-organischer-verbindungen-ohne">„Emission flüchtiger organischer Verbindungen ohne Methan“</a>). Der geringere Ausstoß von Ozonvorläufersubstanzen führte bereits in den 1990er Jahren zu einer Abnahme der Ozonspitzenwerte.</p><p>Zielwerte und langfristige Ziele für Ozon</p><p>Seit 2010 gibt es zum Schutz der menschlichen Gesundheit für Ozon einen europaweit einheitlichen Zielwert: 120 Mikrogramm pro Kubikmeter (µg/m³) als 8-Stunden-Mittel sollen nicht öfter als 25-mal pro Kalenderjahr, gemittelt über drei Jahre, überschritten werden. Um die meteorologische Variabilität der einzelnen Jahre bei einer langfristigen Betrachtung zu berücksichtigen, wird über einen Zeitraum von drei Jahren gemittelt. Die meisten Überschreitungen werden an ländlichen Hintergrundstationen registriert, also entfernt von den Quellen der Vorläuferstoffe (siehe Abb. „Prozentualer Anteil der Messstationen mit Überschreitung des Zielwertes für Ozon“). Das liegt daran, dass Stickstoffmonoxid (NO), das in Autoabgasen enthalten ist, mit Ozon reagiert. Dabei wird Ozon abgebaut, so dass die Ozonbelastung in Innenstädten deutlich niedriger ist. Andererseits werden die Ozonvorläuferstoffe mit dem Wind aus den Städten heraus transportiert und tragen entfernt von deren eigentlichen Quellen zur Ozonbildung bei.</p><p>Langfristig soll der 8-Stunden-Mittelwert von 120 µg/m³ während eines Kalenderjahres nicht mehr überschritten werden. Dieses Ziel wird in Deutschland allerdings an kaum einer Station eingehalten. Die höchste Zahl an Überschreitungstagen wird üblicherweise an ländlichen Hintergrundstationen registriert (siehe Abb. „Zahl der Tage mit Überschreitung des Ozon-Zielwertes (120 µg/m³) zum Schutz der menschlichen Gesundheit, Mittelwert über ausgewählte Stationen“).</p><p>Entwicklung der Jahresmittelwerte</p><p>Jahresmittelwerte der Ozonkonzentrationen spielen bei der Bewertung der Belastung eine nachgeordnete Rolle. Dennoch können sie zur Beurteilung der Immissionssituation verwendet werden. Die Jahresmittelwerte haben eine größere Bedeutung für die langfristige Entwicklung der Ozonbelastung, sofern historische Werte herangezogen werden.</p><p>Die Jahresmittelwerte der Ozonkonzentration von 1995 bis 2024 zeigen an städtischen Stationen insgesamt einen zunehmenden Trend. Einerseits nahmen die Ozonspitzenwerte durch die Minderungsmaßnahmen für die NOx- und <a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NMVOC#alphabar">NMVOC</a>-Emissionen in Deutschland deutlich ab, andererseits führte dies wegen der Verringerung des Titrationseffekts (Ozonabbau durch Stickstoffmonoxid) zu einem Anstieg der mittelhohen Ozonkonzentrationen, was schließlich bei den Jahresmittelwerten sichtbar wird (siehe Abb. „Trend der Ozon-Jahresmittelwerte“). Zudem wird von einer zunehmenden Bedeutung des interkontinentalen (hemisphärischen) Transports für die Ozonbelastung in Deutschland und Europa aufgrund der industriellen Emissionen in Asien und Nordamerika ausgegangen.</p><p>Bodennahes Ozon</p><p>Ozon (O3) wird nicht direkt freigesetzt, sondern bildet sich in den unteren Luftschichten der <a href="https://www.umweltbundesamt.de/service/glossar/a?tag=Atmosphre#alphabar">Atmosphäre</a> bis in etwa zehn Kilometer Höhe bei intensiver Sonneneinstrahlung durch komplexe photochemische Reaktionen von Sauerstoff und Luftverunreinigungen. Vor allem flüchtige organische Verbindungen (<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=VOC#alphabar">VOC</a> = volatile organic compounds) einschließlich Methan sowie Stickstoffoxide (NOx) sind an diesen Reaktionen beteiligt.</p><p>Herkunft</p><p>Die Emissionen von flüchtigen organischen Verbindungen und Stickstoffoxiden, den sogenannten Ozon-Vorläuferstoffen, werden überwiegend durch den Menschen verursacht. Hinzu kommt eine natürliche sogenannte Ozon-Hintergrundbelastung, die von hemisphärischem Transport und natürlichen Bildungsprozessen herrührt. Eine wichtige Quelle für die <a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Emission#alphabar">Emission</a> der Ozon-Vorläuferstoffe stellt der Kraftfahrzeugverkehr dar. Darüber hinaus werden besonders aus dem Kraftwerksbereich Stickstoffoxide und aus der Anwendung von Lacken und Lösungsmitteln flüchtige organische Verbindungen emittiert (siehe <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/stickstoffoxid-emissionen">„Stickstoffoxid-Emissionen“</a> und <a href="https://www.umweltbundesamt.de/daten/luft/luftschadstoff-emissionen-in-deutschland/emission-fluechtiger-organischer-verbindungen-ohne">„Emission flüchtiger organischer Verbindungen ohne Methan“</a>). Die Emissionen sind teilweise auch natürlichen Ursprungs, zum Beispiel Ausdünstungen flüchtiger organischer Stoffe aus Laub- und Nadelbäumen.</p><p>Gesundheitliche Wirkungen </p><p>Viele Menschen leiden an Tagen hoher Ozonkonzentration an Reizungen der Augen (Tränenreiz) und Schleimhäute (Husten) sowie − verursacht durch Begleitstoffe des Ozons − an Kopfschmerzen. Diese Reizungen sind von der körperlichen Aktivität weitgehend unabhängig. Ihr Ausmaß wird primär durch die Aufenthaltsdauer in der ozonbelasteten Luft bestimmt.</p><p>Die Empfindlichkeit der Menschen gegenüber Ozon ist sehr unterschiedlich ausgeprägt. Eine Risikogruppe lässt sich nicht genau eingrenzen. Man geht davon aus, dass etwa 10 bis 15 Prozent der Bevölkerung (quer durch alle Bevölkerungsgruppen) besonders empfindlich auf Ozon reagieren.</p><p>Vor allem die Atemwege sind von der Ozonwirkung betroffen. Neben Reizungen der Schleimhäute in den oberen Atemwegen kann Ozon bei tiefer oder häufiger Einatmung (etwa bei körperlicher Aktivität) verstärkt bis in die tiefen Lungenabschnitte gelangen und dort durch seine hohe Reaktionsbereitschaft Gewebe schädigen und entzündliche Prozesse auslösen. Vor allem nach reger körperlicher Aktivität im Freien wurde bei Schulkindern und Erwachsenen eine verminderte Lungenfunktion nachgewiesen. Diese funktionellen Veränderungen und Beeinträchtigungen normalisierten sich im Allgemeinen spätestens 48 Stunden nach Expositionsende. Im Gegensatz zur Veränderung der Lungenfunktionswerte bildeten sich entzündliche Reaktionen des Lungengewebes nur teilweise zurück.</p><p>Die Reizwirkungen sind im Sinne einer Vorschädigung des Lungengewebes zu verstehen, durch die sowohl eine Sensibilisierung durch chemische oder biologische Allergene ermöglicht als auch die Auslösung von allergischen Symptomen begünstigt werden kann.</p><p>Messdaten</p><p>Die Ozonkonzentration wird an rund 260 Messstationen in Deutschland überwacht. An den Messstellen, die das Umweltbundesamt im ländlichen Hintergrund betreibt, wurde im Zeitraum 1980 bis zum Ende der 1990er-Jahre ein Anstieg der Jahresmittelwerte der Ozonkonzentration registriert, der sich in den folgenden Jahren nicht fortsetzte.</p>
| Origin | Count |
|---|---|
| Bund | 458 |
| Land | 4 |
| Type | Count |
|---|---|
| Förderprogramm | 456 |
| Text | 4 |
| Umweltprüfung | 1 |
| unbekannt | 1 |
| License | Count |
|---|---|
| geschlossen | 6 |
| offen | 456 |
| Language | Count |
|---|---|
| Deutsch | 425 |
| Englisch | 54 |
| Resource type | Count |
|---|---|
| Datei | 1 |
| Dokument | 3 |
| Keine | 291 |
| Webseite | 169 |
| Topic | Count |
|---|---|
| Boden | 287 |
| Lebewesen und Lebensräume | 294 |
| Luft | 333 |
| Mensch und Umwelt | 462 |
| Wasser | 350 |
| Weitere | 458 |