API src

Found 308 results.

Related terms

Grenzueberschreitende Emissionen. Grenzueberschreitende Emissionen, insbesondere SO2, beschraenken die nationale Energie- und Umweltpolitik

Der Grossteil der Imissionen ist das Ergebnis auslaendischer Emissionen. Daraus ziehen viele den Schluss, dass Massnahmen vor Ort wirtschaftlicher sind (vgl deutsche Subventionierung bei der Entschwefelung tschechischer Kraftwerke). Dies provoziert jedoch strategische Reaktionen, was die Effizienz dieses Vorschlages stark mildert (Uebernahme des Datensatzes aus der Datenbank FORIS des Informationszentrum Sozialwissenschaften, Bonn)

Bindung des Schwefels beim Brennen von Zementklinker

Beim Brennen des Zementklinkers tritt praktisch keine SO2-Emission auf, da der aus den Roh- und Brennstoffen stammende Schwefel mit den Alkalien des Brennguts unter Bildung von schwerverdampfbarem Alkalisulfat reagiert. Um ohne Erhoehung der SO2-Emission auch schwefelreiche Abfaelle (Oelrueckstaende, Saeureharz) als Brennstoff Verwenden zu koennen, muss in Betriebsversuchen geprueft werden, ob der Schwefel nicht nur von den Alkalien, sondern auch vom Kalk gebunden werden kann. Ausserdem ist zu Untersuchen, ob der dann hoehere Sulfatgehalt im Zementklinker die Eigenschaften des Zements veraendert.

Nasselektrofilteranlage Sulfitzellstofffabrik

Das Unternehmen Essity Operations Mannheim GmbH ist ein Tochterunternehmen der Essity AB mit Hauptsitz in Stockholm, Schweden. Essity betätigt sich im Hygiene- und Gesundheitsbereich und vertreibt  Produkte und Lösungen in rund 150 Länder. Am Standort in Mannheim betreibt es ein Sulfit-Zellstoffwerk und eine Papierfabrik zur integrierten Produktion von Sulfitzellstoff nach dem Magnesiumbisulfitverfahren und Hygienepapieren. Die bisherige Verfahrenstechnik zur Chemikalienrückgewinnung und Rauchgasreinigung einer Sulfitzellstofffabrik ist sehr komplex und erfolgt in mehreren Stufen. Der Prozess beginnt mit der Verbrennung der bei der Zellstofferzeugung anfallenden Ablauge. Diese enthält die an Schwefel gebundenen Lingninkomponenten (aus Fichten- und Buchenholz) und Magnesiumverbindungen aus dem Magnesiumbisulfit (Kochsäure), welches bei der Zellstoffkochung zum Einsatz kommt. Dabei entstehen neben der Abwärme Schwefeldioxid und Magnesiumoxid. Das entstehende Rauchgas wird über Zyklonabscheider geführt, um einen Großteil des Magnesiumoxids abzuscheiden. Da dies nicht vollständig gelingt, verbleibt nutzbares Magnesiumoxid im Rauchgas und wird in die Umwelt abgegeben. Das Rauchgas durchläuft nun eine 4-stufige Wäsche, bei der Schwefeldioxid aus dem Rauchgas ausgewaschen wird. Das nasse Rauchgas wird über einen 134 Meter hohen Kamin an die Umwelt abgegeben. Nachteile des herkömmlichen Verfahrens sind, dass schadstoffhaltige Aerosole und auch Staub, die nicht abgeschieden werden können, in die Umwelt gelangen. Zusätzlich können die genannten Prozesschemikalien nicht vollständig zurückgewonnen werden. Das Magnesiumoxid setzt sich im Kamin ab. Um diese Nachteile aufzufangen, ist geplant, einen Nasselektrofilter (NEF) zu installieren. Dadurch wird ermöglicht, dass das Rauchgas nach den vier Waschstufen in zwei verfahrenstechnisch voneinander getrennten Prozessschritten über einen Gegenstromwäscher mit darauffolgendem NEF geführt werden kann. Eine solche Prozesstrennung ist mit dem bisher in Sulfitzellstoffwerken üblichen Abgasreinigungsverfahren (Sulfitwäscher) nicht möglich, da hierbei beide Schritte unmittelbar miteinander verknüpft sind. Die Trennung hat den erheblichen Vorteil, dass sich einerseits der Waschprozess und andererseits die Entfernung der Aerosole getrennt auslegen, betreiben und optimieren lassen. Dies führt im Ergebnis zu einer effizienteren Abscheidung der Aerosole. Entsprechend können die Staub- und SO 2 -Emissionen kontrollierter und damit in unterschiedlichen Betriebszuständen reduziert werden. Darüber hinaus soll der Venturi-4-Wäscher um einen weiteren Wäscher bzw. eine zusätzliche Magnesiumoxid-Eindüsung erweitert werden. Dadurch sollen Staub und Schwefeldioxidemissionen weiter reduziert und Prozesschemikalien zurückgewonnen werden. Mit diesem Vorhaben soll der Stand der Technik zur Emissionsminderung für Chemikalienrückgewinnungskessel von Sulfitzellstoffwerken maßgeblich weiterentwickelt und die einschlägigen Emissionsgrenzwerte erheblich unterschritten werden. Es sollen bis zu 50 Tonnen Feinstaub und 50 Tonnen Schwefeldioxid pro Jahr eingespart werden. Dies entspricht jeweils mindestens einer Halbierung der Emissionsmengen in den Abgasen im Vergleich zum bisherigen Stand. Zusätzlich können durch eine erfolgreiche Umsetzung der innovativen Technik 45 Tonnen Magnesiumoxid und ca. 25 Tonnen Schwefel mehr gegenüber dem Stand der Technik zurückgewonnen werden. Daraus soll sich eine Einsparung von rund 104 Tonnen Kohlenstoffdioxid-Äquivalenten, bezogen auf die Primärherstellung von Magnesiumoxid und Schwefeldioxid, ergeben. Branche: Papier und Pappe Umweltbereich: Luft Fördernehmer: Essity Operations Mannheim GmbH Bundesland: Baden-Württemberg Laufzeit: seit 2024 Status: Laufend

Emissionen 1989 – 2015

Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit Die Emissionen wurden für die lufthygienisch relevanten Schadstoffe NOx, PM10 und PM2,5 neu berechnet und den vorrangigen Verursachern ‚Hausbrand‘, ‚Industrie‘ und ‚Kfz-Verkehr‘ zugeordnet. Es lassen sich somit Verursacheranteile pro dargestelltem Raster von 1 x 1 km² ablesen. 03.12.2 Emissionen 2015 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.1 NOx-Gesamtemissionen 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.2 NOx-Gesamtemissionen 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.3 NOx-Gesamtemissionen 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.4 NOx-Gesamtemissionen 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.02.5 NOx-Gesamtemissionen 2008/2009 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.1 NOx-Emissionen Hausbrand 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.2 NOx-Emissionen Hausbrand 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.3 NOx-Emissionen Hausbrand 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.4 NOx-Emissionen Hausbrand 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden als Summenwert in Tonnen pro dargestelltem 1 km²-Raster durch die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.03.5 NOx-Emissionen Hausbrand 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.1 NOx-Emissionen Industrie 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.2 NOx-Emissionen Industrie 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.3 NOx-Emissionen Industrie 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.4 NOx-Emissionen Industrie 2004 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Industrie‘, zu der die genehmigungsbedürftigen Anlagen und die Heizkraftwerke Berlins gehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich auf die Industrie- und Gewerbegebiete der Stadt. 03.12.04.5 NOx-Emissionen Industrie 2008 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.1 NOx-Emissionen Kfz-Verkehr Gesamtnetz 1989 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.2 NOx-Emissionen Kfz-Verkehr Gesamtnetz 1994 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.3 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2002 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.4 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2005 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5 NOx-Emissionen Kfz-Verkehr Gesamtnetz 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5.1 NOx-Emissionen Kfz-Verkehr Hauptnetz 2009 Weitere Informationen Berechnete Emissionen an Stickoxiden durch die Verursachergruppe ‚Verkehr‘, der neben den PKW auch LKW, Busse und Motorräder angehören. Die Emissionen werden pro 1 km²-Raster dargestellt und verteilen sich beinahe flächendeckend über die Stadt. 03.12.05.5.2 NOx-Emissionen Kfz-Verkehr Nebennetz 2009 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.1 SO2-Gesamtemissionen 1989 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.2 SO2-Gesamtemissionen 1994 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.3 SO2-Gesamtemissionen 2002 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für alle relevanten Verursachergruppen. Die Emissionsanteile der Verursachergruppen werden deutlich. 03.12.06.4 SO2-Gesamtemissionen 2005 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.07.1 SO2-Emissionen Hausbrand 1989 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.07.2 SO2-Emissionen Hausbrand 1994 Weitere Informationen Berechnete Emissionen an Schwefeldioxid als Summenwert in Tonnen pro dargestelltem 1 km²-Raster für die Verursachergruppe ‚Hausbrand‘, zu der die vielen kleinen Heizungsanlagen, z.B. für Wohn- und Gewerbebauten im Stadtgebiet, gezählt werden. 03.12.07.3 SO2-Emissionen Hausbrand 2002 Weitere Informationen

Schwefeldioxid-Emissionen

<p>Schwefeldioxid-Emissionen </p><p>Schwefeldioxid entsteht hauptsächlich bei der Verbrennung schwefelhaltiger Brennstoffe. Seit 1990 sind die Emissionen um 96 Prozent gesunken, vor allem durch technische Maßnahmen sowie den Einsatz schwefelarmer Brennstoffe. Die Reduktionsziele sind damit alle erreicht worden.</p><p>Entwicklung seit 1990</p><p>Von 1990 bis 2023 ist ein Rückgang der Schwefeldioxid-Emissionen (SO2) von 5,5 auf nur 0,22 Millionen Tonnen (Mio. t) oder gut 96 % zu verzeichnen (siehe Abb. „Schwefeldioxid-Emissionen nach Quellkategorien“). Die Gründe hierfür liegen vor allem in der Stilllegung bzw. technischen Nachrüstung von Betrieben in den neuen Bundesländern sowie der Einsatz von Brennstoffen mit geringerem Schwefelgehalt. Ab dem Jahr 2016 sanken die Schwefeldioxid-Emissionen nochmals deutlich. Grund dafür war die Verschärfung der Anforderungen an die Abgasreinigung bei Großfeuerungsanlagen durch die Neufassung der 13. ⁠<a href="https://www.umweltbundesamt.de/service/glossar/b?tag=BImSchV#alphabar">BImSchV</a>⁠ vom 02.05.2013. Die Jahre ab 2020 sind von Sondereffekten geprägt, der stetig fallende Trend ist erst einmal unterbrochen.</p><p>Hauptverursacher der Schwefeldioxid-Emissionen im Jahr 2023 waren die stationären Feuerungsanlagen der Kraft- und Fernheizwerke der Energiewirtschaft und die Industriefeuerungen des Verarbeitenden Gewerbes mit einem Anteil an den Gesamtemissionen von zusammen 64 %. Seit 1990 senkten diese Bereiche ihren Schwefeldioxid-Ausstoß um 3,9 Mio. t (-97 %).</p><p>Eine vergleichbare Entwicklung zeigt sich in den Bereichen Haushalte sowie Gewerbe, Handel und Dienstleistung (Rückgang um insgesamt ca. 1 Mio. t oder fast -99 %, Anteil im Jahr 2023: 6,1 %).</p><p>Die Emissionen der mengenmäßig weniger bedeutsamen Industrieprozesse sanken zwischen 1990 und 2023 um 0,1 Mio. t und verminderten sich dadurch um ca. 69&nbsp;%. Ihr Anteil an den gesamten Schwefeldioxid-Emissionen stieg durch die überproportionalen Minderungen in den anderen Bereichen im gleichen Zeitraum von 3 % auf 26 % (siehe Tab. „Emissionen ausgewählter Luftschadstoffe nach Quellkategorien“).</p><p>Erfüllungsstand der Emissionsminderungsbeschlüsse</p><p>Im <a href="https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone">Göteborg-Protokoll</a> zur ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNECE#alphabar">UNECE</a>⁠-Luftreinhaltekonvention und in der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a>⁠ (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) der EU wird festgelegt, dass die jährlichen SO2-Emissionen ab 2020 um 21 % niedriger sein müssen als 2005. Dieses Ziel wird seit 2021 eingehalten.&nbsp;</p><p>Auf EU-Ebene legt die NEC-Richtlinie (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) auch fest, dass ab 2030 die jährlichen Emissionen 58 % niedriger gegenüber 2005 sein sollen. Dieses Ziel wurde bisher nicht erreicht.</p><p>Entstehung von Schwefeldioxid-Emissionen</p><p>Schwefeldioxid entsteht überwiegend bei Verbrennungsvorgängen durch Oxidation des im Brennstoff enthaltenen Schwefels. Die nahezu konstanten, jedoch relativ unbedeutenden prozessbedingten Emissionen treten vornehmlich in den Bereichen der industriellen Produktionsprozesse in der Chemischen Industrie, der Metallerzeugung und dem Sektor Steine und Erden sowie der Erdöl- und Erdgasaufbereitung auf.</p>

Ammoniak-Emissionen

<p>Ammoniak-Emissionen </p><p>Die Ammoniak-Emissionen stammen im Wesentlichen aus der Tierhaltung und weiteren Quellen in der Landwirtschaft. Von 1990 bis 2023 sanken die Ammoniak-Emissionen aus der Landwirtschaft um etwa 32 Prozent.</p><p>Entwicklung seit 1990</p><p>Von 1990 bis 2023 sanken die Ammoniak-Emissionen (NH3) im Gesamtinventar um 265 Tausend Tonnen (Tsd. t) oder knapp 32 %. Die Emissionen stammen hauptsächlich aus der Landwirtschaft (um die 93 % Anteil an den Gesamtemissionen). Die Emissionsreduktionen in den ersten Jahren unmittelbar nach der Wiedervereinigung lassen sich auf den strukturellen Umbau in den neuen Bundesländern zurückführen. Seit der Berichterstattung 2016 werden auch Ammoniak-Emissionen aus Lagerung und Ausbringung von Gärresten nachwachsender Rohstoffe (NAWARO) der Biogasproduktion berücksichtigt, deren Zunahme auf den Ausbau der Anlagen zurückzuführen ist. Zusätzlich werden Emissionen aus der Klärschlammausbringung betrachtet.</p><p>Die Ammoniak-Emissionen aus der Landwirtschaft dominieren seit Mitte der 1990er Jahre auch die in Säure-Äquivalenten berechneten, summierten Emissionen der Säurebildner Schwefeldioxid (SO2), Stickstoffoxide (NOx) und Ammoniak (NH3). Berechnet man das Versauerungspotenzial dieser drei Schadstoffe, so ergibt sich wegen der erheblich stärkeren Emissionsminderung bei SO2 und NOx ein steigender Einfluss von NH3 und somit der Landwirtschaft. Von 18 % im Jahre 1990 stieg der Emissionsanteil der Landwirtschaft bei den Säurebildnern bis 2023 auf 57 % (siehe Tab. „Emissionen ausgewählter Luftschadstoffe nach Quellkategorien“).</p><p>Verursacher</p><p>Ammoniak (NH3) entsteht vornehmlich durch Tierhaltung und in geringerem Maße durch die Verwendung mineralischer Düngemittel, sowie die Lagerung und Ausbringung von Gärresten der Biogasproduktion in der Landwirtschaft.</p><p>Von geringerer Bedeutung sind industrielle Prozesse (Herstellung von Ammoniak und stickstoffhaltigen Düngemitteln sowie von kalziniertem Soda), Feuerungsprozesse, Anlagen zur Rauchgasentstickung sowie Katalysatoren in Kraftfahrzeugen.</p><p>Umweltwirkungen</p><p>Ammoniak und das nach Umwandlung entstehende Ammonium schädigen Land- und Wasserökosysteme erheblich durch ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Versauerung#alphabar">Versauerung</a>⁠ und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>⁠ (Nährstoffanreicherung).</p><p>Mehr Informationen auf der Themenseite Luftschadstoffe im Überblick: <a href="https://www.umweltbundesamt.de/themen/luft/luftschadstoffe-im-ueberblick/ammoniak">Ammoniak</a>.</p><p>Erfüllungsstand der Emissionsminderungsbeschlüsse</p><p>Im <a href="https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone">Göteborg-Protokoll</a> zur ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNECE#alphabar">UNECE</a>⁠-Luftreinhaltekonvention und in der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a>⁠ (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) der EU wird festgelegt, dass die jährlichen NH3-Emissionen ab 2020 um 5 % niedriger sein müssen als 2005. Dieses Ziel wird für alle betreffenden Jahre eingehalten.&nbsp;</p><p>Auf EU-Ebene legt die NEC-Richtlinie (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) auch fest, dass ab 2030 die jährlichen Emissionen 29 % niedriger gegenüber 2005 sein sollen. Dieses Ziel wurde bisher nicht erreicht.</p>

Emissionsminderung bei Großfeuerungsanlagen

<p>Großfeuerungsanlagen haben aufgrund der großen Brennstoffmengen eine erhebliche Umweltrelevanz. Seit den 1980er Jahren ist es in Deutschland gelungen, die durch sie hervorgerufene Umweltbelastung - insbesondere ihre Emissionen an Staub, Schwefel- und Stickstoffoxiden und Schwermetallen - erheblich zu senken.</p><p> Technische Maßnahmen erfolgreich</p><p>In den letzten Jahrzehnten wurden große Anstrengungen unternommen, um die in großen industriellen Anlagen zur Energieumwandlung wie Kraftwerken, Heizkraftwerken und Heizwerken entstehenden Mengen an luftverunreinigenden Stoffen zu senken oder zu vermeiden. Der Vollzug der Verordnung über Großfeuerungsanlagen <a href="http://www.gesetze-im-internet.de/bimschv_13_2021/">(13. BImSchV)</a> aus dem Jahre 1983 hat in den 1980er Jahren in den alten und in den 1990er Jahren in den neuen Bundesländern zu einer erheblichen Verbesserung der Umweltsituation beigetragen. Die Betreiber von Altanlagen konnten durch umfangreiche Nachrüstungsmaßnahmen die Emissionen von Schwefeloxiden (SOx) und Stickstoffoxiden (NOx) sowie von Staub einschließlich der an ihm anhaftenden Schwermetalle mindern. Neue Anlagen werden von Anfang an mit hochwirksamen Einrichtungen zur Begrenzung dieser Emissionen ausgestattet.</p><p> Entwicklung der Emissionen von Luftschadstoffen</p><p>Schwermetalldepositionen werden auch im Luftmessnetz des Umweltbundesamtes (⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UBA#alphabar">UBA</a>⁠) bestimmt. Betreiber von Großfeuerungsanlagen - das sind Feuerungsanlagen mit einer Feuerungswärmeleistung von 50 Megawatt oder mehr - müssen seit 2004 zusätzlich zu den jährlichen Emissionsfrachten von SOx, NOx und Staub auch die Brennstoffeinsätze berichten. Darauf aufbauend übermittelt Deutschland im Rahmen EU-rechtlicher Vorgaben alle drei Jahre eine Zusammenfassung dieser Daten an die EU-Kommission. Der Geltungsbereich der Verordnung wurde 2004 auf Gasturbinenanlagen und 2013 auf Verbrennungsmotoranlagen mit jeweils 50 Megawatt Feuerungswärmeleistung oder mehr ausgedehnt. Erstmals zum Berichtsjahr 2016 verpflichtet die <a href="https://www.gesetze-im-internet.de/bimschv_17_2013/BJNR104400013.html">17. BImSchV</a> auch die abfallmitverbrennenden Großfeuerungsanlagen zur Berichterstattung an den Bund. So hat sich der Kreis der berichtspflichtigen Anlagen stufenweise vergrößert.</p><p>Die Abbildungen „Entwicklung der jährlichen Emissionsfrachten von Schwefeloxiden aus Großfeuerungsanlagen“ und „Entwicklung der jährlichen Emissionsfrachten von Stickstoffoxiden aus Großfeuerungsanlagen“ zeigen die Wirksamkeit der in den 1980er und 1990er Jahren ergriffenen Maßnahmen zur Emissionsminderung. Den Abbildungen liegen Datenerhebungen zugrunde, die ab dem Jahr 1992 regelmäßig jährlich erhoben werden. Zu diesem Zeitpunkt war in Westdeutschland die Nachrüstung von bestehenden Großfeuerungsanlagen mit Einrichtungen zur Minderung der SO2- und NOx-Emissionen bereits weitgehend abgeschlossen.</p><p>Deutschlandweit sanken die Emissionen von Schwefeldioxid zwischen 1992 und 2022 nochmals um 96,3 %, von rund 2,5 Millionen Tonnen (Mio. t) auf rund 0,1 Mio. t, die Stickstoffoxid-Emissionen nahmen im gleichen Zeitraum um 63,7 %, von rund 0,45 Mio. t auf rund 0,16 Mio. t ab. Der Anstieg der NOx-⁠<a href="https://www.umweltbundesamt.de/service/glossar/f?tag=Frachten#alphabar">Frachten</a>⁠ zum Jahr 2004 ist auf die ab diesem Zeitpunkt wirksame Einbeziehung von Gasturbinenanlagen in die Berichterstattungspflicht zurückzuführen.</p><p>Die Einbeziehung der Emissionen von Verbrennungsmotoranlagen ab dem Jahr 2013 wirkt sich wegen der bundesweit sehr geringen Anzahl solcher Anlagen im Geltungsbereich der Verordnung kaum auf die Emissionsentwicklung der Großfeuerungsanlagen aus.</p><p>Der Anstieg der SO2 und der NOx-Frachten zum Jahr 2016 ist darauf zurückzuführen, dass abfallmitverbrennende Großfeuerungsanlagen erstmals für das Jahr 2016 zur Berichterstattung ihrer Emissionen verpflichtet sind; zum Teil haben diese Anlagen in den Jahren davor auf freiwilliger Basis ihre Emissionen berichtet.</p><p>Der in den Jahren 2017 - 2019 erkennbare, beachtliche Rückgang der Emissionen gegenüber 2016 wurde durch zwei Faktoren begünstigt: Zum einen ging in den Kraftwerken der Einsatz von Stein- und Braunkohle bis zum Jahr 2019 merklich zurück, dagegen stieg der Einsatz von Erdgas an. Zum anderen mussten zahlreiche Großfeuerungsanlagen ab 1.1.2016 strengeren emissionsbegrenzenden Anforderungen der 13. und 17. BImSchV entsprechen.</p><p>Während der Corona-Pandemie, im Jahr 2020, ging die Stromproduktion und damit auch der Einsatz an Stein- und Braunkohlen zurück. Infolgedessen sanken die NOX und SO2 Emissionen noch einmal deutlich. Der Emissionsanstieg im Jahr 2021 hat verschiedene Gründe. Witterungsbedingt ging die Windstromeinspeisung deutlich zurück. Zugleich stieg der Stromverbrauch im Zuge der wirtschaftlichen Erholung wieder an. Infolgedessen erhöhte sich der Einsatz von Stein- und Braunkohlen in Kraftwerken. Aufgrund der Gaskrise wurde auch im Jahr 2022 mehr Stein- und Braunkohle aber auch mehr Heizöl genutzt, während der Erdgaseinsatz deutlich zurückging. Der dennoch erfolgte Emissionsrückgang ist durch die strengeren Grenzwerte der 13.BImSchV aus dem Jahre 2021 zu erklären.</p><p>Aktuelle Angaben zu den jährlichen Emissionsfrachten - auch von anderen Schadstoffen - von Standorten mit einer oder mehreren Großfeuerungsanlagen finden sich auf der Webseite <a href="https://app.stag.thru.de/freisetzungen/taetigkeit/3/2022">Thru.de</a>, die Informationen zu Schadstofffreisetzungen und der Entsorgung von Abfällen sowie zu Emissionen aus diffusen Quellen zusammenführt.</p>

03.12.07.1 SO2-Emissionen Hausbrand 1989

Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit

03.12.07.3 SO2-Emissionen Hausbrand 2002

Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit

03.12.07.2 SO2-Emissionen Hausbrand 1994

Erklärung zur Barrierefreiheit Kontakt zur Ansprechperson Landesbeauftragte für digitale Barrierefreiheit

1 2 3 4 529 30 31