API src

Found 322 results.

Related terms

Schwefeldioxid-Emissionen

<p>Schwefeldioxid-Emissionen </p><p>Schwefeldioxid entsteht hauptsächlich bei der Verbrennung schwefelhaltiger Brennstoffe. Seit 1990 sind die Emissionen um 96 Prozent gesunken, vor allem durch technische Maßnahmen sowie den Einsatz schwefelarmer Brennstoffe. Die Reduktionsziele sind damit alle erreicht worden.</p><p>Entwicklung seit 1990</p><p>Von 1990 bis 2023 ist ein Rückgang der Schwefeldioxid-Emissionen (SO2) von 5,5 auf nur 0,22 Millionen Tonnen (Mio. t) oder gut 96 % zu verzeichnen (siehe Abb. „Schwefeldioxid-Emissionen nach Quellkategorien“). Die Gründe hierfür liegen vor allem in der Stilllegung bzw. technischen Nachrüstung von Betrieben in den neuen Bundesländern sowie der Einsatz von Brennstoffen mit geringerem Schwefelgehalt. Ab dem Jahr 2016 sanken die Schwefeldioxid-Emissionen nochmals deutlich. Grund dafür war die Verschärfung der Anforderungen an die Abgasreinigung bei Großfeuerungsanlagen durch die Neufassung der 13. ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BImSchV#alphabar">BImSchV</a>⁠ vom 02.05.2013. Die Jahre ab 2020 sind von Sondereffekten geprägt, der stetig fallende Trend ist erst einmal unterbrochen.</p><p>Hauptverursacher der Schwefeldioxid-Emissionen im Jahr 2023 waren die stationären Feuerungsanlagen der Kraft- und Fernheizwerke der Energiewirtschaft und die Industriefeuerungen des Verarbeitenden Gewerbes mit einem Anteil an den Gesamtemissionen von zusammen 64 %. Seit 1990 senkten diese Bereiche ihren Schwefeldioxid-Ausstoß um 3,9 Mio. t (-97 %).</p><p>Eine vergleichbare Entwicklung zeigt sich in den Bereichen Haushalte sowie Gewerbe, Handel und Dienstleistung (Rückgang um insgesamt ca. 1 Mio. t oder fast -99 %, Anteil im Jahr 2023: 6,1 %).</p><p>Die Emissionen der mengenmäßig weniger bedeutsamen Industrieprozesse sanken zwischen 1990 und 2023 um 0,1 Mio. t und verminderten sich dadurch um ca. 69&nbsp;%. Ihr Anteil an den gesamten Schwefeldioxid-Emissionen stieg durch die überproportionalen Minderungen in den anderen Bereichen im gleichen Zeitraum von 3 % auf 26 % (siehe Tab. „Emissionen ausgewählter Luftschadstoffe nach Quellkategorien“).</p><p>Erfüllungsstand der Emissionsminderungsbeschlüsse</p><p>Im <a href="https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone">Göteborg-Protokoll</a> zur ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNECE#alphabar">UNECE</a>⁠-Luftreinhaltekonvention und in der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a>⁠ (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) der EU wird festgelegt, dass die jährlichen SO2-Emissionen ab 2020 um 21 % niedriger sein müssen als 2005. Dieses Ziel wird seit 2021 eingehalten.&nbsp;</p><p>Auf EU-Ebene legt die NEC-Richtlinie (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) auch fest, dass ab 2030 die jährlichen Emissionen 58 % niedriger gegenüber 2005 sein sollen. Dieses Ziel wurde bisher nicht erreicht.</p><p>Entstehung von Schwefeldioxid-Emissionen</p><p>Schwefeldioxid entsteht überwiegend bei Verbrennungsvorgängen durch Oxidation des im Brennstoff enthaltenen Schwefels. Die nahezu konstanten, jedoch relativ unbedeutenden prozessbedingten Emissionen treten vornehmlich in den Bereichen der industriellen Produktionsprozesse in der Chemischen Industrie, der Metallerzeugung und dem Sektor Steine und Erden sowie der Erdöl- und Erdgasaufbereitung auf.</p>

Luftschadstoff-Emissionen in Deutschland

<p>Luftschadstoff-Emissionen aus unterschiedlichsten Quellen beeinträchtigen die Luftqualität, können in der Umwelt Säuren bilden oder die übermäßige Anreicherung von Nährstoffen (Eutrophierung) in Ökosysteme vorantreiben. Auch die menschliche Gesundheit kann belastet werden.</p><p>Entwicklung der Luftschadstoffbelastung </p><p>Emissionen werden durch den Verkehr, die Energieerzeugung, Industrieprozesse, die Landwirtschaft und viele andere Aktivitäten verursacht. Die seit 1990 erzielten deutlichen Erfolge bei der Emissionsminderung einzelner Luftschadstoffe zeigt die Abbildung „Emissionen ausgewählter Luftschadstoffe“. Daraus geht hervor, dass bei vielen Luftschadstoffen die stärksten Minderungen in der ersten Hälfte der 1990er Jahre erzielt werden konnten.</p><p>Ermittlung der Emissionsmengen</p><p>Die jährlichen Emissionen werden im Umweltbundesamt aus den verfügbaren Daten (Statistiken der Länder und des Bundes, Informationen von Verbänden und Betrieben, Modelle) für alle Quellen berechnet. Die Schadstoffemissionen werden dann Verursachergruppen, so genannten Quellkategorien, zugeordnet.</p><p>Diese Aufteilung ist in der Tabelle „Emissionen ausgewählter Luftschadstoffe nach Quellkategorien“ zu sehen, unerheblich ist dabei der Ort des Verbrauchs. Beispielsweise werden die Emissionen aus der Stromproduktion bei dieser Systematik den Produzenten (hier: Kraftwerke) und nicht den Verbrauchern zugerechnet. Die Tabelle stellt Angaben zu Stickstoffoxiden (NOx), Ammoniak (NH3), leichtflüchtigen organischen Verbindungen ohne Methan (⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NMVOC#alphabar">NMVOC</a>⁠), Schwefeldioxid (SO2) und Staub – einschließlich der Feinstaubanteile PM10 und PM2,5 – sowie Kohlenmonoxid (CO) zusammen. Außerdem werden die Säurebildner SO2, NH3 und NOx unter Berücksichtigung ihres Säureäquivalents erfasst.</p><p>Die Berechnungen erfolgen nach den internationalen Berichtsvorschriften unter der <a href="http://www.unece.org/env/lrtap/welcome.html">UNECE Luftreinhaltekonvention</a>. Zum Zweck der Harmonisierung der Berichterstattung haben sich diese an den Vorgaben des Intergovernmental Panel on Climate Change der Vereinten Nationen (⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=IPCC#alphabar">IPCC</a>⁠) für die Treibhausgase orientiert.</p><p>Minderung von Emissionen durch die europäische National Emission Ceilings (NEC)-Richtlinie und das Göteborg-Protokoll</p><p>In der europäischen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a>⁠ (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) sind für die EU-Mitgliedstaaten Emissionsminderungsverpflichtungen für die wichtigsten Luftschadstoffe (SO2, NOx, NH3, ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NMVOC#alphabar">NMVOC</a>⁠ und PM2,5) festgelegt, die ab dem Jahr 2020 relativ zu 2005 einzuhalten sind. Auch das von den Parteien der Genfer Luftreinhaltekonvention beschlossene <a href="https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone">Göteborg-Protokoll</a> enthält analoge Minderungsziele für diese Schadstoffe. Dabei sind die Reduktionsverpflichtungen für den Zeitraum 2020 bis 2029 in beiden Regelungen identisch. Unter der NEC-Richtlinie sind ab dem Jahr 2030 dann deutlich höhere Reduktionen vorgesehen.</p><p>Die Tabelle „Reduktionsverpflichtungen der NEC-Richtlinie; Emissionen im Jahr 2023“ zeigt die beschlossenen Emissionshöchstmengen und stellt sie den Emissionsdaten für das Jahr 2023 gegenüber. Bei der Überprüfung der Zielerreichung werden nach der NEC Richtlinie die Emissionen aus der Düngewirtschaft und landwirtschaftlichen Böden nicht berücksichtigt.</p><p>Die sog. Trendtabellen für Luftschadstoffe, Schwermetalle und persistente organische Verbindungen (POP) zeigen die Emissionsentwicklung im gesamten berichteten Zeitraum.</p><p> <a href="https://datacube.uba.de/vis?fs%5B0%5D=Themen%2C0%7CLuft%23AIR%23&amp;pg=0&amp;fc=Themen&amp;bp=true&amp;snb=5&amp;df%5Bds%5D=ds-dc-release&amp;df%5Bid%5D=DF_AIR_EMISSIONS_TRENDS&amp;df%5Bag%5D=UBA&amp;df%5Bvs%5D=1.2&amp;dq=.A.1_ENERGY%2B1A%2B1A1%2B1A2%2B1A3%2B1A3b%2B1A4%2B1A4a%2B1A4b%2B1A5%2B1B%2B1B1%2B1B2%2B2_INDUSTRY%2B2A%2B2B%2B2C%2B2D%2B2G%2B2H%2B2I%2B3_AGRICULTURE%2B3B%2B3D%2B3J%2B5_WASTE%2B5A%2B5B%2B5C%2B5D%2B5E%2B6_OTHER%2BTOTAL%2BMEMO%2B1A3ai%2B1A3aii%2B1A3di%2B11_NATURAL.NOx_NO2.KT&amp;pd=1990%2C2023&amp;to%5BTIME_PERIOD%5D=false&amp;vw=ov"><i></i> Emission von Luftschadstoffen (UBA DataCube)</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2025_01_29_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx">Emissionsübersichten 1990-2023 für Luftschadstoffe (Exceltabelle)</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2025_01_29_em_entwicklung_in_d_trendtabelle_hm_v1.0.xlsx">Emissionsentwicklung 1990-2023 für Schwermetalle (Exceltabelle)</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2025_01_29_em_entwicklung_in_d_trendtabelle_pop_v1.0.xlsx">Emissionsübersichten 1990-2023 für persistente organische Schadstoffe (Exceltabelle)</a> </p><p>Die Inventartabellen im New Format for Reporting (NFR) beinhalten die detaillierten Emissionsdaten wie sie jährlich an die EU berichtet werden.</p><p> <a href="https://cdr.eionet.europa.eu/de/un/clrtap/inventories/envz68jiq/"><i></i> Detaillierte NFR-Inventartabellen 1990-2023 (externer Link auf den EEA-Server)</a> </p><p>Die sog. Trendtabellen für Luftschadstoffe, Schwermetalle und persistente organische Verbindungen (POP) zeigen die Emissionsentwicklung im gesamten berichteten Zeitraum.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2024_01_22_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx">Emissionsübersichten 1990-2022 für Luftschadstoffe</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2024_01_22_em_entwicklung_in_d_trendtabelle_hm_v1.0.xlsx">Emissionsentwicklung 1990-2022 für Schwermetalle</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2024_03_15_em_entwicklung_in_d_trendtabelle_pop_v1.0.xlsx">Emissionsübersichten 1990-2022 für persistente organische Schadstoffe</a> </p><p>Die Inventartabellen im New Format for Reporting (NFR) beinhalten die detaillierten Emissionsdaten wie sie jährlich an die EU berichtet werden.</p><p> <a href="https://cdr.eionet.europa.eu/de/un/clrtap/inventories/envzcypa/"><i></i> Detaillierte NFR-Inventartabellen 1990-2022 (externer Link auf den EEA-Server)</a> </p><p>Der Informative Inventory Report ist der Begleitbericht zu den Luftschadstoffinventaren.</p><p> <a href="https://iir.umweltbundesamt.de/2024/"><i></i> IIR 2024 (WIKI)</a> <a href="https://iir.umweltbundesamt.de/2024/_media/wiki/germanys_informative_inventory_report_2024.pdf"><i></i> IIR 2024 (PDF-Abzug des WIKIs)</a> </p><p>Die sog. Trendtabellen für Luftschadstoffe, Schwermetalle und persistente organische Verbindungen (POP) zeigen die Emissionsentwicklung im gesamten berichteten Zeitraum.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2022_04_04_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx">Emissionsübersichten 1990-2021 für Luftschadstoffe</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2023_01_26_em_entwicklung_in_d_trendtabelle_hm_v1.0.xlsx">Emissionsentwicklung 1990-2021 für Schwermetalle</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2024_07_03_em_entwicklung_in_d_trendtabelle_pop_v1.1.xlsx">Emissionsübersichten 1990-2021 für persistente organische Schadstoffe</a> </p><p>Die Inventartabellen im New Format for Reporting (NFR) beinhalten die detaillierten Emissionsdaten wie sie jährlich an die EU berichtet werden.</p><p> <a href="https://cdr.eionet.europa.eu/de/un/clrtap/inventories/envy_yl5a/"><i></i> Detaillierte NFR-Inventartabellen 1990-2021 (externer Link auf den EEA-Server)</a> </p><p>Der Informative Inventory Report ist der Begleitbericht zu den Luftschadstoffinventaren.</p><p> <a href="https://iir.umweltbundesamt.de/2023/"><i></i> IIR 2023</a> </p><p>Die sog. Trendtabellen für Luftschadstoffe, Schwermetalle und persistente organische Verbindungen (POP) zeigen die Emissionsentwicklung im gesamten berichteten Zeitraum.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2022_01_31_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx">Emissionsübersichten 1990-2020 für Luftschadstoffe</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2022_01_31_em_entwicklung_in_d_trendtabelle_hm_v1.0.xlsx">Emissionsentwicklung 1990-2020 für Schwermetalle</a> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2022_01_31_em_entwicklung_in_d_trendtabelle_pop_v1.0.xlsx">Emissionsübersichten 1990-2020 für persistente organische Schadstoffe</a> </p><p>Die Inventartabellen im New Format for Reporting (NFR) beinhalten die detaillierten Emissionsdaten wie sie jährlich an die EU berichtet werden.</p><p> <a href="https://cdr.eionet.europa.eu/de/un/clrtap/inventories/envygjjnq"><i></i> Detaillierte NFR-Inventartabellen 1990-2020 (externer Link auf den EEA-Server)</a> </p><p> <a href="https://iir.umweltbundesamt.de/2022/"><i></i> IIR 2022</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2021_01_08_em_entwicklung_in_d_trendtabelle_luft_v0.10.xlsx">Emissionsentwicklung 1990 - 2019 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2021_01_08_em_entwicklung_in_d_trendtabelle_hm_v0.10.xlsx">Emissionsentwicklung 1990 - 2019 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2021_01_27_em_entwicklung_in_d_trendtabelle_pop_v0.11.xlsx">Emissionsentwicklung 1990 - 2019 für Persistente organische Schadstoffe</a> </p><p> <a href="https://iir.umweltbundesamt.de/2021/"><i></i> IIR 2021</a> </p><p> <a href="https://cdr.eionet.europa.eu/de/un/clrtap/inventories/envyb590q/"><i></i> Detaillierte NFR-Inventartabellen (externer Link auf den EEA-Server)</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2019_12_19_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx">Emissionsentwicklung 1990 - 2018 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2020_03_09_em_entwicklung_in_d_trendtabelle_hm_v1.1.xlsx">Emissionsentwicklung 1990 - 2018 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2020_03_09_em_entwicklung_in_d_trendtabelle_pop_v1.1.xlsx">Emissionsentwicklung 1990 - 2018 für Persistente organische Schadstoffe</a> </p><p> <a href="https://cdr.eionet.europa.eu/de/un/clrtap/inventories/envxjlbkg/overview"><i></i> Detaillierte NFR-Inventartabellen (externer Link auf den EEA-Server)</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2019-02-15_em_entwicklung_in_d_trendtabelle_luft_v1.3_final.xlsx">Emissionsentwicklung 1990 - 2017 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2019-02-15_em_entwicklung_in_d_trendtabelle_hm_v1.2_final.xlsx">Emissionsentwicklung 1990 - 2017 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2019-02-15_em_entwicklung_in_d_trendtabelle_pop_v1.3_final.xlsx">Emissionsentwicklung 1990 - 2017 für Persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2019-03-15_nfr-tabellen_0.zip">Detaillierte Inventartabellen im New Format for Reporting (NFR)</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2018_02_14_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx">Emissionsentwicklung 1990 - 2016 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2018_02_14_em_entwicklung_in_d_trendtabelle_hm_v1.0.xlsx">Emissionsentwicklung 1990 - 2016 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2018_02_14_em_entwicklung_in_d_trendtabelle_pop_v1.0.xlsx">Emissionsentwicklung 1990 - 2016 für Persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/de_2018_nfr-tables.zip">NFR-Tabellen 2018</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2017_02_15_em_entwicklung_in_d_trendtabelle_luft_v1.0.xlsx">Emissionsentwicklung 1990 - 2015 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2017_02_15_em_entwicklung_in_d_trendtabelle_hm_v1.0.xlsx">Emissionsentwicklung 1990 - 2015 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/2017_02_15_em_entwicklung_in_d_trendtabelle_pop_v1.0.xlsx">Emissionsentwicklung 1990 - 2015 für Persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/de_2017_nfr-tables.zip">NFR-Tabellen 2017</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/emissionsentwicklung_1990_-_2014_fuer_klassische_luftschadstoffe.xlsx">Emissionsentwicklung 1990 - 2014 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/emissionsentwicklung_1990_-_2014_fuer_schwermetalle.xlsx">Emissionsentwicklung 1990 - 2014 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/emissionsentwicklung_1990_-_2014_fuer_persistente_organische_schadstoffe.xlsx">Emissionsentwicklung 1990 - 2014 für persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/361/dokumente/nfr-tabellen_2016.zip">NFR-Tabellen 2016</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/emissionsentwicklung_1990_-_2013_fuer_klassische_luftschadstoffe.xlsx">Emissionsentwicklung 1990 - 2013 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/emissionsentwicklung_1990_-_2013_fuer_schwermetalle.xlsx">Emissionsentwicklung 1990 - 2013 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/emissionsentwicklung_1990_-_2013_fuer_persistente_organische_schadstoffe.xlsx">Emissionsentwicklung 1990 - 2013 für persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/nfr-tabellen_2015.zip">NFR-Tabellen 2015</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/2013_11_25_em_entwicklung_in_d_trendtabelle_luft_v1.2.xlsx">Emissionsentwicklung 1990 - 2012 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/2014_01_07_em_entwicklung_in_d_trendtabelle_hm_v1.1_0.xlsx">Emissionsentwicklung 1990 - 2012 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/2014_01_09_em_entwicklung_in_d_trendtabelle_pop_v1.1.xlsx">Emissionsentwicklung 1990 - 2012 für persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/376/dokumente/de_2014_nfr-tabellen.zip">NFR-Tabellen 2014</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/2012_12_12_em_entwicklung_in_d_trendtabelle_luft_v1.2.0_sauber.xlsx">Emissionsentwicklung 1990 - 2011 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/2013_01_28_em_entwicklung_in_d_trendtabelle_hm_v1.1.0_sauber.xlsx">Emissionsentwicklung 1990 - 2011 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/2013_01_28_em_entwicklung_in_d_trendtabelle_pop_v1.1.0_sauber.xlsx">Emissionsentwicklung 1990 - 2011 für persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="http://cdr.eionet.europa.eu/de/un/UNECE_CLRTAP_DE/envurjtqw"><i></i> Inventartabellen 2013</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/2012_02_09_em_entwicklung_in_d_trendtabelle_luft_v1.1.0.xls">Emissionsentwicklung 1990 - 2010 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/2012_02_06_em_entwicklung_in_d_trendtabelle_hm_v2.0.2.xls">Emissionsentwicklung 1990 - 2010 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/2012_02_06_em_entwicklung_in_d_trendtabelle_pop_v1.1.1.xls">Emissionsentwicklung 1990 - 2010 für persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="http://cdr.eionet.europa.eu/de/un/UNECE_CLRTAP_DE/envtzjuzg"><i></i> Inventartabellen 2012 </a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/em_entwicklung_in_d_trendtabelle_luft_v1.3.0_out.xls">Emissionsentwicklung 1990 - 2009 für klassische Luftschadstoffe</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/em_entwicklung_in_d_trendtabelle_hm_v1.2.0_out.xls">Emissionsentwicklung 1990 - 2009 für Schwermetalle</a> </p><p> <a href="https://www.umweltbundesamt.de/sites/default/files/medien/419/dokumente/em_entwicklung_in_d_trendtabelle_pop_v1.3.0_out.xls">Emissionsentwicklung 1990 - 2009 für persistente organische Schadstoffe</a> </p><p>Nicht mehr online verfügbar.</p><p> <a href="http://cdr.eionet.europa.eu/de/un/UNECE_CLRTAP_DE/envtvosia"><i></i> Inventartabellen 2011</a> </p>

Ammoniak-Emissionen

<p>Ammoniak-Emissionen </p><p>Die Ammoniak-Emissionen stammen im Wesentlichen aus der Tierhaltung und weiteren Quellen in der Landwirtschaft. Von 1990 bis 2023 sanken die Ammoniak-Emissionen aus der Landwirtschaft um etwa 32 Prozent.</p><p>Entwicklung seit 1990</p><p>Von 1990 bis 2023 sanken die Ammoniak-Emissionen (NH3) im Gesamtinventar um 265 Tausend Tonnen (Tsd. t) oder knapp 32 %. Die Emissionen stammen hauptsächlich aus der Landwirtschaft (um die 93 % Anteil an den Gesamtemissionen). Die Emissionsreduktionen in den ersten Jahren unmittelbar nach der Wiedervereinigung lassen sich auf den strukturellen Umbau in den neuen Bundesländern zurückführen. Seit der Berichterstattung 2016 werden auch Ammoniak-Emissionen aus Lagerung und Ausbringung von Gärresten nachwachsender Rohstoffe (NAWARO) der Biogasproduktion berücksichtigt, deren Zunahme auf den Ausbau der Anlagen zurückzuführen ist. Zusätzlich werden Emissionen aus der Klärschlammausbringung betrachtet.</p><p>Die Ammoniak-Emissionen aus der Landwirtschaft dominieren seit Mitte der 1990er Jahre auch die in Säure-Äquivalenten berechneten, summierten Emissionen der Säurebildner Schwefeldioxid (SO2), Stickstoffoxide (NOx) und Ammoniak (NH3). Berechnet man das Versauerungspotenzial dieser drei Schadstoffe, so ergibt sich wegen der erheblich stärkeren Emissionsminderung bei SO2 und NOx ein steigender Einfluss von NH3 und somit der Landwirtschaft. Von 18 % im Jahre 1990 stieg der Emissionsanteil der Landwirtschaft bei den Säurebildnern bis 2023 auf 57 % (siehe Tab. „Emissionen ausgewählter Luftschadstoffe nach Quellkategorien“).</p><p>Verursacher</p><p>Ammoniak (NH3) entsteht vornehmlich durch Tierhaltung und in geringerem Maße durch die Verwendung mineralischer Düngemittel, sowie die Lagerung und Ausbringung von Gärresten der Biogasproduktion in der Landwirtschaft.</p><p>Von geringerer Bedeutung sind industrielle Prozesse (Herstellung von Ammoniak und stickstoffhaltigen Düngemitteln sowie von kalziniertem Soda), Feuerungsprozesse, Anlagen zur Rauchgasentstickung sowie Katalysatoren in Kraftfahrzeugen.</p><p>Umweltwirkungen</p><p>Ammoniak und das nach Umwandlung entstehende Ammonium schädigen Land- und Wasserökosysteme erheblich durch ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Versauerung#alphabar">Versauerung</a>⁠ und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>⁠ (Nährstoffanreicherung).</p><p>Mehr Informationen auf der Themenseite Luftschadstoffe im Überblick: <a href="https://www.umweltbundesamt.de/themen/luft/luftschadstoffe-im-ueberblick/ammoniak">Ammoniak</a>.</p><p>Erfüllungsstand der Emissionsminderungsbeschlüsse</p><p>Im <a href="https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone">Göteborg-Protokoll</a> zur ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNECE#alphabar">UNECE</a>⁠-Luftreinhaltekonvention und in der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a>⁠ (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) der EU wird festgelegt, dass die jährlichen NH3-Emissionen ab 2020 um 5 % niedriger sein müssen als 2005. Dieses Ziel wird für alle betreffenden Jahre eingehalten.&nbsp;</p><p>Auf EU-Ebene legt die NEC-Richtlinie (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) auch fest, dass ab 2030 die jährlichen Emissionen 29 % niedriger gegenüber 2005 sein sollen. Dieses Ziel wurde bisher nicht erreicht.</p>

Entwicklung Luftqualität - Emissionswerte SO2 1989 bis 2005 (Umweltatlas)

Emissionswerte SO2

Bindung des Schwefels beim Brennen von Zementklinker

Beim Brennen des Zementklinkers tritt praktisch keine SO2-Emission auf, da der aus den Roh- und Brennstoffen stammende Schwefel mit den Alkalien des Brennguts unter Bildung von schwerverdampfbarem Alkalisulfat reagiert. Um ohne Erhoehung der SO2-Emission auch schwefelreiche Abfaelle (Oelrueckstaende, Saeureharz) als Brennstoff Verwenden zu koennen, muss in Betriebsversuchen geprueft werden, ob der Schwefel nicht nur von den Alkalien, sondern auch vom Kalk gebunden werden kann. Ausserdem ist zu Untersuchen, ob der dann hoehere Sulfatgehalt im Zementklinker die Eigenschaften des Zements veraendert.

Grenzueberschreitende Emissionen. Grenzueberschreitende Emissionen, insbesondere SO2, beschraenken die nationale Energie- und Umweltpolitik

Der Grossteil der Imissionen ist das Ergebnis auslaendischer Emissionen. Daraus ziehen viele den Schluss, dass Massnahmen vor Ort wirtschaftlicher sind (vgl deutsche Subventionierung bei der Entschwefelung tschechischer Kraftwerke). Dies provoziert jedoch strategische Reaktionen, was die Effizienz dieses Vorschlages stark mildert (Uebernahme des Datensatzes aus der Datenbank FORIS des Informationszentrum Sozialwissenschaften, Bonn)

Nasselektrofilteranlage Sulfitzellstofffabrik

Das Unternehmen Essity Operations Mannheim GmbH ist ein Tochterunternehmen der Essity AB mit Hauptsitz in Stockholm, Schweden. Essity betätigt sich im Hygiene- und Gesundheitsbereich und vertreibt  Produkte und Lösungen in rund 150 Länder. Am Standort in Mannheim betreibt es ein Sulfit-Zellstoffwerk und eine Papierfabrik zur integrierten Produktion von Sulfitzellstoff nach dem Magnesiumbisulfitverfahren und Hygienepapieren. Die bisherige Verfahrenstechnik zur Chemikalienrückgewinnung und Rauchgasreinigung einer Sulfitzellstofffabrik ist sehr komplex und erfolgt in mehreren Stufen. Der Prozess beginnt mit der Verbrennung der bei der Zellstofferzeugung anfallenden Ablauge. Diese enthält die an Schwefel gebundenen Lingninkomponenten (aus Fichten- und Buchenholz) und Magnesiumverbindungen aus dem Magnesiumbisulfit (Kochsäure), welches bei der Zellstoffkochung zum Einsatz kommt. Dabei entstehen neben der Abwärme Schwefeldioxid und Magnesiumoxid. Das entstehende Rauchgas wird über Zyklonabscheider geführt, um einen Großteil des Magnesiumoxids abzuscheiden. Da dies nicht vollständig gelingt, verbleibt nutzbares Magnesiumoxid im Rauchgas und wird in die Umwelt abgegeben. Das Rauchgas durchläuft nun eine 4-stufige Wäsche, bei der Schwefeldioxid aus dem Rauchgas ausgewaschen wird. Das nasse Rauchgas wird über einen 134 Meter hohen Kamin an die Umwelt abgegeben. Nachteile des herkömmlichen Verfahrens sind, dass schadstoffhaltige Aerosole und auch Staub, die nicht abgeschieden werden können, in die Umwelt gelangen. Zusätzlich können die genannten Prozesschemikalien nicht vollständig zurückgewonnen werden. Das Magnesiumoxid setzt sich im Kamin ab. Um diese Nachteile aufzufangen, ist geplant, einen Nasselektrofilter (NEF) zu installieren. Dadurch wird ermöglicht, dass das Rauchgas nach den vier Waschstufen in zwei verfahrenstechnisch voneinander getrennten Prozessschritten über einen Gegenstromwäscher mit darauffolgendem NEF geführt werden kann. Eine solche Prozesstrennung ist mit dem bisher in Sulfitzellstoffwerken üblichen Abgasreinigungsverfahren (Sulfitwäscher) nicht möglich, da hierbei beide Schritte unmittelbar miteinander verknüpft sind. Die Trennung hat den erheblichen Vorteil, dass sich einerseits der Waschprozess und andererseits die Entfernung der Aerosole getrennt auslegen, betreiben und optimieren lassen. Dies führt im Ergebnis zu einer effizienteren Abscheidung der Aerosole. Entsprechend können die Staub- und SO 2 -Emissionen kontrollierter und damit in unterschiedlichen Betriebszuständen reduziert werden. Darüber hinaus soll der Venturi-4-Wäscher um einen weiteren Wäscher bzw. eine zusätzliche Magnesiumoxid-Eindüsung erweitert werden. Dadurch sollen Staub und Schwefeldioxidemissionen weiter reduziert und Prozesschemikalien zurückgewonnen werden. Mit diesem Vorhaben soll der Stand der Technik zur Emissionsminderung für Chemikalienrückgewinnungskessel von Sulfitzellstoffwerken maßgeblich weiterentwickelt und die einschlägigen Emissionsgrenzwerte erheblich unterschritten werden. Es sollen bis zu 50 Tonnen Feinstaub und 50 Tonnen Schwefeldioxid pro Jahr eingespart werden. Dies entspricht jeweils mindestens einer Halbierung der Emissionsmengen in den Abgasen im Vergleich zum bisherigen Stand. Zusätzlich können durch eine erfolgreiche Umsetzung der innovativen Technik 45 Tonnen Magnesiumoxid und ca. 25 Tonnen Schwefel mehr gegenüber dem Stand der Technik zurückgewonnen werden. Daraus soll sich eine Einsparung von rund 104 Tonnen Kohlenstoffdioxid-Äquivalenten, bezogen auf die Primärherstellung von Magnesiumoxid und Schwefeldioxid, ergeben. Branche: Papier und Pappe Umweltbereich: Luft Fördernehmer: Essity Operations Mannheim GmbH Bundesland: Baden-Württemberg Laufzeit: seit 2024 Status: Laufend

Emissionen 1989 – 2015

Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Die Emissionen wurden für die lufthygienisch relevanten Schadstoffe NOx, PM10 und PM2,5 neu berechnet und den vorrangigen Verursachern ‚Hausbrand‘, ‚Industrie‘ und ‚Kfz-Verkehr‘ zugeordnet. Es lassen sich somit Verursacheranteile pro dargestelltem Raster von 1 x 1 km² ablesen. 03.12.2 Emissionen 2015 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.1 NOx-Gesamtemissionen 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.2 NOx-Gesamtemissionen 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.3 NOx-Gesamtemissionen 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.4 NOx-Gesamtemissionen 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.5 NOx-Gesamtemissionen 2008/2009 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.1 NOx-Emissionen Hausbrand 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.2 NOx-Emissionen Hausbrand 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.3 NOx-Emissionen Hausbrand 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.4 NOx-Emissionen Hausbrand 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.5 NOx-Emissionen Hausbrand 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.1 NOx-Emissionen Industrie 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.2 NOx-Emissionen Industrie 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.3 NOx-Emissionen Industrie 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.4 NOx-Emissionen Industrie 2004 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.5 NOx-Emissionen Industrie 2008 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.1 NOx-Emissionen Kfz-Verkehr Gesamtnetz 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.2 NOx-Emissionen Kfz-Verkehr Gesamtnetz 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.3 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.4 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5.1 NOx-Emissionen Kfz-Verkehr Hauptnetz 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5.2 NOx-Emissionen Kfz-Verkehr Nebennetz 2009 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.1 SO2-Gesamtemissionen 1989 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.2 SO2-Gesamtemissionen 1994 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.3 SO2-Gesamtemissionen 2002 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.4 SO2-Gesamtemissionen 2005 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.07.1 SO2-Emissionen Hausbrand 1989 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.07.2 SO2-Emissionen Hausbrand 1994 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.07.3 SO2-Emissionen Hausbrand 2002 Weitere Informationen

Nasse Deposition saurer und säurebildender Regeninhaltsstoffe

<p>An den Stationen des UBA-Luftmessnetzes wurden von 1982 bis 2022 eine Abnahme saurer und säurebildender Regeninhaltsstoffe sowie eine geänderte Zusammensetzung des Niederschlags beobachtet. Die stärksten Abnahmen zeigten die Säurekonzentration (Oxonium-Ion) und das schwefelhaltige Sulfat. Die stickstoffhaltigen Ionen Nitrat und Ammonium wiesen deutlich geringere Rückgänge auf.</p><p>Erfassung der nassen Deposition</p><p>Das <a href="https://www.umweltbundesamt.de/themen/luft/messenbeobachtenueberwachen/luftmessnetz-des-umweltbundesamtes">Luftmessnetz des Umweltbundesamtes</a> bestimmt die nasse ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠, also die mit dem nassen Niederschlag (Regen, Schnee) eingetragenen Stoffmengen (Messung mit wet-only-Probenahme). Sie ist kleiner als die Gesamtdeposition, die Ablagerungen von Gasen und Partikeln auf Oberflächen einschließt.</p><p>Die Langzeitmessungen haben gezeigt, dass sich die Konzentrationen und nassen Depositionen einer Reihe von Ionen im Niederschlag zwischen 1982 und 2022 zum Teil deutlich vermindert haben.</p><p>Anstieg der pH-Werte</p><p>Die pH-Werte im Niederschlag an den Stationen Westerland, Waldhof und Schauinsland zeigen im Untersuchungszeitraum einen Anstieg von 4,1 bis 4,6 auf 5,3 – 5,9 (siehe Abb. „Entwicklung des pH-Wertes im Niederschlag an den Messstationen des ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠-Luftmessnetzes“). Ein Anstieg der pH-Werte entspricht einem Rückgang der Konzentrationen von Oxonium-Ionen (H3O+). Der Regen ist heute also deutlich weniger sauer als zu Beginn der 1980er Jahre. Im kürzeren Beobachtungszeitraum seit 1993 ist auch für die Stationen Neuglobsow und Schmücke eine Zunahme der pH-Werte festzustellen. Damit befinden sich die heutigen pH-Werte im Bereich der natürlichen, ohne menschliche Beeinflussung in Mitteleuropa zu erwartenden Werte.</p><p>Abnahme des Ionengehalts</p><p>Parallel zum Anstieg der pH-Werte hat der Gesamtgehalt an Ionen und damit die elektrische Leitfähigkeit im Niederschlag zwischen 1982 und 2022 an den Stationen Waldhof und Schauinsland deutlich abgenommen (siehe Abb. „Entwicklung der Leitfähigkeit im Niederschlag an den Messstationen des ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠-Luftmessnetzes“). In Westerland, wo der Gesamtgehalt an Ionen im Niederschlag weitgehend von Seesalz bestimmt wird, wurde eine schwächere relative Abnahme beobachtet. Für die Stationen Zingst, Neuglobsow und Schmücke ist zwischen 1993 und 2022 ebenfalls ein Rückgang erkennbar.</p><p>Änderung der Ionenverteilung</p><p>Die Abnahme des Gesamtgehaltes an Ionen im Regen während der letzten vier Jahrzehnte ist mit einer Änderung der relativen Ionenverteilung verbunden. Ein Vergleich zeigt, dass an den Stationen Waldhof und Schauinsland im Jahre 2022 geringere prozentuale Anteile an Oxonium-Ionen (H3O+) und schwefelhaltigen Sulfationen (SO42–) als in den 1980er Jahren gemessen wurden. Die Anteile der stickstoffhaltigen Ionen Nitrat (NO3–) und Ammonium (NH4+) sind hingegen höher, obwohl deren Konzentrationen absolut ebenfalls abgenommen haben.</p><p>Die niedrigeren Gesamt-Ionenkonzentrationen und die Verschiebung der prozentualen Ionenanteile sind im Wesentlichen auf die stärkere Verminderung der Emissionen von Schwefeldioxid (SO2) gegenüber Stickoxiden (NOx) und Ammoniak (NH3) zurückzuführen.</p><p>Die Konzentrationen von H3O+ und SO42– haben mit rund 90 % beziehungsweise 80 % (bezogen auf die letzten fünf Jahre) im Untersuchungszeitraum zwischen 1982 und 2022 am stärksten abgenommen. Der Rückgang der Konzentrationen betrug bei NO3– und NH4+ etwa 60 % beziehungsweise 40 % % (bezogen auf die letzten fünf Jahre). In den Abbildungen „Entwicklung der Ionenkonzentrationen an den Messstationen des ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠-Luftmessnetzes“ und „Entwicklung der nassen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/d?tag=Deposition#alphabar">Deposition</a>⁠ an den Messstationen des UBA-Luftmessnetzes“ sind die auf das Jahr 1982 normierten Konzentrationen und Depositionen der Ionen als mit der Regenmenge gewichtete Mittel über die drei Stationen Westerland, Waldhof und Schauinsland zwischen 1982 und 2022 dargestellt.</p>

Emissionen von Wärmekraftwerken und anderen Verbrennungsanlagen

<p>Deutschland verpflichtete sich 2003 mit der Zeichnung des PRTR-Protokolls dazu, ein Register über Schadstofffreisetzungen und -transporte aufzubauen. Hierzu berichten viele Industriebetriebe jährlich dem UBA über Schadstoffemissionen und die Verbringung von Abwässern und Abfällen. Das UBA bereitet diese Daten in einer Datenbank für Bürgerinnen und Bürger auf.</p><p>Umweltbelastende Emissionen aus Wärmekraftwerken und anderen Verbrennungsanlagen </p><p>Wärmekraftwerke und andere Verbrennungsanlagen, die mit fossilen Brennstoffen (insbesondere Steinkohle, Braunkohle, Erdgas) oder biogenen Brennstoffen betrieben werden, sind bedeutende Verursacher von umweltbelastenden Emissionen. Sie sind verantwortlich für einen erheblichen Teil des Ausstoßes an Kohlendioxid (CO₂), Stickstoffoxiden (NOx) und Schwefeloxiden (SOx). Die Kohleverbrennung ist zudem die wichtigste Emissionsquelle für das Schwermetall Quecksilber (Hg).</p><p>Das Schadstofffreisetzungs- und -verbringungsregister (PRTR) in Deutschland</p><p>Industriebetriebe müssen jährlich dem Umweltbundesamt (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠) sowohl über ihre Emissionen in Luft, Wasser und Boden berichten, als auch darüber, wie viele Schadstoffe sie in externe Abwasserbehandlungsanlagen weiterleiten und wie viele gefährliche Abfälle sie entsorgen. Die Betriebe müssen nicht über jeden Ausstoß und jede Entsorgung berichten, sondern nur dann, wenn der Schadstoffausstoß einen bestimmten Schwellenwert oder der Abfall eine gewisse Mengenschwelle überschreitet. In diesem Artikel werden Wärmekraftwerke und andere Verbrennungsanlagen mit einer Feuerungswärmeleistung von über 50 Megawatt (⁠<a href="https://www.umweltbundesamt.de/service/glossar/m?tag=MW#alphabar">MW</a>⁠), die von Anhang I, Nummer 1.c) der Europäischen ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PRTR#alphabar">PRTR</a>⁠-Verordnung erfasst werden, betrachtet.</p><p>Das Umweltbundesamt (UBA) sammelt die von Industriebetrieben gemeldeten Daten in einer Datenbank: dem Schadstofffreisetzungs- und -verbringungsregister PRTR (<strong>P</strong>ollutant <strong>R</strong>elease and <strong>T</strong>ransfer <strong>R</strong>egister). Das UBA leitet die Daten dann an die Europäische Kommission weiter und macht sie im Internet unter der Adresse <a href="https://thru.de/">https://thru.de</a> der Öffentlichkeit frei zugänglich.</p><p>Es gibt drei Rechtsgrundlagen für die PRTR-Berichterstattung:</p><p>Erfasst werden im PRTR industrielle Tätigkeiten in insgesamt neun Sektoren. Einer davon ist der Energiesektor, zu dem die hier dargestellten Wärmekraftwerke und andere Verbrennungsanlagen gehören. Für das aktuelle Berichtsjahr 2023 waren in Deutschland insgesamt 130 Betriebe mit einer Feuerungswärmeleistung von mehr als 50 Megawatt (MW) und mit Luftemissionen nach PRTR berichtspflichtig (siehe Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Luftemissionen im Jahr 2023“).</p><p>Die Aussagekraft des PRTR ist jedoch begrenzt. Drei Beispiele:</p><p>Kohlendioxid-Emissionen in die Luft</p><p>Kohlendioxid (CO₂)-Emissionen entstehen vor allem bei der Verbrennung fossiler Energieträger. Somit gehören Wärmekraftwerke und andere stationäre Verbrennungsanlagen zu den bedeutenden Quellen dieses Treibhausgases. Dies ist auch im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PRTR#alphabar">PRTR</a>⁠ erkennbar. <br><br>Nicht jeder Betreiber muss CO₂-Emissionen melden. Für die Freisetzung von CO₂ in die Luft gilt im PRTR ein Schwellenwert von 100.000 Tonnen pro Jahr (t/Jahr). Erst wenn ein Betrieb diesen Wert überschreitet, muss er dem Umweltbundesamt die CO₂-Emissionsfracht melden.</p><p>In den Jahren 2007 bis 2023 meldeten jeweils zwischen 117 und 156 Betreiber von Wärmekraftwerken und andere Verbrennungsanlagen CO₂-Emissionen an das PRTR. Das Jahr 2009 fiel in der Zeitreihe hinsichtlich der freigesetzten Mengen heraus, da in diesem Jahr aufgrund der Wirtschaftskrise und der daraus folgenden geringeren Nachfrage nach Strom und Wärme weniger Brennstoffe in den Anlagen eingesetzt wurden. Der zeitweilige Anstieg der Emissionsfrachten nach 2009 ist der wirtschaftlichen Erholung geschuldet. Im Berichtszeitraum war die Zahl meldender Wärmekraftwerke und anderer Verbrennungsanlagen im Jahr 2023 mit 117 Betrieben als auch die berichtete Gesamtemissionsfracht mit 162 Kilotonnen am niedrigsten. Von 2016 bis 2020 ging die Anzahl meldender Wärmekraftwerke und anderer Verbrennungsanlagen sowie der Anteil der berichteten Gesamtemissionsfracht stetig zurück (siehe Abb. „Kohlendioxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). In den Jahren 2021 und 2022 stiegen die Einsätze von Stein- und Braunkohlen in Großfeuerungsanlagen und damit auch die CO2 Emissionen wieder an. Einige Kohlekraftwerke wurden aus der Netzreserve/ Sicherheitsbereitschaft wieder in den regulären Betrieb überführt. Mit dem erhöhten Kohleeinsatz wurde während der Gaskrise teures Erdgas eingespart. Infolgedessen liefen die Erdgaskraftwerke weniger. Im Jahr 2023 ging der Kohleeinsatz in Kraftwerken wieder deutlich zurück. Hauptgründe dafür sind der verringerte Stromverbrauch, die Zunahme der Stromimporte und die erhöhte Einspeisung von erneuerbarem Strom. Das führte in der Summe zu einer merklichen Senkung der CO₂ Emissionen. Auch die Anzahl der CO₂-meldenden Kraftwerke war 2023 im Vergleich zum Vorjahr rückläufig, weil aufgrund von Stilllegungen aber vor allem wegen verringerter Volllaststunden Anlagen unter den Schwellenwert fielen.</p><p>Die Frachtangaben zu CO₂ im PRTR basieren größtenteils auf Berechnungen der Betreiber. Als Grundlage dienen Brennstoffanalysen zur Bestimmung des Kohlenstoffgehaltes. CO₂ Messungen im Abgas werden nur selten vorgenommen.</p><p>Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Kohlendioxid-Emissionen in die Luft 2023“ erfasst alle 117 Betriebe, die im Jahr 2023 mehr als 100.000 Tonnen CO₂ in die Luft freisetzten. Die Signaturen in der Karte zeigen die Größenordnung der jeweils vom Betrieb freigesetzten CO₂-Menge:</p><p>Stickstoffoxid-Emissionen in die Luft</p><p>Stickstoffoxide (Stickstoffmonoxid und Stickstoffdioxid, gerechnet als Stickstoffdioxid und abgekürzt mit NOx, schädigen die Gesundheit von Mensch, Tier und Vegetation in vielfacher Weise. Im Vordergrund steht die stark oxidierende Wirkung von Stickstoffdioxid (NO2). Außerdem tragen einige Stickstoffoxide als Vorläuferstoffe zur Bildung von bodennahem Ozon und sekundärem Feinstaub bei, wirken überdüngend und versauernd und schädigen dadurch auch mittelbar die Vegetation und den Boden. Berichtspflichtig im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PRTR#alphabar">PRTR</a>⁠ sind NOx-Emissionen in die Luft ab einem Schwellenwert von größer 100.000 Kilogramm pro Jahr (kg/Jahr).</p><p>In den Jahren von 2007 bis 2023 ging die Anzahl Stickstoffoxid-Emissionen meldender Betriebe von 157 auf 89 Wärmekraftwerke und andere Verbrennungsanlagen zurück. Seit 2013 ist ein Rückgang der berichteten NOx-Gesamtemissionen im PRTR von 209 Kilotonnen (kt) auf 86 Kilotonnen (kt) in 2023 zu beobachten. Der auffallende niedrige Wert berichteter NOx-Gesamtemissionen iHv. 101 Kilotonnen (kt) im Jahr 2020 ist der besonderen Situation dieses Jahres geschuldet. Einerseits nahm der Stromverbrauch aufgrund der Corona-Pandemie ab und der Stromexport verringerte sich. Andererseits legte die Stromerzeugung aus erneuerbaren Energieträgern zu. Das führte in der Summe zu einem erheblichen Rückgang des Kohleeinsatzes. Im Jahr 2021 führte die wirtschaftliche Erholung und die geringe Stromerzeugung aus Windenergie zu einer Erhöhung der Brennstoffeinsätze und entsprechend zu einer Emissionssteigerung. Aufgrund der Gaskrise und der damit verbundenen Brennstoffwechsel von Gas zu Kohle und Ölprodukten kam es im Jahr 2022 nochmals zu einer Erhöhung der berichteten Gesamtemissionsfracht. Die zeitgleich erfolgte Verschärfung der NOX-Grenzwerte im Zuge der Novelle der 13. ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BImSchV#alphabar">BImSchV</a>⁠ dämpfte den Emissionsanstieg. Im Jahr 2023 sanken die NOX-Emissionen im Vergleich zum Vorjahr wieder um rund 29 %. (siehe Abb. „Stickstoffoxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Der deutliche Rückgang im Jahr 2023 lässt sich im Wesentlichen durch den verringerten Einsatz von Kohlen, Erdgas und Ölprodukten zur Stromerzeugung erklären. Die Gründe dafür sind die erhöhte Einspeisung von erneuerbarem Strom, die Erhöhung von Stromimporten und die verringerte Stromnachfrage.</p><p>Die Frachtangaben zu NOx im PRTR basieren größtenteils auf kontinuierlichen Messungen der Betreiber.</p><p>Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Stickstoffoxid-Emissionen in die Luft 2023“ erfasst alle 89 Betriebe, die im Jahr 2023 mehr als 100 t Stickstoffoxid (t NOx) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Stickstoffoxid-Mengen:</p><p>Schwefeloxid-Emissionen in die Luft</p><p>Schwefeloxide (wie zum Beispiel SO2, im Folgenden nur SOx genannt) entstehen überwiegend bei Verbrennungsvorgängen fossiler Energieträger wie zum Beispiel Kohle. Schwefeloxide können Schleimhäute und Augen reizen und Atemwegsprobleme verursachen. Sie können zudem aufgrund von Ablagerung in Ökosystemen eine ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Versauerung#alphabar">Versauerung</a>⁠ von Böden und Gewässern bewirken. Der Schwellenwert für im ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PRTR#alphabar">PRTR</a>⁠ berichtspflichtige SOx-Emissionen in die Luft beträgt größer 150.000 Kilogramm pro Jahr (kg/Jahr).</p><p>In den Jahren von 2007 bis 2023 meldeten jeweils zwischen 42 und 80 Wärmekraftwerke und andere Verbrennungsanlagen Schwefeloxidemissionsfrachten. In den Jahren 2007 und 2013 war der höchste Stand der Gesamtfrachten mit jeweils 157 Kilotonnen (kt) zu verzeichnen. Die Zahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen ist seit 2013 kontinuierlich rückläufig und erreichte 2020 mit 42 meldenden Betrieben den niedrigsten Stand. Das Jahr 2023 stellt mit berichteten 47 Kilotonnen (kt) das Jahr mit der niedrigsten Gesamtemissionsfracht in der Zeitreihe dar und liegt damit sogar noch unter dem Wert der Corona-Krise im Jahr 2020. &nbsp;2023 nahm im Vergleich zum vorangegangenen Jahr, 2022, die Anzahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen um rund 15 % zu, der Anteil der berichteten Gesamtemissionsfracht hingegen um rund 18 % ab (siehe Abb. “Schwefeloxid-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Der Hauptgrund für den Emissionsrückgang im Jahr 2023 der deutlich verringerte Kohleeinsatz zur Stromerzeugung. Bemerkenswert ist, dass die Umsetzung der strengeren Grenzwerte und der höheren Schwefelabscheidegrade in der novellierten Fassung der 13. ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BImSchV#alphabar">BImSchV</a>⁠ im Jahr 2022 dazu führte, dass das Emissionsniveau trotz gestiegener Kohleeinsätze gleichblieb. Bei Betrachtung der gesamten Zeitreihe von 2007 bis 2023 ist ein Rückgang berichteter Gesamtemissionsfrachten von rund 70 % zu verzeichnen. Der Emissionsrückgang im Zeitraum 2007 bis 2023 ist, ähnlich wie bei Stickstoffoxiden, im Wesentlichen auf den sinkenden Kohleeinsatz in Wärmekraftwerken zurückzuführen. Besonders stark ging der Steinkohleeinsatz zurück, aber auch der Braunkohleeinsatz verringerte sich signifikant. Dabei verlief die Entwicklung in den einzelnen Braunkohlerevieren uneinheitlich. Aufgrund der unterschiedlichen Schwefelgehalte in den verschiedenen Revieren (rheinische Braunkohle niedriger Schwefelgehalt, mitteldeutsche Braunkohle hoher Schwefelgehalt) korreliert die Emissionsminderung nicht direkt mit der Entwicklung der Brennstoffeinsätze. Nachdem in den Jahren 2021 und 2022 aufgrund des Kernkraftausstieges und der Gaskrise wieder mehr Stein- und Braunkohle eingesetzt wurde, drehte sich diese Entwicklung im Jahr 2023 wieder um und entsprechend führte der reduzierte Kohleeinsatz zu einer deutlichen Senkung der Emissionen.</p><p>Die Frachtangaben zu SOx im PRTR basieren größtenteils auf kontinuierlichen Messungen der Betreiber.</p><p>Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Schwefeloxid-Emissionen in die Luft 2023“ erfasst alle 43 Betriebe, die im Jahr 2023 mehr als 150 Tonnen Schwefeloxid (t SOx) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Schwefeloxid-Mengen:</p><p>Quecksilber-Emissionen in die Luft</p><p>Das zur Gruppe der Schwermetalle gehörende Quecksilber (Hg) wird hauptsächlich frei, wenn Energieerzeuger fossile Brennstoffe wie Kohle für die Energieerzeugung verbrennen. Quecksilber und seine Verbindungen sind für Lebewesen teilweise sehr giftig. Die stärkste Giftwirkung geht von Methylquecksilber aus. Diese Verbindung reichert sich besonders in Fischen und Schalentieren an und gelangt so auch in unsere Nahrungskette.</p><p>Die Zahl der Wärmekraftwerke und anderen Verbrennungsanlagen, die Hg-Emissionen in die Luft an das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/p?tag=PRTR#alphabar">PRTR</a>⁠ meldeten, pendelte in den Jahren 2007 bis 2023 zwischen 19 und 56. Ein Betreiber muss nur dann berichten, wenn er mehr als 10 Kilogramm Quecksilber pro Jahr (kg/Jahr) in die Luft emittiert. Im Jahr 2009 gingen die Emissionen aufgrund der gesunkenen Nachfrage nach Strom und Wärme zurück. Der Anstieg der Emissionsfrachten von 2009 auf 2010 ist der wirtschaftlichen Erholung geschuldet. Die Zahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen und die berichtete Gesamtemissionsfracht erreichte im Jahr 2020 mit 19 Betrieben den niedrigsten Stand innerhalb der Zeitreihe 2007 bis 2023, was den oben genannten Besonderheiten des Jahres 2020 geschuldet ist. &nbsp;Das Jahr 2023 stellt mit berichteten 2,17 Kilotonnen (kt) das Jahr mit der niedrigsten Gesamtemissionsfracht in der Zeitreihe dar. Bei Betrachtung der gesamten Zeitreihe von 2007 bis 2023 ist von 2016 bis 2023 ein deutlicher Rückgang der berichteten Gesamtemissionsfrachten um rund 50 % zu verzeichnen (siehe Abb. „Quecksilber-Emissionen aus Kraftwerken in die Luft und Zahl der im PRTR meldenden Kraftwerke“). Für den Rückgang der gemeldeten Gesamtemissionsfracht bis 2023 gibt es hauptsächlich zwei Gründe: Den wesentlichen Anteil hat der deutliche Rückgang der Kohleverstromung. Weiterhin trägt die Einführung eines auf das Jahr bezogenen Quecksilbergrenzwertes dazu bei, der erstmals für das Jahr 2019 anzuwenden war, und der deutlich strenger ist als der bisherige und weiterhin parallel geltende auf den einzelnen Tag bezogene Grenzwert. Diese neue Anforderung bewirkt, dass vor allem die Kraftwerke im mitteldeutschen Braunkohlerevier – hier liegen deutlich höhere Gehalte an Quecksilber in der Rohbraunkohle vor als im rheinischen Revier – erhebliche Anstrengungen für eine weitergehende Quecksilberemissionsminderung unternehmen mussten. Infolgedessen kommt es im mitteldeutschen Revier zu einer deutlichen Minderung der spezifischen Quecksilberemissionen. Aber auch im Lausitzer Revier gingen in den Jahren 2019 und 2020 die spezifischen Quecksilberemissionen zurück. Die Gründe für den Rückgang der Anzahl meldender Wärmekraftwerke und anderen Verbrennungsanlagen sind zum einen Anlagenstilllegungen, aber auch der verringerte Steinkohleeinsatz in den verbliebenen Anlagen, der dazu führt, dass einige Anlagen unter die Abschneidegrenze fallen. Der Emissionsanstieg den Jahren 2021 und 2022 ist im Wesentlichen auf den, angesichts der Gaskrise, erhöhten Braun- und Steinkohleeinsatz zurückzuführen. Daraus ergibt sich auch eine höhere Anzahl der meldenden Steinkohlenkraftwerke, die den Schwellenwert überschreiten. Im Jahr 2022 wurden im Zuge der Umsetzung der BVT-Schlussfolgerungen die gesetzlichen Anforderungen nochmals deutlich verschärft. Von daher kommt es trotz einer Erhöhung des Kohleeinsatzes in Großfeuerungsanlagen von über 8 % nur zu einer leichten Zunahme der Quecksilberemissionen von 0,3 %. Im Jahr 2023 sinken die Quecksilberemissionen im Vergleich zum Vorjahr um rund 25 %. Der Hauptgrund für diese Entwicklung ist der deutlich verringerte Einsatz von Stein- und Braunkohlen zur Stromerzeugung.</p><p>Der größte Teil der Betreiber ermittelt die Hg-Luftemissionen über Messungen, die meisten davon kontinuierlich. Ein Teil der Quecksilberemissionen wird aber auch über Berechnungen ermittelt, die meist auf den vorgeschriebenen Brennstoffanalysen basieren.</p><p>Die Karte „Standorte von PRTR-berichtspflichtigen Kraftwerken mit Quecksilber-Emissionen in die Luft 2023“ erfasst die 23 Betriebe, die nach eigenen Angaben im Jahr 2023 mehr als 10 Kilogramm Quecksilber (kg Hg) in die Luft freisetzten. Die Signaturen in der Karte zeigen die jeweilige Größenordnung der vom Betrieb in die Luft freigesetzten Menge an Quecksilber:</p>

1 2 3 4 531 32 33