<p>Beitrag der Landwirtschaft zu den Treibhausgas-Emissionen</p><p>Die Landwirtschaft in Deutschland trägt maßgeblich zur Emission klimaschädlicher Gase bei. Dafür verantwortlich sind vor allem Methan-Emissionen aus der Tierhaltung (Fermentation und Wirtschaftsdüngermanagement von Gülle und Festmist) sowie Lachgas-Emissionen aus landwirtschaftlich genutzten Böden als Folge der Stickstoffdüngung (mineralisch und organisch).</p><p>Treibhausgas-Emissionen aus der Landwirtschaft</p><p>Das Umweltbundesamt legt im Rahmen des<a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetzes (KSG)</a>eine Schätzung für das Vorjahr 2024 vor. Für die Luftschadstoff-Emissionen wird keine Schätzung erstellt, dort enden die Zeitreihen beim letzten Inventarjahr 2023. Die Daten basieren auf aktuellen Zahlen zur Tierproduktion, zur Mineraldüngeranwendung sowie der Erntestatistik. Bestimmte Emissionsquellen werden zudem laut KSG der mobilen und stationären Verbrennung des landwirtschaftlichen Bereichs zugeordnet (betrifft z.B. Gewächshäuser). Dieser Bereich hat einen Anteil von rund 14 % an den Gesamt-Emissionen des Landwirtschaftssektors. Demnach stammen (unter Berücksichtigung der energiebedingten Emissionen) 76,0 % der gesamten Methan (CH4)-Emissionen und 77,3 % der Lachgas (N2O)-Emissionen in Deutschland aus der Landwirtschaft.</p><p>Im Jahr 2024 war die deutsche Landwirtschaft entsprechend einer ersten Schätzung somit insgesamt für 53,7 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente verantwortlich (siehe Abb. „Treibhausgas-Emissionen der Landwirtschaft nach Kategorien“). Das entspricht 8,2 % der gesamten <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen (THG-Emissionen) des Jahres. Diese Werte erhöhen sich auf 62,1 Millionen Tonnen (Mio. t) Kohlendioxid (CO2)-Äquivalente bzw. 9,6 % Anteil an den Gesamt-Emissionen, wenn die Emissionsquellen der mobilen und stationären Verbrennung mit berücksichtigt werden.</p><p>In den folgenden Absätzen werden die Emissionsquellen der mobilen und stationären Verbrennung des landwirtschaftlichen Sektors nicht berücksichtigt.</p><p>Den Hauptanteil an THG-Emissionen innerhalb des Landwirtschaftssektors machen die Methan-Emissionen mit 62,1 % im Schätzjahr 2024 aus. Sie entstehen bei Verdauungsprozessen, aus der Behandlung von Wirtschaftsdünger sowie durch Lagerungsprozesse von Gärresten aus nachwachsenden Rohstoffen (NaWaRo) der Biogasanlagen. Lachgas-Emissionen kommen anteilig zu 33,4 % vor und entstehen hauptsächlich bei der Ausbringung von mineralischen und organischen Düngern auf landwirtschaftlichen Böden, beim Wirtschaftsdüngermanagement sowie aus Lagerungsprozessen von Gärresten. Durch eine flächendeckende Zunahme der Biogas-Anlagen seit 1994 haben die Emissionen in diesem Bereich ebenfalls kontinuierlich zugenommen. Nur einen kleinen Anteil (4,5 %) machen die Kohlendioxid-Emissionen aus der Kalkung, der Anwendung als Mineraldünger in Form von Harnstoff sowie CO2aus anderen kohlenstoffhaltigen Düngern aus. Die CO2-Emissionen entsprechen hier einem Anteil von weniger als einem halben Prozent an den Gesamt-THG-Emissionen (ohne <a href="https://www.umweltbundesamt.de/service/glossar/l?tag=LULUCF#alphabar">LULUCF</a>) und sind daher als vernachlässigbar anzusehen (siehe Abb. „Anteile der Treibhausgase an den Emissionen der Landwirtschaft 2024“).</p><p>Klimagase aus der Viehhaltung</p><p>Das klimawirksame Spurengas Methan entsteht während des Verdauungsvorgangs (Fermentation) bei Wiederkäuern (wie z.B. Rindern und Schafen) sowie bei der Lagerung von Wirtschaftsdüngern (Festmist, Gülle). Im Jahr 2023 machten die Methan-Emissionen aus der Fermentation anteilig 76,7 % der Methan-Emissionen des Landwirtschaftsbereichs aus und waren nahezu vollständig auf die Rinder- und Milchkuhhaltung (93 %) zurückzuführen. Aus dem Wirtschaftsdüngermanagement stammten hingegen nur 18,8 % der Methan-Emissionen. Der größte Anteil des Methans aus Wirtschaftsdünger geht auf die Exkremente von Rindern und Schweinen zurück. Emissionen von anderen Tiergruppen (wie z.B. Geflügel, Esel und Pferde) sind dagegen vernachlässigbar. Der verbleibende Anteil (4,5 %) der Methan-Emissionen entstammte aus der Lagerung von Gärresten nachwachsender Rohstoffe (NawaRo) der Biogasanlagen. Insgesamt sind die aus der Tierhaltung resultierenden Methan-Emissionen im Sektor Landwirtschaft zwischen 1990 (45,8 Mio. t CO2-Äquivalente) und 2024 (33,2 Mio. t CO2-Äquivalente) um etwa 27,5 % zurückgegangen.</p><p>Wirtschaftsdünger aus der Einstreuhaltung (Festmist) ist gleichzeitig auch Quelle des klimawirksamen Lachgases (Distickstoffoxid, N2O) und seiner Vorläufersubstanzen (Stickoxide, NOxund Stickstoff, N2). Dieser Bereich trägt zu 16,2 % an den Lachgas-Emissionen der Landwirtschaft bei. Die Lachgas-Emissionen aus dem Bereich Wirtschaftsdünger (inklusive Wirtschaftsdünger-Gärreste) nahmen zwischen 1990 und 2024 um rund 34,2 % ab (siehe Tab. „Emissionen von Treibhausgasen aus der Tierhaltung“). Zu den tierbedingten Emissionen gehören ebenfalls die Lachgas-Emissionen der Ausscheidung beim Weidegang sowie aus der Ausbringung von Wirtschaftsdünger auf die Felder. Diese werden aber in der Emissionsberichterstattung in der Kategorie „landwirtschaftliche Böden“ bilanziert.</p><p>Somit lassen sich in 2024 rund 34,9 Mio. t CO2-Äquivalente direkte THG-Emissionen (das sind 64,5 % der Emissionen der Landwirtschaft und 5,4 % an den Gesamt-Emissionen Deutschlands) allein auf die Tierhaltung zurückführen. Hierbei bleiben die indirekten Emissionen aus der <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> unberücksichtigt.</p><p></p><p>Klimagase aus landwirtschaftlich genutzten Böden</p><p>Auch Böden sind Emissionsquellen von klimarelevanten Gasen. Neben der erhöhten Kohlendioxid (CO2)-Freisetzung infolge von<a href="https://www.umweltbundesamt.de/daten/klima/treibhausgas-emissionen-in-deutschland/emissionen-der-landnutzung-aenderung">Landnutzung und Landnutzungsänderungen</a>(Umbruch von Grünland- und Niedermoorstandorten) sowie der CO2-Freisetzung durch die Anwendung von Harnstoffdünger und der Kalkung von Böden handelt es sich hauptsächlich um Lachgas-Emissionen. Mikrobielle Umsetzungen (sog. Nitrifikation und Denitrifikation) von Stickstoffverbindungen führen zu Lachgas-Emissionen aus Böden. Sie entstehen durch Bodenbearbeitung sowie vornehmlich aus der Umsetzung von mineralischen Düngern und organischen Materialien (d.h. Ausbringung von Wirtschaftsdünger und beim Weidegang, Klärschlamm, Gärresten aus NaWaRo sowie der Umsetzung von Ernterückständen). Insgesamt wurden 2024 15,1 Mio. t CO2-Äquivalente Lachgas durch die Bewirtschaftung landwirtschaftlicher Böden emittiert.</p><p>Es werden direkte und indirekte Emissionen unterschieden:</p><p>Die<strong>direkten Emissionen</strong>stickstoffhaltiger klimarelevanter Gase (Lachgas und Stickoxide, siehe Tab. „Emissionen stickstoffhaltiger Treibhausgase und Ammoniak aus landwirtschaftlich genutzten Böden“) stammen überwiegend aus der Düngung mit mineralischen Stickstoffdüngern und den zuvor genannten organischen Materialien sowie aus der Bewirtschaftung organischer Böden. Diese Emissionen machen mit 46 kt bzw. 12,3 Mio. t CO2-Äquivalenten den Hauptanteil (51,9 %) an den gesamten Lachgasemissionen aus.</p><p>Quellen für<strong>indirekte Lachgas-Emissione</strong>n sind die atmosphärische <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a> von reaktiven Stickstoffverbindungen aus landwirtschaftlichen Quellen sowie die Lachgas-Emissionen aus Oberflächenabfluss und Auswaschung von gedüngten Flächen. Indirekte Lachgas-Emissionen belasten vor allem natürliche oder naturnahe Ökosysteme, die nicht unter landwirtschaftlicher Nutzung stehen.</p><p>Im Zeitraum 1990 bis 2024 nahmen die Lachgas-Emissionen aus landwirtschaftlichen Böden um 24 % ab.</p><p>Gründe für die Emissionsentwicklung</p><p>Neben den deutlichen Emissionsrückgängen in den ersten Jahren nach der deutschen Wiedervereinigung vor allem durch die Verringerung der Tierbestände und den strukturellen Umbau in den neuen Bundesländern, gingen die THG-Emissionen erst wieder ab 2017 deutlich zurück. Die Folgen der extremen <a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Drre#alphabar">Dürre</a> im Jahr 2018 waren neben hohen Ernteertragseinbußen und geringerem Mineraldüngereinsatz auch die erschwerte Futterversorgung der Tiere, die zu einer Reduzierung der Tierbestände (insbesondere bei der Rinderhaltung aber seit 2021 auch bei den Schweinebeständen) beigetragen haben dürfte. Wie erwartet setzt sich der abnehmende Trend fort bedingt durch die anhaltend schwierige wirtschaftliche Lage vieler landwirtschaftlicher Betriebe vor dem Hintergrund stark gestiegener Energie-, Düngemittel- und Futterkosten und damit höherer Produktionskosten.</p><p>Maßnahmen in der Landwirtschaft zur Senkung der Treibhausgas-Emissionen</p><p>Das von der Bundesregierung in 2019 verabschiedete und 2021 und 2024 novellierte<a href="https://www.bmuv.de/gesetz/bundes-klimaschutzgesetz">Bundes-Klimaschutzgesetz</a>legt für 2024 für den Landwirtschaftssektor eine Höchstmenge von 67 Mio. t CO2-Äquivalente fest, welche mit 62 Mio. t CO2-Äquivalente unterschritten wurde.</p><p>Weiterführende Informationen zur Senkung der <a href="https://www.umweltbundesamt.de/service/glossar/t?tag=Treibhausgas#alphabar">Treibhausgas</a>-Emissionen finden Sie auf den Themenseiten<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/ammoniak-geruch-staub">„Ammoniak, Geruch und Staub“</a>,<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/lachgas-methan">„Lachgas und Methan“</a>und<a href="https://www.umweltbundesamt.de/themen/landwirtschaft/umweltbelastungen-der-landwirtschaft/stickstoff">„Stickstoff“</a>.</p>
Die Intensivierung der Landwirtschaft und insbesondere der Einsatz von Düngemitteln ist der Schlüssel zur Ernährungssicherung einer wachsenden Weltbevölkerung. Der im Dünger enthaltene Stickstoff geht jedoch nicht nur in die pflanzliche Biomasse ein und wird schließlich geerntet, sondern wird auch als reaktiver Stickstoff (Nr) über verschiedene gasförmige und hydrologische Pfade in die Umwelt abgegeben. Dies führt zu gravierenden Umweltproblemen wie Eutrophierung, Treibhausgasemissionen oder Grundwasserverschmutzung. Wir gehen davon aus, dass wissenschaftlich fundierte Stickstoffminderungsstrategien es ermöglichen, die N2O- und NH3-Emissionen zu reduzieren und die NO3-Einträge in die Gewässer zu verringern, während die Erträge erhalten bleiben. Ziel des MINCA-Projekts ist daher die Etablierung eines gekoppelten, prozessbasierten hydro-biogeochemischen Modells zur Identifizierung von Feldbewirtschaftungsstrategien zu nutzen, die es ermöglichen, den Nr-Überschuss zu reduzieren und damit die N-Belastung in landwirtschaftlich dominierten Landschaften zu mindern. Unser besonderes Interesse gilt den Nr-Umwandlungsmechanismen an den Schnittstellen von Feldern, Grundwasser, Uferzone und Bächen. Um das derzeit begrenzte Verständnisses der zeitlichen und räumlichen hydro-biogeochemischen Flüsse bei der Nr-Transformation in der Landschaft zu überwinden, werden wir innovative Feldexperimente mit einem prozessbasierten Modellierungsansatz kombinieren. Der N-Zyklus in hydro-biogeochemischen Modellen ist jedoch komplex und die Validierung der zugrunde liegenden Prozesse datenintensiv. Die Messungen werden daher auf vier verschiedenen landwirtschaftlichen-, einem Grünland- und einem Waldgebiet durchgeführt. MINCA besteht aus vier eng miteinander verbundenen Arbeitspaketen (WP). In WP1 werden bereits laufende Messung der Wasser- und Stickstoffflüsse im Vollnkirchener Bach Studiengebiet beschrieben. Die bereits relativ umfangreichen kontinuierlichen Messungen, z.B. N2O-Emissionen, Bodenfeuchte, Abfluss und Gewässerqualität, sollen durch weitere Messungen wie NO3-Auswaschung und -Konzentrationen, saisonale Blattflächenindices, Erträge, Biomasse und deren C- und N-Gehalt ergänzt werden. Zusätzlich werden 15N2O und 15NO3 Isotopomer in Feldkampagnen gemessen. Komplexe Messungen für Modellversuche in WP1, modellbasierte hochskalierungs-Methoden im Rahmen von WP2 und Parameterreduktion, Unsicherheitsanalyse und Prozessplausibilitätsprüfung von WP3 erlauben es uns zu erkennen, wann und wo N-Belastung in der Landschaft auftreten. Dieses vertiefte Wissen wird die Grundlage für die Entwicklung von wissenschaftlich fundierten Mitigationsszenarien im WP4 bilden. Das gekoppelte Modell wird im Echtzeit-Modus ausgeführt, um die vom Bundesministerium für Ernährung und Landwirtschaft erstrebten Zielwerte von reduziertem Nr-Überschuss zu erreichen. Maßgeschneiderte in-situ-Experimente zu N2O-Emissionen und NO3-Auswaschung werden die Wirksamkeit des Minderungspotenzials aufzeigen.
Starkes Nachtleuchten tritt in der oberen Mesosphäre und der unteren Thermosphäre (MUT) der oberen Erdatmosphäre auf und enthält eine Emissionsschicht, die von angeregtem Stickstoffdioxid (NO2) hervorgerufen wird. Anregungsmechanismen, die zum angeregten Stickstoffdioxid in der MUT und Stratosphäre beitragen, stehen im Mittelpunkt dieses Projekts, da sie nicht gut verstanden sind. Stickstoffdioxid ist auch in der Stratosphäre wichtig, da es zum Ozonabbau beiträgt. Die Photochemie von reaktiven Stickstoffverbindungen (N, NO, NO2) wird in der MUT und der Stratosphäre auf der Grundlage der jetzt verfügbaren globalen Emissionsmessungen analysiert. Für diese Aufgabe wird das MAC-Modell (Multiple Airglow Chemie) erweitert, um Reaktionen mit reaktiven Sauerstoff- und Wasserstoffverbindungen (O(3P), O(1D), O3 und H, OH, HO2) zu berücksichtigen. Berechnungen mittels der aktuellen MAC Version ermöglichen die Berücksichtigung von reaktiven Sauerstoff- und Wasserstoff-verbindungen. Diese Berechnungen wurden auf der Grundlage von in situ Raketenmessungen in der MUT validiert. In Anbetracht früherer Studien zur Untersuchung der Stickstoffdioxid-emissionen wird die Berechnung der Konzentrationen der wichtigsten Repräsentanten von reaktiven Sauerstoff-, Wasserstoff- und Stickstoffverbindungen in der Stratosphäre unter Verwendung der erweiterten Version des MAC-Modells auf der Grundlage neuer Messungen durchgeführt. Reaktionen, die in der erweiterten Version des MAC-Modells berücksichtigt werden, können in ein photochemisches Modul eines GCM (general circulation model) übernommen werden.
Die Landwirtschaft ist für etwa 80% der gesamten N2O-Emissionen in Deutschland und für 45% der Treibhausgasemissionen (THG) aus dem Agrarsektor verantwortlich. Die größte N2O-Quelle in der Landwirtschaft ist der Einsatz von Stickstoffdüngern (Mineraldünger und organischer Dünger, einschließlich Biogasgärresten), der ca. 60% der gesamten N2O-Emissionen aus der Landwirtschaft verursacht. Dabei sind sowohl direkte N2O-Emissionen aus den gedüngten Böden als auch indirekte N2O-Emissionen durch die Freisetzung reaktiver Stickstoffverbindungen (z.B. Auswaschung von Nitrat, Emission von Ammoniak) von Bedeutung. Die Verringerung dieser Emissionen und die Verbesserung der Effizienz der Stickstoffnutzung sind unerlässliche Maßnahmen, um die in internationalen Vereinbarungen festgelegten Emissionsminderungsziele für den Agrarsektor zu erreichen. Nitrifikationshemmer werden als robuste und skalierbare Maßnahme zur Reduzierung der Treibhausgasemissionen im Pflanzenbau vorgeschlagen. Ob dies jedoch eine effiziente, praktikable und umweltverträgliche Maßnahme zur Reduzierung der düngemittelbedingten N2O-Emissionen unter mitteleuropäischen Bedingungen ist, wird in Wissenschaft, Politik und Praxis kontrovers diskutiert. Einerseits besteht das Potenzial, durch die Hemmung der Nitratbildung sowohl die direkten als auch die indirekten N2O-Emissionen deutlich zu reduzieren und damit die Effizienz der Stickstoffdüngung zu verbessern. Andererseits fehlen wissenschaftlich belastbare und standortdifferenzierte Ergebnisse, die NI-Effekte unter mehreren Gesichtspunkten verlässlich bewerten: i) die standortdifferenzierten jährlichen N2O-Emissionen und Nitratauswaschungen, ii) die ökologische Langzeitwirkung der Hemmstoffe und ihr Einfluss auf andere umwelt- und klimawirksame Emissionen (z.B. Ammoniakemissionen) und iii) die Gesamtbewertung als Klimaschutzmaßnahme unter Berücksichtigung von Klimaschutzeffekten, ökologischen Risiken sowie ökonomischen und pflanzenbaulichen Effekten.
Lachgas(N2O)-Emissionen der Landwirtschaft sind für rund 80% der gesamten N2O-Emission in Deutschland verantwortlich und für 45% der Treibhausgasemission (THG) des Sektors Landwirtschaft. Die größte N2O-Quelle in der Landwirtschaft ist der Einsatz von Stickstoffdüngern, der rund 60% der gesamten N2O-Emission der Landwirtschaft verursacht. Bedeutend sind hierbei sowohl direkte N2O-Emissionen aus den gedüngten Böden als auch indirekte N2O-Emissionen, die durch den Austrag reaktiver Stickstoffverbindungen verursacht werden. Sowohl direkte als auch indirekte THG Emissionen der N-Düngung hängen direkt mit der ausgebrachten N-Menge zusammen. Die Minderung dieser Emissionen und die Verbesserung der Effizienz des Stickstoffeinsatzes sind daher vordringliche Maßnahmen für das Einhalten des verbindlichen Emissionsreduktionsziels des Sektors Landwirtschaft. Nitrifikationshemmstoffe werden als robuste und skalierbare THG Reduktionsmaßnahme für den Pflanzenbau vorgeschlagen. Ob dies aber eine effiziente, praxisgerechte und umweltschonende Maßnahme zur Verringerung düngungsinduzierter N2O-Emissionen unter mitteleuropäischen Bedingungen ist, wird von Wissenschaft, Politik und Praxis kontrovers diskutiert. Einerseits bestehen die Potenziale, durch die Hemmung der Nitratbildung sowohl die direkten als auch indirekten N2O-Emissionen deutlich zu mindern und die Effizienz der Stickstoffdüngung zu verbessern. Andererseits fehlen für eine gesicherte Bewertung in mehreren Punkten wissenschaftlich belastbare und standortdifferenzierende Ergebnisse: i) die Bewertung der Wirkung auf die N2O-Jahresemission und Nitratauswaschung, ii) die ökologischen Langzeitwirkungen einer regelmäßigen Ausbringung der Hemmstoffe und ihre Wirkung auf andere umwelt- und klimawirksamen Emissionen sowie iii) die zusammenführende und standortdifferenzierende Gesamtbewertung als Klimaschutzmaßnahme unter Einbeziehung von Klimaschutzeffekten, ökologischen Risiken, sowie ökonomischen und pflanzenbaulichen Effekten.
Die größte N2O-Quelle in der Landwirtschaft ist der Einsatz von Stickstoffdüngern, der rund 60% der gesamten N2O-Emission der Landwirtschaft verursacht. Bedeutend sind hierbei sowohl direkte N2O-Emissionen aus den gedüngten Böden als auch indirekte N2O-Emissionen, die durch den Austrag reaktiver Stickstoffverbindungen (z.B. Auswaschung von Nitrat, Emission von Ammoniak) verursacht werden. Sowohl direkte als auch indirekte THG Emissionen der N-Düngung hängen direkt mit der ausgebrachten N-Menge zusammen. Die Minderung dieser Emissionen und die Verbesserung der Effizienz des Stickstoffeinsatzes sind daher vordringliche Maßnahmen für das Einhalten des verbindlichen Emissionsreduktionsziels des Sektors Landwirtschaft. Nitrifikationshemmstoffe werden als robuste und skalierbare THG Reduktionsmaßnahme für den Pflanzenbau vorgeschlagen. Ob dies aber eine effiziente, praxisgerechte und umweltschonende Maßnahme zur Verringerung düngungsinduzierter N2O-Emissionen unter mitteleuropäischen Bedingungen ist, wird von Wissenschaft, Politik und Praxis kontrovers diskutiert. Einerseits bestehen die Potenziale, durch die Hemmung der Nitratbildung sowohl die direkten als auch indirekten (Minderung der Nitratauswaschung) N2O-Emissionen deutlich zu mindern und die Effizienz der Stickstoffdüngung zu verbessern. Andererseits fehlen für eine gesicherte Bewertung in mehreren Punkten wissenschaftlich belastbare und standortdifferenzierende Ergebnisse: i) die Bewertung der Wirkung auf die N2O-Jahresemission und Nitratauswaschung, ii) die ökologischen Langzeitwirkungen einer regelmäßigen Ausbringung der Hemmstoffe und ihre Wirkung auf andere umwelt- und klimawirksamen Emissionen (z.B. Ammoniakemission) sowie iii) die zusammenführende und standortdifferenzierende Gesamtbewertung als Klimaschutzmaßnahme unter Einbeziehung von Klimaschutzeffekten, ökologischen Risiken, sowie ökonomischen und pflanzenbaulichen Effekten.
Denitrifikation ist der bedeutendste Transformationsprozess, der reaktiven Stickstoff (N) im Boden in atmosphärisches N2 überführt. In Böden befinden sich räumlich sehr heterogene Mikrosites mit sehr unterschiedlichem Potential für Denitrifikation und N Transformationen. Der Beitrag der einzelnen Mikrosites an der Gesamtdenitrifikation ist bisher nur sehr unzureichend verstanden. In dieser Studie soll der Beitrag von hot spots (hoch aktive Mikrosites) in homogenen, (gesiebten) Böden und intakten Bodenkernen untersucht werden. Basierend auf Untersuchungen mit homogenen (gesiebten) Böden wird ein Verfahren entwickelt, um die N Transformationen und die gasförmigen N Freisetzungen der verschiedenen Bodenvolumina auf die N Dynamik des Gesamtbodens zu beziehen. Diese Methode wird angewandt, um den Beitrag der hot spots an der Gesamtdenitrifikation in gesiebten und intakten Böden zu quantifizieren. Um verschiedene Wege der N2O und N2 Freisetzungen zu identifizieren, werden eine Reihe von Isotopenmethoden (dual 15N / 18O-Markierung, 15N Tracing, Isotopomere) eingesetzt und kreuz-kalibriert. Ein neues 15N-Tracing Modell wird entwickelt, um die Gesamt N Dynamik auf die N Dynamik in verschiedenen Bodenvolumina in Beziehung zu setzen. Wir erwarten, dass durch Berücksichtigung der Bodenheterogenität die Unsicherheiten der verschiedenen Isotopentechniken erheblich reduziert werden können. Die Experimente werden unter kontrollierten Bedingungen durchgeführt und sind eng mit den anderen DASIM Projekten verknüpft. In diesem Projekt werden Daten zu Brutto N Transformationen und gasförmigen N Dynamiken erhoben, die für die Validierung und Entwicklung von Denitrifikationsmodellen eingesetzt werden.
Origin | Count |
---|---|
Bund | 135 |
Kommune | 1 |
Land | 1501 |
Wissenschaft | 6 |
Type | Count |
---|---|
Daten und Messstellen | 1494 |
Ereignis | 1 |
Förderprogramm | 81 |
Text | 38 |
unbekannt | 28 |
License | Count |
---|---|
geschlossen | 62 |
offen | 1580 |
Language | Count |
---|---|
Deutsch | 1607 |
Englisch | 52 |
Resource type | Count |
---|---|
Archiv | 71 |
Bild | 1 |
Datei | 7 |
Dokument | 1447 |
Keine | 87 |
Webseite | 1531 |
Topic | Count |
---|---|
Boden | 1136 |
Lebewesen und Lebensräume | 1618 |
Luft | 1609 |
Mensch und Umwelt | 1642 |
Wasser | 1614 |
Weitere | 1633 |