API src

Found 15 results.

Vergleich des Fallouts durch oberirdische Kernwaffentests, den Reaktorunfall in Tschornobyl und den Reaktorunfall in Fukushima

Vergleich des Fallouts durch oberirdische Kernwaffentests, den Reaktorunfall in Tschornobyl und den Reaktorunfall in Fukushima Bei oberirdischen Kernwaffentests und Reaktorunfällen gelangen radioaktive Stoffe in die Atmosphäre. Dieses radioaktive Material kann sich z.B. durch Niederschlag auf der Erde ablagern (sogenannter Fallout ). In Europa führten nur die oberirdischen Kernwaffentests in den 1950er und 1960er Jahren und der Reaktorunfall von Tschornobyl ( russ. : Tschernobyl) zu nennenswerten Strahlenbelastungen. Der Reaktorunfall von Fukushima (Japan) hingegen bedeutete für Europa keine nennenswerte Strahlenbelastung. Bei oberirdischen Kernwaffentests und Reaktorunfällen gelangen radioaktive Stoffe in die Atmosphäre. Dieses radioaktive Material kann sich z.B. durch Niederschlag auf der Erde ablagern (sogenannter Fallout ). Oberirdische Kernwaffentests Aufgrund oberirdischer Kernwaffentests gelangten vor allem die radioaktiven Stoffe Cäsium-137 und Strontium-90 in die Atmosphäre, aber auch Plutonium -239. Sie wurden weltweit verbreitet, gelangten damit auch nach Deutschland und führten zu einer erhöhten Strahlenbelastung der Bevölkerung. Durch Niederschläge wurden die radioaktiven Spaltprodukte aus der Atmosphäre ausgewaschen (" Fallout ") und auf dem Boden abgelagert. Von hier aus gelangten sie über die Nahrung in den menschlichen Körper. Im Jahr 1963 schlossen die Sowjetunion, die USA und das Vereinigte Königreich ein Abkommen zum Stopp der Atombombentests in der Atmosphäre, im Weltraum und im Wasser und führten keine weiteren Tests in der Atmosphäre mehr durch. Zahlreiche Staaten unterzeichneten ebenfalls diesen Vertrag (Frankreich und China unterzeichneten den Vertrag nicht und führten bis 1974 bzw. 1980 weiterhin atmosphärische Atombombentests durch). Das Abkommen führte in den Folgejahren zu einer deutlichen Abnahme der Strahlenbelastung. Zusätzliche Strahlenbelastung durch die Kernwaffentests Die gesamte zusätzliche Strahlenbelastung (Lebenszeitdosis) durch atmosphärische Kernwaffentests für eine Person auf der Nordhalbkugel der Erde wird mit durchschnittlich etwa 4,4 Millisievert abgeschätzt. Die höchste zusätzliche Strahlenbelastung aufgrund des Fallouts der oberirdischen Kernwaffentests trat in den Jahren 1963 bis etwa 1967 auf. Die wenigen Studien zu den gesundheitlichen Auswirkungen der Kernwaffentests zeigen keine negativen Folgen Zu den möglichen Auswirkungen der oberirdischen Kernwaffentests gibt es kaum epidemiologische Untersuchungen. In einer Studie  aus dem Jahr 2010 wurde untersucht, ob sich bei der Leukämie im Kindesalter ein signifikanter Effekt der erhöhten Strahlenbelastung aufgrund der Kernwaffentests feststellen lässt. Dies war nicht der Fall. Da der sich in der Entwicklung befindliche kindliche Organismus besonders empfindlich gegenüber einer Strahlenbelastung ist, ist dieses Ergebnis ein Hinweis darauf, dass auch bei Erwachsenen, die sich nicht in unmittelbarer Nähe der Testgelände aufhielten, keine gesundheitlichen Folgen der Kernwaffentests nachweisbar sein werden. Insbesondere zeigten sich auch keine Unterschiede zwischen der südlichen und der nördlichen Erdhalbkugel. Auf der nördlichen Erdhalbkugel war die zusätzliche Strahlenbelastung durch die oberirdischen Kernwaffentests höher als auf der südlichen Erdhalbkugel, demnach hätte am ehesten auf der nördlichen Erdhalbkugel ein erhöhtes Erkrankungsrisiko zu beobachten sein müssen. Reaktorunfall von Tschornobyl ( russ. : Tschernobyl) Nach dem Reaktorunfall in Tschornobyl wurden radioaktive Spaltprodukte über die Luft in weite Teile Europas und damit auch nach Deutschland verfrachtet. Dies waren vor allem die radioaktiven Stoffe Jod-131, Cäsium-134 und Cäsium-137 . Strontium-90 wurde in Deutschland praktisch nicht festgestellt. Zusätzliche Strahlenbelastung durch den Unfall von Tschornobyl Die höchste zusätzliche Strahlenbelastung durch den Reaktorunfall von Tschornobyl betrug im ersten Jahr nach der Katastrophe in Deutschland nördlich der Donau etwa 0,1 Millisievert pro Jahr, südlich der Donau 0,3 Millisievert pro Jahr. Epidemiologische Studien zum Krankheitsrisiko durch den Unfall von Tschornobyl Nach dem Reaktorunfall in Tschornobyl ( russ. : Tschernobyl) wurden viele epidemiologische Studien durchgeführt mit dem Ziel, ein möglicherweise erhöhtes Krankheitsrisiko aufgrund der zusätzlichen Strahlenbelastung nachzuweisen (siehe auch Broschüre " Der Reaktorunfall 1986 in Tschernobyl "). Bei den Beschäftigten und Einsatzkräften, die an den Aufräumarbeiten beteiligt waren und eine relativ hohe Strahlendosis erhalten hatten, wurden teilweise massive gesundheitliche Folgen beobachtet. Bei Personen, die als Kinder und Jugendliche in den am stärksten durch radioaktive Stoffe belasteten Gebieten (Ukraine, Belarus und Teile Russlands) einer Belastung mit Jod-131 ausgesetzt waren, war ein deutlicher Anstieg der Erkrankungen an Schilddrüsenkrebs zu beobachten. Ein erhöhtes Risiko tritt auch heute noch in dieser Personengruppe auf. Für andere Krebs- und Leukämieerkrankungen in diesen Regionen liegen bisher keine belastbaren Daten hinsichtlich eines erhöhten Risikos vor. Es gibt allerdings Hinweise auf ein erhöhtes Leukämierisiko bei den Einsatzkräften und Aufräumarbeitern sowie ein erhöhtes Brustkrebsrisiko bei Frauen in der Ukraine, die erhöhten Strahlenbelastungen ausgesetzt waren. Für Deutschland gibt es bisher keinen Nachweis, dass durch die erhöhte Strahlenbelastung aufgrund des Reaktorunfalls von Tschornobyl ( russ. : Tschernobyl) negative gesundheitliche Effekte verursacht wurden. Insbesondere gibt es in Deutschland keine Hinweise für ein vermehrtes Auftreten von Schilddrüsenkrebs bei Kindern. Es zeigen sich in einzelnen Studien zwar entsprechende Hinweise zur Säuglingssterblichkeit, zur Häufigkeit von Fehlbildungen und von Tumoren bei Kindern oder Erwachsenen. Diese Studien haben aber methodische Schwächen, so dass die Ergebnisse nicht als Nachweis für einen Zusammenhang zwischen Strahlenbelastung und diesen gesundheitlichen Wirkungen zu bewerten sind. Nach der überwiegenden Meinung von Experten sind zusätzliche strahlenbedingte Krebsfälle und andere Erkrankungen durch Tschornobyl zwar denkbar. Vor dem Hintergrund der so genannten spontanen Krebshäufigkeit bzw. der spontanen Raten für andere Erkrankungen einerseits und der in Deutschland vorhandenen natürlichen Strahlenbelastung von 2 bis 3 Millisievert im Jahr andererseits sowie der je nach Erkrankung unterschiedlichen Wirkmechanismen von Strahlung werden sie sich aber mit bestehenden wissenschaftlichen Mitteln praktisch nicht nachweisen lassen. Deutlich niedrigere Strahlenbelastung durch den Unfall in Fukushima Der erste Nachweis radioaktiver Stoffe aus dem Reaktorunfall in Fukushima , die über die Atmosphäre nach Deutschland getragen wurden, erfolgte rund zwei Wochen nach Unfallbeginn. Mit der Messung vom 25. März 2011 wurde von der BfS -Messstation auf dem Schauinsland erstmals Jod-131 gemessen, das auf den Unfall in Fukushima zurückzuführen war. Wegen der sehr großen Entfernung gelangte nur eine sehr geringe Menge an radioaktiven Stoffen nach Deutschland. Dies entspricht nur einem Bruchteil der Menge, die in der Vergangenheit aufgrund der Atomwaffentests und des Unfalls in Tschornobyl ( russ. : Tschernobyl) durch die Luft nach Deutschland getragen wurden. Langfristig keine gesundheitlichen Folgen des Unfalls in Fukushima für Deutschland zu erwarten Da die in Deutschland aufgetretene Strahlenbelastung durch den Unfall in Fukushima sehr weit unter der Belastung durch die Atomwaffentests und den Unfall in Tschornobyl blieb, sind auch langfristig für Deutschland keine negativen gesundheitlichen Auswirkungen zu erwarten. Stand: 12.12.2025

Umweltfolgen des Unfalls von Fukushima: Die radiologische Situation in Japan

Umweltfolgen des Unfalls von Fukushima: Die radiologische Situation in Japan Der radioaktive Fallout des Reaktorunfalls von Fukushima verbreitete sich mit Wind und Niederschlägen in den Meeren und auf der Erdoberfläche. Vor allem wurden in der Provinz Fukushima Gebiete nordwestlich der Reaktoranlage hoch kontaminiert. Fast keine Nahrungsmittel in Japan sind heute noch kontaminiert; eine Ausnahme bilden Wildschweine. Radioaktive Stoffe gelangen weiterhin in das zur Kühlung der Reaktoren von Fukushima verwendete Wasser. Ablagerung von Cäsium-137 in Japan nach dem Reaktorunfall von Fukushima Quelle: UNSCEAR 2013 Report, Volume I, ANNEX A, Figure B-VIII / reproduced by permission of UNSCEAR Durch den Reaktorunfall in Fukushima im Jahr 2011 wurden radioaktive Stoffe ( Radionuklide ) in die Atmosphäre freigesetzt. Mit dem Wetter (Wind und Niederschläge) verbreitete sich der radioaktive Fallout lokal, regional und global in den Meeren und auf der Erdoberfläche. Nach dem Unfall in Fukushima wurden vor allem in der Provinz Fukushima Gebiete nordwestlich der Reaktoranlage hoch kontaminiert. Außerhalb von Japan war die Kontamination mit radioaktiven Stoffen aus den Reaktoren von Fukushima gering. Relevante Radionuklide Besonders relevant für die radioaktive Kontamination der Umwelt, aber auch des Menschen , waren Radionuklide der Elemente Jod, Tellur (das zu radioaktivem Jod zerfällt) und Cäsium. Radioaktives Jod, das bei einem Reaktorunfall freigesetzt wurde, ist bedingt durch Halbwertszeiten von bis zu 8 Tagen nach etwa drei Monaten aus der Umwelt verschwunden. So war es auch in Fukushima. Radioaktives Cäsium kontaminiert mit einer Halbwertzeit von bis zu rund 30 Jahren die Umwelt langfristig. Es ist hauptsächlich für die noch vorhandene erhöhte Strahlung im Gebiet um Fukushima verantwortlich. Kontamination von Nahrungsmitteln und Wasser in Japan Nahrungsmittel wurden dadurch kontaminiert, dass sich radioaktive Stoffe auf den Blättern oder direkt auf landwirtschaftlichen Produkten wie Obst und Gemüse ablagerten oder über die Wurzeln der Obst- und Gemüsepflanzen aufgenommen wurden. Radioaktive Stoffe wurden durch den Unfall in Fukushima nicht nur in die Atmosphäre freigesetzt, sondern gelangten auch ins Wasser – hauptsächlich in das zur Notkühlung der Reaktoren eingespeiste Wasser, aber auch in das in den Reaktor eindringende Grundwasser. Große Mengen kontaminierten Wassers wurden aus dem Reaktor abgepumpt, durch Filterung von Radioaktivität gereinigt und in zahlreichen Tanks auf dem Reaktorgelände gelagert. Über die Strahlenbelastung der japanischen Bevölkerung informiert der Artikel " Gesundheitsfolgen des Unfalls von Fukushima" . Dekontamination Nahrungsmittel in Japan Umgang mit kontaminiertem Wasser Dekontamination Dekontamination betroffener Gebiete in Japan Hochdruckreiniger, die für die Dekontamination von befestigten Oberflächen verwendet wurden Dekontamination Nach dem Reaktorunfall im März 2011 mussten in einem Radius von bis zu 40 Kilometern um das Kernkraftwerk Fukushima-Daiichi etwa 160.000 Menschen aufgrund der hohen Strahlung ihre Häuser verlassen. Ein Teil der Bevölkerung konnte nach Dekontaminationsmaßnahmen wieder zurückkehren. Die japanischen Behörden haben zahlreiche Maßnahmen zur Dekontamination der vom Fallout des Reaktorunfalls betroffenen Gebiete ergriffen. Langfristig wollen sie erreichen, die durch den Unfall entstandene zusätzliche äußere Strahlenbelastung auf maximal 1 Millisievert pro Jahr zu verringern (1 Millisievert pro Jahr entspricht in etwa der natürlichen externen ( d.h. , nicht durch Einatmen o.ä. in den Körper gelangten) Strahlung in Deutschland). Dekontaminationsmaßnahmen Die Dekontaminationsmaßnahmen orientierten sich an der Höhe der äußeren Strahlung : In einer Sperrzone, die bis ungefähr 30 Kilometern Entfernung (in nord-westlicher Richtung) um das Kraftwerk liegt, betrug die Umgebungsstrahlung 2011 mehr als 50 Millisievert ( mSv ) pro Jahr. Diese Sperrzone darf bis heute nur mit Sondergenehmigung in Schutzkleidung und mit Dosimeter betreten werden. Hier lebten vor dem Unfall im Kernkraftwerk Fukushima etwa 25.000 Menschen. Innerhalb der Sperrzone wurden seit Dezember 2017 in der sogenannten „Specified Reconstruction and Revitalization Base Areas“ Dekontaminationsarbeiten durchgeführt. Die Evakuierungsanordnungen wurden in diesen Gebieten im November 2023 aufgehoben. Zusätzlich können die betroffenen Gemeinden in der Sperrzone seit September 2023 „Specified Living Areas for Returnees“ ausweisen, die auf die Rückkehr der Bewohner und der darauffolgenden Wiederherstellung deren Lebensgrundlagen abzielen. In einigen dieser Gebiete sind Maßnahmen zur Dekontamination und der Abriss von Gebäuden angelaufen. In "Special Decontamination Areas", die nach dem Unfall eine Umgebungsstrahlung von mehr als 20 Millisievert pro Jahr aufwiesen, wurde die Dekontamination unter Federführung der japanischen Regierung im März 2017 vollständig abgeschlossen. Nachdem dort die jährliche Dosis deutlich unter 20 Millisievert pro Jahr abgesunken war, durften die evakuierten Bewohner wieder in ihre Häuser zurückkehren – zum Beispiel nach Tamura City seit April 2014, nach Naraha seit September 2015, nach Minamisoma (teilweise) seit Juli 2016, nach Namie (teilweise) seit März 2017 sowie nach Futaba (teilweise) seit März 2020. In "Intensive Contamination Survey Areas", die nach dem Unfall eine äußere Strahlung von einem Millisievert bis zu 20 Millisievert pro Jahr aufwiesen, kümmerten sich die örtlichen Verwaltungen mit finanzieller und technischer Unterstützung der japanischen Regierung um die Dekontamination . Im März 2018 wurde auch hier die Dekontamination abgeschlossen. Zur Dekontamination strahlenbelasteter Gebiete wurde zum Beispiel der Oberboden mehrere Zentimeter dick abgetragen, Laub eingesammelt und Dächer und Straßen mittels Hochdruckreiniger gründlich gereinigt, um vor allem radioaktives Cäsium zu beseitigen. Lagerung kontaminierten Materials Riesige Mengen kontaminierter Erde (insgesamt etwa 20 Millionen Kubikmeter), die vor allem aus der Dekontamination von Gärten stammt, sowie organische Abfälle wie Laub und Äste werden in Plastiksäcken vor Ort zwischengelagert. Seit einigen Jahren werden diese schrittweise in ein zentrales Lager gebracht, dass sich direkt um das Reaktorgelände von Fukushima herum erstreckt. Bis April 2024 wurden so 90% der Areale, in denen die Abfälle zwischengelagert wurden, wiederhergestellt. Nahrungsmittel in Japan Nahrungsmittel in Japan Gemüse Für Nahrungsmittel gilt in Japan ein sehr niedriger Grenzwert von 100 Becquerel Cäsium pro Kilogramm. Seit dem Unfall werden in Japan Lebensmittel im Handel streng überwacht. Produkte werden aus dem Verkehr gezogen, wenn die zulässigen Höchstwerte überschritten werden. Fast keine Nahrungsmittel in Japan mehr kontaminiert Kurz nach dem Unfall zu Beginn der Überwachung überschritten etwa 1 Prozent der Proben die Höchstwerte. Heute sind fast keine Nahrungsmittel in Japan mehr radioaktiv belastet; und auch der Verzehr von in der Präfektur Fukushima erzeugten Nahrungsmitteln trägt heute nur noch vernachlässigbar zu zusätzlicher Strahlenbelastung bei. Sehr wenige Fischproben weisen geringe Mengen erhöhter Radioaktivität auf, welche aber unterhalb der japanischen Höchstwerte liegen, vor allem innerhalb des Hafenbeckens des Kernkraftwerks Fukushima Daiichi. Dies ist nicht überraschend, da das Sediment im Hafenbecken immer noch eine hohe Kontamination aufweist und radioaktive Stoffe insbesondere von am Boden lebenden Meerestieren aufgenommen werden können. Daher wird seit Jahren versucht, durch Netze am Auslass des Hafenbeckens die Abwanderung von derart kontaminierten Fischen zu verhindern. Eine Gesundheitsgefahr für den Menschen geht von diesen (wenigen) Fischen im Becken nicht aus, die dort gemessenen Kontaminationswerte sind nicht repräsentativ für Fische, die im freien Meer vor der Küste von Fukushima gefangen werden. Auch Wildpilze weisen geringe Mengen erhöhter Radioaktivität auf. Wildschweine, die sich in der Sperrzone rund um das Kernkraftwerk Fukushima stark vermehrt haben, stellen ein neues Problem dar: Sie ernähren sich unter anderem von den in der Sperrzone wachsenden kontaminierten Waldpilzen und sind dadurch selbst hochkontaminiert. Messergebnisse veröffentlicht Japan veröffentlichte bisher Hunderttausende Radionuklid-Messungen von über 500 verschiedenen Lebensmitteln aus allen japanischen Präfekturen. Umgang mit kontaminiertem Wasser Umgang mit Wässern aus dem Reaktorgebäude Kernkraftwerk Fukushima Daiichi Quelle: Taro Hama @ e-kamakura/Moment/Getty Images Radioaktive Stoffe gelangten durch den Unfall in Fukushima auch ins Wasser – hauptsächlich in das zur Notkühlung der Reaktoren eingespeiste Wasser, aber auch in das in den Reaktor eindringende Grundwasser. Der Zufluss von Grundwasser in die Reaktorgebäude von Fukushima konnte durch verschiedene Maßnahmen erheblich reduziert werden. Zudem ist eine Reinigungsanlage für das kontaminierte Wasser in Betrieb, die alle Radionuklide außer Tritium in diesen Abwässern mit sehr großer Effektivität herausfiltert. Tritium reichert sich nicht in der Nahrungskette an, und seine Radiotoxizität ist im Gegensatz zu beispielsweise Cäsium-137 niedrig. Zwischenlager für gereinigtes Wasser Wenn Wasser nach der Behandlung in der Reinigungsanlage nicht wieder zur Kühlung in die Reaktoren eingespeist wird, wird es auf dem Anlagengelände in verschiedenen Behältern zwischengelagert. Dort lagern nach Angaben des Anlagenbetreibers TEPCO rund 1,3 Millionen Kubikmeter Abwasser (Stand Oktober 2025). Dies entspricht etwa 97% der aktuellen Lagekapazitäten. Täglich kommen etwa 50 Kubikmeter an kontaminiertem Abwasser hinzu. Es stammt einerseits aus bewusst in das Reaktorgebäude eingeleitetem Wasser zur Kühlung der geschmolzenen Kerne, anderseits auch aus Grundwasser-Einfluss in das Reaktorgebäude. Umgang mit abgepumptem Grundwasser und gereinigtem Wasser In den letzten Jahren wurde gering mit Tritium kontaminiertes Grundwasser, das rund um die Reaktorgebäude abgepumpt wurde, bereits mehrere Male nach vorherigen Kontrollmessungen in das Meer entlassen. Die Tritium -Konzentrationen in diesem abgepumpten Grundwasser liegen deutlich unter den Tritium -Konzentrationen des gereinigten Wassers in den Abwassertanks – und weit unter den gesetzlichen Grenzwerten. Auch Teile des gereinigten Wassers werden seit August 2023 ins Meer abgeleitet. Die Genehmigung der zuständigen japanischen Behörde begrenzt diese Einleitung auf 22 Terabecquerel pro Jahr. Das entspricht in etwa einer Abgabe von einem Fünftel der jährlichen Ableitung von Tritium mit dem Abwasser aus allen deutschen Kernkraftwerken im Jahr 2019. Insgesamt enthalten die Ozeane unserer Erde rund 10 Millionen Terabecquerel Tritium . Aus radiologischer Sicht ist die Einleitung des gereinigten Abwassers unbedenklich, wenn sie entsprechend der Vorgaben der Genehmigung erfolgt. Informationen zu diesem Thema finden sich auch im Internet-Angebot des Thünen-Instituts (" Wie die Einleitung von Tritium in den Pazifik einzuschätzen ist "). Reisen nach Japan Laterne in einem Park in Japan (Tokio) Bei Reisen in die vom Unfall von Fukushima betroffenen Gebiete sind Menschen der unfallbedingt erhöhten Strahlung ausgesetzt. Im Gegensatz zur dort lebenden Bevölkerung sind Touristen aber nur für eine kurze Zeit der Strahlung ausgesetzt. Dies führt dazu, dass die mögliche zusätzliche Strahlendosis bei einem typischen Aufenthalt weit unterhalb eines Millisieverts bleibt. Zum Vergleich: In Deutschland beträgt die durchschnittliche Strahlen- Dosis , die wir aus natürlicher Strahlung (zum Beispiel aus dem Erdboden) erhalten, etwa 2-3 Millisievert pro Jahr. Beispiel: Touristischer Aufenthalt in Fukushima City Fukushima City liegt außerhalb der Sperrzone. Im Mittel liegt die Dosisleistung hier bei 0,1 bis 0,5 Mikrosievert pro Stunde (zum Vergleich: Die mittlere Dosisleistung in Deutschland beträgt etwa 0,1 Mikrosievert pro Stunde). Bei einem Aufenthalt von einer Woche in Fukushima City würde es zu einer zusätzlichen Strahlendosis von bis zu etwa 0,1 Millisievert kommen, was innerhalb der Schwankungsbreite der jährlichen natürlichen Strahlenexposition in Deutschland bleibt. Sperrzone rund um das Kraftwerk von Fukushima Die Sperrzone rund um das Kraftwerk von Fukushima darf aufgrund der hohen Umgebungsstrahlung nur mit Sondergenehmigung in Schutzkleidung und mit Dosimeter betreten werden. Situation außerhalb von Japan Luftstaubsammler an der BfS-Messstation Schauinsland Außerhalb von Japan war die Kontamination mit radioaktiven Stoffen aus den Reaktoren von Fukushima gering, wie weltweite Messungen nach dem Unfall ergaben. Grund war unter anderem, dass sich 80 Prozent der radioaktiven Stoffe in der Atmosphäre in Richtung Pazifik verteilten. Diese verbreiteten sich vorwiegend in der nördlichen Hemisphäre und verdünnten sich dort. Mittels Spurenmessungen, wie sie zum Beispiel in Deutschland das BfS auf dem Schauinsland bei Freiburg vornimmt, konnten davon minimale Mengen nachgewiesen werden. Im Zeitraum von Mitte März bis Mitte Mai 2011 waren in Deutschland äußerst geringe Konzentrationen von Jod-131 und Cäsium-134/137 in der Luft nachweisbar . Japan-Importe Importierte Waren aus Japan untersucht der Zoll durch Stichproben auf Strahlung , insbesondere bei Containerschiffen. Die für die Einfuhr von Lebensmitteln und Futtermitteln aus Japan in die Europäische Union ( EU ) bis 02.08.2023 geltenden japanischen Grenzwerte wurden am 03.08.2023 durch EU -Höchstwerte ersetzt. In Deutschland überwacht der Zoll die rechtmäßige Einfuhr japanischer Lebensmittel. Die erhöhte Kontamination von Frachtstücken war nach dem Unfall in Fukushima sehr selten. Überprüft wurden auch Schiffe und Flugzeuge. Die Oberflächen-Belastung bei einem Frachtstück durfte vier Becquerel pro Quadratzentimeter nicht überschreiten . Wurde sie überschritten, musste die Fracht dekontaminiert werden. War dies nicht möglich, wurde die Ware zurück zum Absender geschickt. Datenbasis Die hier dargestellten Informationen zu radiologischen Daten, Maßnahmen und Planungen in Japan basieren auf Informationen von japanischen Regierungsbehörden, Behörden der Präfektur Fukushima, TEPCO , Messungen von Privatpersonen ( safecast.org ), wissenschaftlichen Veröffentlichungen sowie eigenen Abschätzungen und fachlichen Bewertungen des BfS . Stand: 04.12.2025

Gebäude schützen im Notfall vor Strahlung

Gebäude schützen im Notfall vor Strahlung Das Verbleiben im geschlossenen Gebäude kann eine einfache und wirksame Schutzmaßnahme im radiologischen Notfall sein. Fenster und Türen sollten geschlossen bleiben. Lüftungs- und Klimaanlagen sollten ausgeschaltet werden. Dies verhindert, dass radioaktive Stoffe mit der Luft in die Wohnung gelangen und eingeatmet werden. Katastrophenschutzbehörden der Bundesländer können als frühe Schutzmaßnahme den Aufenthalt in Gebäuden anordnen. In einem radiologischen Notfall , zum Beispiel nach einem Unfall in einem Kernkraftwerk oder einer Nuklearwaffen-Explosion, können verschiedene radioaktive Stoffe in die Atmosphäre gelangen. Dort können sie sich, angeheftet an Staubpartikel oder gasförmig, als radioaktive Wolke verbreiten . Diese radioaktiven Luftmassen können gesundheitliche Folgen haben, wenn Menschen sich der Strahlung im Freien aussetzen. Oder wenn sie radioaktive Staubpartikel oder Gase in den Körper aufnehmen - mit der Atmung oder über die Nahrung. Mit dem Aufenthalt in geschlossenen Innenräumen im Haus kann das Einatmen von radioaktiven Partikeln reduziert werden, zusätzlich kann die einwirkende Strahlung aus den radioaktiven Luftmassen stark verringert werden. Als Aufenthaltsorte kommen Innen- und Kellerräume von Wohnhäusern und Arbeitsstätten in Betracht. Gleiches gilt für Innen- und Schutzräume in umliegenden Gebäuden, Läden und Geschäftsräumen. Besonders hohe Schutzwirkung bieten Kellerräume im Untergrund. Warum hilft das Drinnenbleiben? In einem radiologischen Notfall können unterschiedliche radioaktive Stoffe in die Umwelt gelangen . Ein Haus schirmt die Strahlungsenergie dieser radioaktiven Stoffe deutlich ab. Gebäude bieten Schutz vor Strahlung in einem radiologischen Notfall Alphastrahlung und Betastrahlung werden zu 100 % abgeschirmt. Gammastrahlung wird – je nach Bauart des Hauses und nach dem gewählten Aufenthaltsort im Haus – um bis zu 85 % abgehalten. Besonders hoch ist die Abschirmung im Keller. Hier können mehr als 85 % der Strahlung abgehalten werden. Wände aus Beton schirmen Strahlung besser ab als Holzwände. So wird zum Beispiel die Gammastrahlung von radioaktivem Jod durch 6 Zentimeter Beton um etwa 75 % reduziert. Je besser die Abschirmung , desto weniger Strahlung sind die betroffenen Menschen ausgesetzt – und desto geringere gesundheitliche Folgen sind zu erwarten. Auch im Fall einer Nuklearwaffen-Explosion ist der Aufenthalt in einem Gebäude in den ersten 24 bis 48 Stunden eine empfohlene Maßnahme. Bei einer Nuklearwaffen-Explosion entstehen viele kurzlebige Radionuklide , die sehr schnell zerfallen. Durch den schnellen Zerfall nimmt die Strahlenbelastung innerhalb von 48 Stunden etwa um den Faktor 100 ab. Wann sollte ich in einem Gebäude bleiben? Die Katastrophenschutzbehörden der Bundesländer können "Aufenthalt in Gebäuden" als frühe Schutzmaßnahme (früher sagte man Katastrophenschutzmaßnahme) anordnen. Sie legen auch die Gebiete fest, in denen diese Schutzmaßnahme angeordnet wird. Die Informationen dazu laufen dann über Medien oder kommen von den Behörden direkt. Und wie entscheiden Verantwortliche, wann eine solche Maßnahme nötig ist? Dafür gibt es sogenannte Notfall-Dosiswerte . Mit diesen Werten ist für das deutsche Staatsgebiet festgelegt, ab welcher zu erwartenden Strahlenbelastung für Menschen im Notfall aus radiologischer Sicht der Aufenthalt in einem Gebäude empfohlen wird. Was ist zu beachten? Verschiedene Orte bieten unterschiedlich guten Schutz. Wenn Sie aufgefordert werden, drinnen zu bleiben, bringen Sie so viel Material (Decken, Wände und in Kellerräumen Erdreich) wie möglich zwischen sich selbst und die radioaktiven Stoffe im Freien. Sollte ein (mehrstöckiges) Haus oder ein Keller innerhalb weniger Minuten sicher erreichbar sein, begeben Sie sich umgehend dort hin. Die sichersten Gebäude bestehen aus Ziegelstein- oder Betonwänden. Fahrzeuge und Wohnmobile bieten keinen ausreichenden Schutz. Trotzdem sind sie immer noch besser als ein Aufenthalt im Freien. Im Gebäude: Außenluft abschirmen, möglichst weit weg von Außenwänden aufhalten Suchen Sie, wenn möglich, innenliegende Räume und Keller ohne Fenster auf. Hat der sicherste Raum im Gebäude doch Fenster, halten Sie sich möglichst weit weg von den Fenstern auf. Im Gebäude müssen Türen und Fenster geschlossen werden, damit keine radioaktiven Teilchen mit der Luft ins Haus gelangen können. Einen zusätzlichen Schutz bieten abgedichtete Fenster und Außentüren – je weniger Luft von draußen ins Innere des Gebäudes gelangt, desto besser. Klima- und Lüftungsanlagen müssen, wenn es geht, ausgeschaltet werden, damit möglichst wenig radioaktive Partikel mit der Luft ins Haus gelangen können. Radioaktive Kontaminationen vermeiden: Waschen und Umziehen sind wichtig Lebensmittel, Getränke und Medikamente, die sich bereits in Lagern bzw. Geschäften oder in Ihrem Schutzraum befinden, können sicher verwendet werden. Falls es keine anderen behördlichen Empfehlungen gibt, kann auch Leitungswasser bedenkenlos genutzt werden. Ablegen von kontaminierter Oberbekleidung vor dem Betreten eines Gebäudes. Sollte Ihre (Ober-)Bekleidung, zum Beispiel Ihre Jacke, Hose oder Mütze, kontaminiert sein, legen Sie diese idealerweise vor Betreten des Gebäudes ab. Verstauen Sie diese Sachen in Plastiktüten außerhalb des Hauses. Waschen Sie alle ungeschützten Hautstellen unter fließendem Wasser. Achten Sie darauf, dass kein Wasser in den Mund, in die Nase und in die Augen läuft, damit radioaktive Stoffe nicht in den Körper eindringen können. Die zusätzliche Schutzwirkung des Tragens einer FFP 3-Atemschutzmasken im Haus kann vernachlässigt werden. Die Masken schützen nur vor radioaktiven Staubpartikeln, die bei geschlossenen Fenstern nur reduziert in die Wohnung gelangen können. Gut informiert bleiben Informationskanäle im Notfall Informieren Sie sich über Radio (Sender mit Verkehrsfunk), Fernsehen oder im Internet auf den offiziellen Behördenseiten. Folgen Sie den Anweisungen der Behörden und Einsatzkräfte. Nutzen Sie im Falle eines Stromausfalls zum Beispiel batteriebetriebene Radiogeräte für aktuelle Informationen. Wann darf ich wieder raus? Was habe ich dann zu beachten? Die Gefahr , die von radioaktivem Niederschlag, dem sogenanntem Fallout , ausgeht, nimmt in der Regel mit der Zeit ab. Wie schnell genau das passiert, ist abhängig von den Halbwertszeiten der radioaktiven Stoffe. In manchen Szenarien kann die Gefahr sogar sehr schnell und stark sinken. Wird von den Katastrophenschutzbehörden der Bundesländer die frühe Schutzmaßnahme „Aufenthalt in Gebäuden“ empfohlen, sollten Sie und Ihre Familie während des gesamten Zeitraums, für den diese Empfehlung gilt, das Haus nicht verlassen. Auch Ihre Haustiere sollten Sie in dieser Zeit nicht ausführen. Bleiben Sie an dem Ort, der Sie am besten schützt etwa im Keller oder in innenliegenden Räumen, sofern Sie nicht von einer unmittelbaren Gefahr bedroht sind (zum Beispiel Feuer, Gasleck, Gebäudeeinsturz oder ernsthafte Verletzung). Das heißt, Sie bleiben am besten im Gebäude, bis Sie andere Anweisungen erhalten: Die Behörden informieren darüber, wenn die Gebäude wieder verlassen werden können und ob und was dann beachtet werden muss. Von eigenständiger Evakuierung wird strengstens abgeraten, bis die gefährdeten Fallout -Gebiete identifiziert und sichere Routen für eine mögliche Evakuierung ausgewiesen wurden. Was tun, wenn ich doch das Haus verlassen muss oder von draußen komme? Wenn Sie das Gebäude doch verlassen müssen, tragen Sie am besten Schutzkleidung, zum Beispiel abwaschbare Kleidung und Gummistiefel. Falls vorhanden, tragen Sie außerdem eine FFP2- oder FFP3-Maske, das gilt auch im Falle einer Nuklearwaffen-Explosion. Damit werden radioaktive Partikel aus der Außenluft gefiltert und die Aufnahme von Radionukliden mit der Luft kann um mehr als das Zehnfache vermindert werden. Falls keine Maske vorhanden ist, können Sie sich auch ein Taschentuch vor Mund und Nase halten und dadurch atmen. Wenn Sie von draußen kommen und ein Gebäude betreten wollen, ziehen Sie Oberbekleidung und Schuhe beim Betreten des Gebäudes aus. Verpacken Sie die Kleidung und die Schuhe in einen Plastikbeutel und lagern Sie diesen verschlossen außerhalb der Wohnung. Damit verhindern Sie, dass radioaktive Stoffe ins Gebäude getragen werden. Reinigen Sie im Haus zunächst gründlich Hände und Kopf sowie alle weiteren unbedeckten Körperstellen, die mit radioaktiven Stoffen in Kontakt gekommen sein könnten, unter fließendem Wasser.  Erst danach sollten Sie gründlich duschen. Achten Sie dabei darauf, dass kein Wasser in den Mund, die Nase oder die Augen gelangt, damit radioaktive Stoffe nicht aus Versehen in den Körper kommen können. Potenziell kontaminierte Haustiere sollten in einem separaten Raum, getrennt von schutzsuchenden Personen, ausgebürstet und möglichst ebenfalls gewaschen werden. Dabei sollte - wenn verfügbar - eine FFP2- oder FFP3-Maske getragen werden. Wie kann ich mich auf die Schutzmaßnahme "Aufenthalt im Haus" vorbereiten? Identifizieren Sie bereits jetzt potenzielle Schutzräume – daheim, am Arbeitsplatz und in der Schule sowie auf dem Weg zur Arbeit. So wissen Sie im Ernstfall direkt, wohin Sie und Ihre Familie gehen können. In Betracht kommen können die Kellerräume Ihres Wohnhauses und Ihrer Arbeitsstätte, ebenso Schutzräume in umliegenden Gebäuden, Läden und Geschäftsräumen, insbesondere wenn sich diese im Untergrund befinden. Fahrzeuge und Wohnmobile bieten keinen ausreichenden Schutz. Das Bundesamt für Bevölkerungsschutz und Katastrophenhilfe ( BBK ) informiert ausführlich darüber, welche Vorräte man für den Fall eines radiologischen Notfalls sowie für andere Katastrophenfälle am besten zuhause vorrätig haben sollte. Verständigen Sie sich mit Ihrer Familie und Freunden über Ihre Vorgehensweise im Fall eines radiologischen Notfalls. So wissen alle Bescheid. Befestigen Sie Namensschilder an der Kleidung kleinerer Kinder und anderer schutzbedürftiger Personen, um sie im Fall einer Trennung schneller zu finden. Das BBK empfiehlt Brustbeutel oder eine SOS-Kapsel mit Namen, Geburtsdatum und Anschrift. SOS-Kapseln erhalten Sie in Kaufhäusern, Apotheken und Drogerien. Für das Szenario einer Nuklearwaffen-Explosion wäre es zusätzlich hilfreich, im Schutzraum einen Erste-Hilfe-Kasten mit Ausstattung und Medikamenten zur Behandlung von Verletzungen und Verbrennungen sowie mit allgemeiner und täglich benötigter Medizin vorzuhalten. Es bietet sich zudem an, bereits im Voraus Erste-Hilfe-Maßnahmen für mechanische Traumata und Verbrennungen zu erlernen. Stand: 26.11.2025

Atombomben auf Hiroshima und Nagasaki: Bedeutung für den Strahlenschutz

Atombomben auf Hiroshima und Nagasaki: Bedeutung für den Strahlenschutz Im August 1945 wurden in der Endphase des Zweiten Weltkrieges zum ersten und einzigen Mal Atomwaffen in einem militärischen Konflikt eingesetzt . Die erste von zwei amerikanischen Atombomben wurde am 6. August über der japanischen Stadt Hiroshima abgeworfen. Der zweite Bombenangriff auf die Stadt Nagasaki erfolgte drei Tage später. Das heutige Wissen über die gesundheitlichen Risiken ionisierender Strahlung basiert zu einem wichtigen Teil auf den Beobachtungen an den Überlebenden der Atombombenabwürfe. Insbesondere auf den Ergebnissen der sogenannten Life Span Study, einer epidemiologischen Kohortenstudie an den Atombombenüberlebenden. Die Studienergebnisse bilden eine wichtige Grundlage für den Strahlenschutz, insbesondere für die Festlegung von Grenzwerten. Auch in Zukunft sind wichtige Erkenntnisse aus dieser Studie zu erwarten. Historie Atombombenabwürfe: Auswirkungen Historie Friedensdenkmal in Hiroshima: Gedenkstätte für den ersten kriegerischen Einsatz einer Atombombe Während des Pazifikkriegs zwischen Japan und China beschloss die amerikanische Regierung, den Export von Erdöl und Stahl nach Japan einzuschränken, um die Kriegsausweitung nach Südostasien zu verhindern. Dieses wirtschaftliche Embargo führte am 7. Dezember 1941 zum japanischen Angriff auf Pearl Harbor und zur Ausweitung des Pazifikkrieges auf Amerika. Die USA begannen daraufhin im Jahr 1942 mit der Entwicklung und dem Bau der Atombombe ("Manhattan Project"), die im Juli 1945 in Los Alamos erfolgreich getestet wurde ("Trinity Test"). Nach fast vier Jahren andauernder Kriegsführung und der Ablehnung eines Kapitulationsultimatums seitens Japans bat die US-Militärführung um die Erlaubnis für den Einsatz der Atombombe. Obwohl viele an der Entwicklung beteiligte Wissenschaftler davon abrieten, wurde 1945 beschlossen, die Atombombe einzusetzen. Als Ziel für den Abwurf am 6. August wurde Hiroshima gewählt. Es war Sitz des Hauptquartiers der 2. Hauptarmee Japans und diente gleichzeitig zur Lagerung kriegswichtiger Güter. Zudem befand sich dort kein Kriegsgefangenenlager (mit US-Insassen). Als Ziel für den Abwurf der zweiten Atombombe am 9. August war ursprünglich die für die Rüstungsindustrie wichtige Stadt Kokura vorgesehen. Wegen schlechter Sicht wurde jedoch Nagasaki angeflogen, das Sitz des Rüstungskonzerns Mitsubishi war. Atombombenabwürfe: Auswirkungen Durch die Druck- und Hitzewellen (von mindestens 6.000 °C ) waren Sekunden nach den Abwürfen 80% der Innenstädte völlig zerstört. Die daraufhin aufsteigenden Atompilze bestanden aus aufgewirbeltem Staub und Asche, an die sich radioaktive Teilchen anhefteten. Diese Staubwolke ging ca. 20 Minuten später als radioaktiver Niederschlag (sogenannter Fall-out ) auf die Umgebung nieder. Die Opfer der Atombombenabwürfe kamen zum einen unmittelbar durch die Explosion ums Leben, zum anderen verstarben sie an den Akut- und Spätschäden der ionisierenden Strahlung. Eine eindeutige Unterscheidung der Todesursachen nach Verbrennungen, Verletzungen oder Strahlung war unmöglich, da auch die Druck- und Hitzewellen eine Rolle spielten. Da alle wichtigen Aufzeichnungen und Register in den Städten zerstört wurden, ist die genaue Anzahl der durch die Explosion Getöteten bis heute unklar. Nach Schätzungen starben in Hiroshima bis zu 80.000 und in Nagasaki bis zu 40.000 Menschen direkt, ebenso viele wurden verletzt. Abschätzung der Einwohnerzahl sowie der akuten Todesfälle in beiden Städten zum Zeitpunkt des Abwurfes bis 4 Monate danach Stadt Geschätzte Einwohnerzahl zum Zeitpunkt der Abwürfe Geschätzte Anzahl akuter Todesfälle Hiroshima 340.000 bis 350.000 90.000 bis 166.000 Nagasaki 250.000 bis 270.000 60.000 bis 80.000 Quelle: www.rerf.jp Die Anzahl der Überlebenden, die ionisierender Strahlung ausgesetzt waren, wurde in einem Zensus der japanischen Regierung auf etwa 280.000 Personen geschätzt. Als Maß für die Strahlenbelastung der Überlebenden verwendet die Radiation Effects Research Foundation (RERF) die mittlere, gewichtete Strahlendosis des Darms (Gewichtung: Gamma- Dosis des Darms + 10*Neutronen- Dosis des Darms). Diese hängt vom Aufenthaltsort zum Zeitpunkt der Explosion ab und steigt mit der Nähe zum Zentrum der Explosion (dem sogenannten Hypozentrum) stark an. Schätzung der mittleren gewichteten Strahlendosis der Überlebenden in Abhängigkeit von der Distanz zum Hypozentrum in beiden Städten Gewichtete Strahlendosis des Darms in Gray ( Gy ) Distanz Hypozentrum Hiroshima Distanz Hypozentrum Nagasaki 0,005 Gy 2.500 m 2.700 m 0,05 Gy 1.900 m 2.050 m 0,1 Gy 1.700 m 1.850 m 0,5 Gy 1.250 m 1.450 m 1 Gy 1.100 m 1.250 m Quelle: www.rerf.jp Epidemiologische Studien Um die Effekte von ionisierender Strahlung auf den Menschen zu erforschen, wurde 1950 eine Kohortenstudie ( Life Span Study ) begonnen, in die ca. 120.000 Überlebende einbezogen wurden. Zudem wurden mit Teilen dieser Kohorte folgende kleinere Kohortenstudien durchgeführt: eine Studie mit 20.000 Teilnehmenden, die regelmäßig körperlichen Untersuchungen unterzogen werden ( The Adult Health Survey ) eine Studie mit 77.000 Nachkommen von Überlebenden (F1-Studie) eine Studie mit 3.600 Teilnehmenden, die der ionisierenden Strahlung vor ihrer Geburt (in utero) ausgesetzt waren (In-utero study ) sowie eine Studie, in der anhand von 1.703 vorhandenen Blutproben von Überlebenden genetische Veränderungen erforscht werden. Die Life Span Study hat wegen ihrer großen Studienpopulation, einer relativ präzisen individuellen Dosisabschätzung, einem langen Beobachtungszeitraum und der Beobachtung zahlreicher Krankheiten eine große Bedeutung für die Erforschung der gesundheitlichen Auswirkungen ionisierender Strahlung . Im Jahr 2009 waren insgesamt ca. 38 % der Studienpopulation noch am Leben (Altersdurchschnitt 78 Jahre). Von denen, die zum Zeitpunkt der Abwürfe unter 10 Jahre alt waren, lebten im Jahr 2009 noch ca. 83 % . 2 Akute Strahlenschäden ( deterministische Strahlenwirkungen) Unmittelbar nach den Atombombenabwürfen erlitten die Betroffenen akute Strahlenschäden, sogenannte deterministische Strahlenwirkungen . Dabei handelt es sich um Gewebereaktionen, die durch das massive Absterben von Zellen verursacht werden und erst oberhalb einer Schwellendosis auftreten. Zu den deterministischen Strahlenwirkungen gehören beispielsweise die akute Strahlenkrankheit und Fehlbildungen nach Bestrahlung in-utero. Spätschäden (stochastische Strahlenwirkungen) Jahre bis Jahrzehnte nach den Atombombenabwürfen traten bei den Überlebenden Spätschäden, sogenannte stochastische Strahlenwirkungen (wie z.B. Krebs, Leukämien und genetische Wirkungen ), auf. Diese können auch von Strahlendosen verursacht werden, die unterhalb der Schwelle für deterministische Strahlenwirkungen liegen. Stochastisch bedeutet, dass diese Wirkungen nur mit einer bestimmten Wahrscheinlichkeit auftreten. Sie resultieren aus DNA -Mutationen (Schädigungen der Erbsubstanz der Zellen), die Krebs oder Leukämien auslösen können und die erst nach Jahren als klinisches Krankheitsbild in Erscheinung treten. Mutationen in den Ei- und Samenzellen (Keimzellen) können in den nachfolgenden Generationen Fehlbildungen oder Erbkrankheiten zur Folge haben. In den epidemiologischen Studien werden diese stochastischen Strahlenwirkungen untersucht. Bedeutung für den Strahlenschutz Die Daten aus verschiedenen epidemiologischen Studien werden von nationalen und internationalen wissenschaftlichen Gremien, wie der japanisch-amerikanischen Radiation Effects Research Foundation (RERF), ausgewertet und spielen eine wichtige Rolle für die Bewertung des Strahlenrisikos, z. B. durch das wissenschaftliche Komitee über die Effekte der atomaren Strahlung der Vereinten Nationen ( UNSCEAR ) und auch durch die deutsche Strahlenschutzkommission ( SSK ). Die Ergebnisse der Life Span Study , der größten Studie an Atombombenüberlebenden, bilden eine wichtige Grundlage für die Abschätzung strahlenbedingter Risiken und die Ableitung von Grenzwerten für Strahlenbelastungen und Strahlenschutzregelungen. Da die Atombombenüberlebenden jedoch einer hohen akuten Strahlenexposition ausgesetzt waren, ist die Abschätzung der Risiken durch niedrige oder chronische Strahlenexpositionen (wie sie heute eher relevant sind) aufgrund dieser Daten schwierig und wird bis heute kontrovers diskutiert. Die Aussagekraft der Life Span Study steigt mit zunehmender Beobachtungsdauer und es ist mit einer noch genaueren Beschreibung der Dosis-Wirkungs-Beziehung zu rechnen ( z. B. hinsichtlich Alters- und Geschlechtsunterschieden bei der Wirkung ionisierender Strahlung ). Literatur 1 Hsu, W. L., D. L. Preston, M. Soda, H. Sugiyama, S. Funamoto, K. Kodama, A. Kimura, N. Kamada, H. Dohy, M. Tomonaga, M. Iwanaga, Y. Miyazaki, H. M. Cullings, A. Suyama, K. Ozasa, R. E. Shore and K. Mabuchi (2013). The incidence of leukemia, lymphoma and multiple myeloma among atomic bomb survivors : 1950-2001 . Radiat Res 179(3): 361-382. 2 Grant, E. J., A. Brenner, H. Sugiyama, R. Sakata, A. Sadakane, M. Utada, E. K. Cahoon, C. M. Milder, M. Soda, H. M. Cullings, D. L. Preston, K. Mabuchid and K. Ozasa (2017). Solid Cancer Incidence among the Life Span Study of Atomic Bomb Survivors: 1958–2009. Radiat Res 187(5): 513-537. 3 Preston, D. L., E. Ron, S. Tokuoka, S. Funamoto, N. Nishi, M. Soda, K. Mabuchi and K. Kodama (2007). Solid cancer incidence in atomic bomb survivors: 1958-1998 . Radiat Res 168(1): 1-64. 4 Ozasa, K., Y. Shimizu, A. Suyama, F. Kasagi, M. Soda, E. J. Grant, R. Sakata, H. Sugiyama and K. Kodama (2012). Studies of the mortality of atomic bomb survivors, Report 14, 1950-2003: an overview of cancer and noncancer diseases . Radiat Res 177(3): 229-243. Stand: 04.08.2025

Leitstellen für die Überwachung radioaktiver Stoffe in der Umwelt

Leitstellen für die Überwachung radioaktiver Stoffe in der Umwelt Die radioaktiven Stoffe in der Umwelt werden zum einen von den Ländern, zum anderen von Einrichtungen des Bundes überwacht. In diesem Zusammenhang wurden Leitstellen eingerichtet, die jeweils für die Überwachung bestimmter Umweltbereiche verantwortlich sind. Die Aufgaben der Leitstellen sind im Strahlenschutzgesetz bzw. der IMIS -Zuständigkeitsverordnung, der Allgemeinen Verwaltungsvorschrift zum Integrierten Mess- und Informationssystem zur Überwachung radioaktiver Stoffe in der Umwelt ( AVV - IMIS ) und in der Strahlenschutzverordnung festgeschrieben. Der radioaktive Fallout durch die atmosphärischen Kernwaffenversuche in den 1950er und 1960er Jahren machte eine Überwachung der Belastung von Mensch und Umwelt durch Radioaktivität erforderlich. Wegen der Verpflichtungen durch den Artikel 35 des EURATOM -Vertrages von 1957 und der großtechnischen Nutzung der Kernenergie zur Energieproduktion wurde die Überwachung ausgeweitet und gesetzlich geregelt. Die radioaktiven Stoffe in der Umwelt werden zum einen von den Ländern, zum anderen von Einrichtungen des Bundes überwacht. Leitstellen: Einrichtungen des Bundes Gleichzeitig mit der amtlichen Überwachung wurden Leitstellen eingerichtet, die für bestimmte Umweltbereiche verantwortlich sind. Diese Leitstellen sind eingerichtet beim Bundesamt für Strahlenschutz , beim Deutschen Wetterdienst, bei der Bundesanstalt für Gewässerkunde, beim Max-Rubner-Institut, beim Bundesamt für Schifffahrt und Hydrographie, beim Thünen-Institut. Die Aufgaben Die Aufgaben der Leitstellen sind im Strahlenschutzgesetz ( StrlSchG ) mit der IMIS -Zuständigkeitsverordnung ( IMIS -ZustV) und in der Strahlenschutzverordnung ( StrlSchV ) festgeschrieben. Dies sind unter anderem: Überprüfung der Messdaten, die im Rahmen der Umweltüberwachung ( AVV - IMIS ) nach StrlSchG sowie im Rahmen der Emissions- und Immissionsüberwachung ( REI ) nach StrlSchV erhoben werden (Datenerzeuger sind unter anderem die amtlichen Messstellen der Länder, Bundesinstitute sowie die unabhängigen Messstellen zur Überwachung kerntechnischer Einrichtungen und die Betreiber kerntechnischer Einrichtungen), Zusammenfassung und Dokumentation der Daten der Umweltüberwachung nach StrlSchG sowie der Emissions- und Immissionsüberwachung, Überprüfung, Weiterentwicklung und Dokumentation von Probenahme- und Analyseverfahren (Messanleitungen) , Vergleichsanalysen zur externen Qualitätskontrolle (Ringversuche, Messvergleiche), Beratung der zuständigen Ministerien des Bundes und der Länder in fachlichen Fragen. Das BfS nimmt die Funktion einer Leitstelle in folgenden Bereichen wahr: Die Leitstellen des BfS Leitstelle Gesetzliche Grundlage Bemerkungen Leitstelle für Bodenoberflächen (In-situ-Gammaspektrometrie), Ortsdosis und Ortsdosisleistung ( ODL ) StrlSchG , IMIS -ZustV, AVV - IMIS , StrlSchV , REI ODL -Messnetz Leitstelle für Spurenanalyse StrlSchG , IMIS -ZustV, AVV - IMIS Spurenanalyse von radioaktiven Edelgasen (Krypton, Xenon) und luftstaubgebundenen Radionukliden Leitstelle für Trinkwasser, Grundwasser, Abwasser, Klärschlamm, Abfälle und Abwasser aus kerntechnischen Anlagen StrlSchG , IMIS -ZustV, AVV - IMIS , StrlSchV , REI Leitstelle für Arzneimittel und deren Ausgangsstoffe sowie Bedarfsgegenstände StrlSchG , IMIS -ZustV Leitstelle für Fortluft aus kerntechnischen Anlagen StrlSchG , IMIS -ZustV, REI Leitstelle für Fragen der Radioaktivitätsüberwachung bei erhöhter natürlicher Radioaktivität (ENORM) StrlSchG , IMIS -ZustV, StrlSchV Natürliche Radioaktivität in Umweltmedien, wie zum Beispiel Böden, Baustoffen sowie in industriellen Rückständen (zum Beispiel bei der Gewinnung von Erdgas) Qualitätssicherung von Messergebnissen durch die Leitstellen Die Leitstellen prüfen die Messergebnisse auf ihre Plausibilität und übernehmen die Qualitätssicherung der Daten. Korrekte Messergebnisse sind eine maßgebliche Voraussetzung, um in einem nuklearen Ereignisfall mögliche radiologische Auswirkungen richtig einschätzen zu können und die richtigen Maßnahmen zum Schutz der Bevölkerung zu treffen. Die Leitstellen entwickeln die anzuwendenden Probenahme- und Analyseverfahren, prüfen die Messdaten auf Plausibilität, führen Maßnahmen zur Qualitätssicherung durch, bereiten die verfügbaren Daten auf und erstatten Bericht an entscheidungsbefugte Stellen. Ringversuche und Laborvergleichsanalysen und -messungen als externe Qualitätskontrolle Die Leitstellen organisieren regelmäßig Ringversuche bzw. Laborvergleichsuntersuchungen zur externen Qualitätskontrolle. Dazu versendet die verantwortliche Leitstelle standardisierte Proben mit bekannter Zusammensetzung an die teilnehmenden Institutionen. Die Proben werden von den Teilnehmern mit den von ihnen üblicherweise verwendeten Verfahren analysiert. Ergebnisse: Vergleich liefert Informationen über Qualität von Analyse- und Auswertungsmethoden In Fachgesprächen und Workshops werden die angewendeten Methoden und Verfahren sowie die Ergebnisse von Ringversuchen bzw. Laborvergleichsanalysen und -messungen mit den Teilnehmern diskutiert. Im Bedarfsfall unterstützt die jeweilige Leitstelle teilnehmende Institutionen bei der Einführung neuer Mess- oder Analyseverfahren. Internationale Zusammenarbeit Die Mitwirkung der Leitstellen des BfS in internationalen Arbeitsgruppen dient dem Erfahrungsaustausch, der Harmonisierung von Analyse- und Messverfahren im internationalen Rahmen, der Qualitätssicherung der verfügbaren Daten. Die internationale Zusammenarbeit beim Fukushima-Unfall hat gezeigt, wie wichtig qualitätsgesicherte Daten auch auf internationaler Ebene sind. Durch das internationale Messnetz der CTBTO konnte sowohl die Ausbreitung der freigesetzten Radioaktivität als auch ihre Abschwächung bei der Verteilung in der Atmosphäre genau beobachtet werden. Die Entscheider erhielten so frühzeitig zutreffende Prognosen auf zu erwartende radiologische Auswirkungen im jeweiligen Land – eine wichtige Voraussetzung, um über mögliche nationale Schutzmaßnahmen zu entscheiden. Stand: 05.08.2025

Warum ist es schlecht, wenn es bei einer Freisetzung von radioaktiven Stoffen regnet oder schneit?

Warum ist es schlecht, wenn es bei einer Freisetzung von radioaktiven Stoffen regnet oder schneit? Radioaktive Staubpartikel lagern sich an Wassertropfen und Schneeflocken an. Bei Regen werden radioaktive Stoffe in Form von Staubteilchen aus der Wolke ausgewaschen und mit den Regentropfen etwa 100mal schneller auf Pflanzen und Boden abgelagert als bei trockenem Wetter. Schneeflocken haben eine große Oberfläche. Sie binden viele radioaktive Partikel. Die Schneeschmelze kann vor allem in ländlichen Gebieten und im Gebirge zeitlich stark verzögert radioaktive Substanzen in die Nahrungsketten bringen. Das Auswaschen von Partikeln aus der Luft durch Regen oder Schnee reinigt die Luft sehr effizient, führt aber zu einer entsprechenden Kontamination am Boden. Trinkwasser aus kontaminiertem Niederschlagswasser oder Schmelzwasser kann viele radioaktive Partikel enthalten. In Getreide, Obst oder Gemü­se, das mit konta­minier­tem Niederschlagswasser oder Schmelz­wasser bewässert wird, können möglicherweise vermehrt radioaktive Partikel enthalten sein. Oberirdische Pflanzenteile, insbesondere Blätter oder Nadeln von Bäumen (Wald), können z. B. bei Niederschlag besonders viele radioaktive Partikel (und auch andere Luftschadstoffe) ausfiltern. Vermeiden Sie den Aufenthalt im Freien besonders, wenn es regnet oder schneit. Achten Sie darauf, dass Kinder keinen Schnee in den Mund nehmen. Legen Sie nach Aufenthalt im Freien in kontaminierten Gebieten vor Betreten der Wohnung die Oberbekleidung ab. Kontaminierte Kleidung sollte in luftdichten Säcken entfernt von Menschen gelagert werden. Danach unbedeckte Körperteile zuerst waschen (Hände, Gesicht, Hals, Haare), dabei beachten, dass durch herabfließendes, kontaminiertes Wasser Mund, Nase, Ohren und Augen nicht kontaminiert werden. Die Haare mit nach hinten geneigtem Kopf von einem Helfer oder einer Helferin (mit Handschuhen) waschen und gut nachspülen lassen. Danach duschen. Achten Sie auf die Verzehrempfehlungen der zuständigen Behörden. Um Gebrauchsgegenstände ( z. B. Spielzeuge oder Gartenmöbel), die sich im Freien befinden, vor der Kontamination durch radioaktive Stoffe zu schützen, sollten diese ins Haus gebracht werden oder abgedeckt werden ( z. B. Sandkästen) Publikationen Radiologischer Notfall - So schützen Sie sich PDF 4 MB

Was ist eine radioaktive Wolke?

Was ist eine radioaktive Wolke? Radioaktive Stoffe in der Atmosphäre, verursacht durch z.B. durch eine Kernwaffenexplosion oder einen Kernreaktorunfall nennt man radioaktive Wolke. Die radioaktive Wolke verteilt sich mit der Geschwindigkeit des Windes in Windrichtung. Menschen, die sich in oder unter der Wolke aufhalten, gefährden ihre Gesundheit. Sie erhalten Strahlung aus der Luft und atmen kontaminierte Luft ein. Radioaktive Partikel in der Wolke sinken langsam auf den Boden. Regen wäscht die radioaktiven Partikel schnell aus der Luft aus. Sie liegen dann als radioaktiver Niederschlag am Boden. Radioaktive Partikel lagern sich direkt auf landwirtschaftlichen Produkten ab. Die Partikel können auch von Pflanzenwurzeln aufgenommen werden. Die Kontamination von Nahrungs- und Futtermitteln hängt von der Menge der abgelagerten radioaktiven Partikel ab. Vermeiden Sie den Aufenthalt unter der radioaktiven Wolke insbesondere bei Regen oder Schnee. Nutztiere und landwirtschaftliche Produkte sind möglichst vor radioaktiven Partikeln schützen. Milchkühe sollten schnellstmöglich in den Stall, weil z.B. das mit dem Futter aufgenommene radioaktive Jod in die Milch gelangt. Gewächshäuser schließen, kein Oberflächenwasser z.B. Regentonnen zur Bewässerung, sodass die Kontamination von gärtnerischen Produkten vermieden wird. Entnehmen Sie kein Trinkwasser aus offenen Zisternen. Publikationen Radiologischer Notfall - So schützen Sie sich PDF 4 MB

Tschernobyl und die Folgen: Sind Pilze und Wild noch belastet? Welche Regionen in Deutschland waren 1986 von radioaktiven Niederschlägen betroffen? Bestehen auch heute noch Strahlenbelastungen, die auf die Tschernobyl-Katastrophe zurückgehen? Wo wird eine erhöhte Strahlenbelastung heute noch gemessen? Kann man Pilze und Wildfleisch heute bedenkenlos im Handel kaufen und essen? Kann man Pilze heute bedenkenlos sammeln? Wie stark ist Wild belastet? Ist der Wildverzehr in Sachsen-Anhalt bedenklich? Warum ist Wildfleisch stärker kontaminiert als das Fleisch anderer Tierarten? Wo gibt es weiterführende Informationen zur Tschernobyl-Katastrophe und den Folgen?

Vor 39 Jahren ist im Atomkraftwerk Tschernobyl ein Reaktor explodiert. Nach der Nuklearkatastrophe verteilten sich Wolken mit radioaktiven Stoffen zunächst über weite Teile Europas, später über die gesamte nördliche Halbkugel. Nach Angaben des Bundesamtes für Strahlenschutz (BfS) regnete ein Teil der radioaktiven Stoffe auch in Deutschland nieder. In der Region Magdeburg wurde nach Angaben des damaligen Bezirks-Hygieneinstituts unmittelbar nach der Katastrophe eine 100- bis 500-mal höhere Radioaktivität in der Luft gemessen. Doch was ist von der radioaktiven Belastung geblieben? Dazu die folgenden Fragen und Antworten:

Studie zu Jäger*innen: Pilze machen den Unterschied

Studie zu Jäger*innen: Pilze machen den Unterschied BfS untersucht Cäsium-Konzentrationen und Ernährungsgewohnheiten bei Jäger*innen Der Verzehr von Wildschweinen und Pilzen interessierte die Forscher Jäger*innen haben mehr radioaktives Cäsium-137 im Körper als der Durchschnitt der Bevölkerung. Das liegt allerdings nicht alleine daran, dass sie regelmäßig Wildbret verzehren. Besonders deutlich wird der Unterschied dann, wenn Jäger*innen auch regelmäßig Wildpilze konsumieren. Das ist das Ergebnis einer Studie, die das Bundesamt für Strahlenschutz ( BfS ) in Neuherberg bei München durchgeführt hat und die jetzt im Journal " Science of The Total Environment " publiziert wurde. 35 Jahre nach der Reaktorkatastrophe von Tschernobyl sind in einigen Regionen Deutschlands Lebensmittel wie Wildbret, Waldpilze oder -beeren immer noch mit radioaktivem Cäsium-137 belastet. Inwiefern das auch heute noch bei Personengruppen nachweisbar ist, die häufiger als der Durchschnitt diese Lebensmittel zu sich nehmen, dieser Frage wollte das BfS in seiner Untersuchung auf den Grund gehen. Knapp 60 untersuchte Personen An den Messungen nahmen insgesamt 51 Jäger*innen und 7 Familienangehörige teil, überwiegend aus Bayern. Die Daten wurden anschließend mit den Ergebnissen aus 1.729 Messungen an Probanden aus der bayerischen Durchschnittsbevölkerung verglichen. Mit einem Fragebogen erfassten die Wissenschaftler außerdem Informationen zu Ernährungsgewohnheiten. Insbesondere der Verzehr von Wildschwein-Fleisch und Pilzen interessierte die Forscher. Wildbret, das über dem europaweit gültigen Grenzwert von 600 Becquerel pro Kilogramm Frischmasse liegt, darf nicht in den Handel gebracht werden. Da Jäger jedoch auch dieses Wildbret selbst verzehren dürfen, wurde auch danach gefragt, sowie nach regelmäßigem Pilzesammeln. Mehr Cäsium-137 bei Jäger*innen als bei Durchschnittsbevölkerung Die Messungen im Ganzkörperzähler bestätigten die Ausgangsvermutung der Wissenschaftler, dass bei Jäger*Innen mehr Cäsium-137 nachgewiesen werden kann als bei der Durchschnittsbevölkerung. Ganzkörperzähler im BfS Bei 81 Prozent der Teilnehmer lag ein Ergebnis oberhalb der sogenannten Erkennungsgrenze für Cäsium-137 vor. In der Durchschnittsbevölkerung ist nur bei einem Viertel Cäsium-137 nachweisbar. Vor allem bei denjenigen Jägern*innen traten höhere Aktivitäten auf, die angaben, auch zusätzlich selbst Wildpilze zu sammeln und zu verzehren. Neben dem Konsum von Wildfleisch ist also der Verzehr von Pilzen ausschlaggebend für die festgestellten Cäsium- Aktivitäten . Aus den regelmäßigen Pilz-Untersuchungen des BfS ist bekannt, dass vor allem im Bayerischen Wald oder am Alpenrand beispielsweise Semmelstoppelpilze, Maronenröhrlinge oder Gelbstielige Trompetenpfifferlinge erhöhte Cäsium-Werte aufweisen können. Natürliche Strahlendosis 50fach höher Jäger*innen aus Gebieten, die von dem radioaktiven Niederschlag nach dem Unfall von Tschernobyl nur wenig betroffen waren, die keine Pilze oder selten Schwarzwild essen, hatten erwartungsgemäß weniger Cäsium-137 im Körper. Radioaktives Cäsium ist im Körper sehr gut messbar. Die in der Studie gemessenen Werte geben jedoch keinen Anlass zur Sorge. Ausschlaggebend für das gesundheitliche Risiko ist die aus der gemessenen Aktivität berechnete Strahlendosis . Für den in der Studie gemessenen Spitzenwert von 1.050 Becquerel ergäbe sich eine jährliche Strahlendosis von 35 Mikrosievert . Zum Vergleich: Der durchschnittliche Wert der jährlichen Strahlendosis, die Menschen in Deutschland aus natürlichen Quellen wie Radioaktivität im Erdboden oder in der Luft erhalten, beträgt etwa 2.100 Mikrosievert , also das Fünfzigfache. Stand: 03.08.2021

Atomwaffentest Bravo auf dem Bikini-Atoll

Am 1. März 1954 zündete das US Militär auf dem Bikini-Atoll im Pazifik die Wasserstoffbombe Bravo mit einer Sprengstärke von etwa 15 Megatonnen. Der radioaktive Fallout erstreckte sich über eine Fläche von 7.000 qkm.

1 2