Kann der Ausbau der Hafeneinfahrten an der deutschen Nord- und Ostseeküste mit dem Trend zu immer größeren Schiffe mithalten? Und wie können etwa Schleusenbauwerke an Flüssen und Kanälen für den Binnenschiffsverkehr mit überlangen Großmotorgüterschiffen fit gemacht werden? Leidet die Sicherheit des Verkehrs, wenn immer größere Schiffe die Wasserstraßen befahren? Mit den beiden Schiffsführungssimulatoren der BAW lassen sich Maßnahmen zur Verbesserung der Sicherheit und der Qualität der Wasserstraßen schon in der Planungsphase überprüfen und Engpässe ihrer Befahrbarkeit analysieren. Der Trend zu immer größeren Schiffen erhöht die Anforderungen an See- ebenso wie an Binnenschifffahrtsstraßen. Kurzum, es wird allenthalben enger. Noch vor wenigen Jahrzehnten reichte es beispielsweise völlig aus, für die Trassenplanung in Binnengewässern die Fahrspurbreite und damit den Flächenbedarf eines Schiffes aus dem zu fahrenden Kurvenradius, den Schiffsabmessungen und dem Driftwinkel, den das Schiff in der Kurvenfahrt einnimmt, zu berechnen. Aber schon im Zuge des Wasserstraßenausbaus nach Berlin zu Beginn der 1990er Jahre zeigten sich deutlich die Grenzen dieses geometrischen Bemessungsverfahrens: Die bis dahin angestrebten Mindestradien von 600 m für 185 m lange Schubverbände und 110 m lange Großmotorgüterschiffe hätten zum Beispiel beim Ausbau der Havel bei Berlin zu gewaltigen Landschaftsveränderungen in einem Naturschutzgebiet geführt.
Im Rahmen dieses Projekts soll das Wolkenpartikelinstrument PHIPS-HALO des KIT um die Messung der winkelabhängigen Polarisation von einzelnen Eispartikeln im rückwärtigen Streuwinkelbereich erweitert werden. Diese Messung ergänzt die bestehenden PHIPS-HALO-Messmethoden zur Erfassung der Partikelform sowie der winkelabhängigen Streufunktion. Die neuen Messmöglichkeiten des PHIPS-HALO/SID-3 Instrumentpakets des KIT werden in der Wolkensimulationskammer AIDA umfangreich getestet und charakterisiert, um diese am Ende der ersten Förderperiode für Messungen auf HALO zur Verfügung zu haben. Dadurch werden schon im Vorfeld der nächsten, für den Winter 2018/2019 geplanten Zirrusmission neuartige relevante Datensätze gewonnen, die von großem Nutzen für die Atmosphärenwissenschaft sein werden. Zusätzlich zu den Labormessungen, soll das verbesserte PHIPS-HALO Instrument sowie das PHIPS-HALO/SID-3 Instrumentpaket im Rahmen des Projekts auch auf anderen Messflugzeugen betrieben und getestet werden. Mit den erweiterten Messmöglichkeiten des PHIPS-HALO/SID-3 Instrumentpakets können in zukünftigen HALO-Missionen Validierungen von Satellitenbeobachtungen durchgeführt werden, die sich auf Polarisationsmessmethoden stützen. Da diese Messmethoden sehr empfindlich auf die Komplexität der Form sowie der Oberflächenrauheit der Eispartikel sind, könnte auf Basis solcher Validierungsmissionen die Frage geklärt werden, ob die Eispartikelkomplexität eine dominante mikrophysikalische Eigenschaft von Zirren ist. Sollte dies der Fall sein, würden Wolkeneispartikel einen deutlich anderen Strahlungseinfluss auf den Wärmehaushalt der Erde haben als bisher angenommen.
Das Konzept des Projektes 'PrüfReal - Bench Tests' basiert auf der Erhebung grundlegender Aspekte der Emissionsbildung sowie die Auswirkung geringfügiger Änderung der Brennstoffqualität bzw. der Brennstoffzusammensetzung, die in der Vorprojektphase definiert wurden bzw. in der ersten Projektphase im Rahmen der Detailplanung definiert werden. Ziel ist es die Zusammenhänge zwischen Brennstoffzusammensetzung, insbesondere der aschebildenden Elementgehalte, deren kritische Konzentrationen sowie deren Auswirkung auf die Staub- und NOx-Emissionen unter Prüfstandsbedingungen herauszufinden. Mit Hilfe des Projektes soll erhoben werden, welche Auswirkungen Änderungen des Asche- bzw. Stickstoffgehaltes (ev. auch Kaliumgehalt) im Brennstoff auf das Emissionsverhalten im Voll- und Teillastbetrieb haben. Zur Ermittlung der Daten sind Verbrennungsversuche am Kesselprüfstand der BLT Wieselburg mit unterschiedlichen Kesseltypen und definierten Brennstoffqualitäten geplant. Die Variation der Brennstoffqualität bezieht sich auf die aerosolbildenden Elemente- und Stickstoffgehalte. Diese sollen innerhalb der in den aktuellen Brennstoffnormen geforderten Grenzwerte liegen. Für die Beurteilung von geringen Änderungen in der Brennstoffqualität und -zusammensetzung, existieren derzeit noch massive Kenntnisdefizite die mit Hilfe des Projektes 'PrüfReal - Bench Tests' beseitigt werden sollen. Zur Ermittlung der Daten sind Verbrennungsversuche am akkreditierten Kesselprüfstand der BLT Wieselburg mit mindestens 3 unterschiedlichen Kesseltypen und mindestens 3 unterschiedlichen definierten Brennstoffqualitäten (mit Variation des Asche- und Stickstoffgehaltes am unteren, mittleren und oberen Bereich der Grenzwerte) geplant. Die für die Verbrennungsversuche benötigten Feuerungsanlagen, sowie die personellen Ressourcen zur Installation, Wartung und für etwaige bauliche Veränderungen der Anlagen werden von den Firmenpartnern zur Verfügung gestellt. Ein weiteres Ziel des Projektes PrüfReal - Bench Tests ist die Untersuchung der Entstehung und Herkunft der NOx-Emissionen bei der Verbrennung von Holzbrennstoffen. Mittels Untersuchung der Stickstoffisotopie der Stickoxide soll der Einfluss des Luft- und Brennstoffstickstoffes auf die NOx-Emissionen bei der Holzverbrennung neu beleuchtet und bestehende Theorien zur Stickoxid-Entstehung überprüft werden. Die Ergebnisse des Projektes 'PrüfReal' werden in einem Bericht zusammengefasst und sollen den nationalen und internationalen Interessensvertretern der österreichischen Biomasseheizkesselhersteller als Diskussionsgrundlage für zukünftige Grenzwertdebatten und Normierungen dienen.
Ziel des Vorhabens ist die Erforschung und der Entwurf eines neuartigen Hybrid-Kompensators, der mehrere Systemdienstleistungen in einer einzigen Anlage vereint. Hierzu zählen u.a. die Optimierung der Erdschlussstromkompensation unter Berücksichtigung neuer Anforderungen wie die Kompensation höherfrequenter Harmonischer sowie die Stabilisierung des Netzes durch Einspeicherung und Rückspeisung von Energie bei variierender regenerativer Einspeisung. Vorgehen: Durch elektrotechnische Modellierung und Simulation eines Beispiel-Verteilnetzes werden die Anforderungen an den Hybrid-Kompensator spezifiziert. Zunächst wird ein Kleinleistungs-Laboraufbau als Plattform für die Erforschung, Implementierung und Validierung der benötigten Funktionalitäten und Algorithmen realisiert. Zeitgleich wird das Speichersystem aus RedOx-Flow-Batterie und Schwungmassenspeicher hinsichtlich Leistung und Kapazität ausgelegt. Zur Validierung der Funktionsfähigkeit im realen Netzbetrieb wird nach erfolgreicher Laborerprobung ein Feldaufbau errichtet. Der Laboraufbau wird auf Feldniveau skaliert; es werden alle Komponenten zusammengeführt und in das Netz des Verteilnetzbetreibers integriert. Das Monitoring des Feldaufbaus und seines Verhaltens unter realen Bedingungen soll Aufschluss über seine Systemeigenschaften liefern und Optimierungen ermöglichen. Kautz strebt die Analyse der wesentlichen benötigten Systemdienstleistungen am Beispiel mehrerer unterschiedlicher Verteilnetze mit hoher dezentraler, regenerativer Einspeisung an. Ebenso den Entwurf eines informations- und kommunikationstechnisch angebundenen, auf der Mittelspannungsebene wirkenden, umrichterbasierten Systems , das die zentralen Systemdienstleistungen integriert. Dabei sollen die grundsätzlichen elektrotechnischen Gegebenheiten, und vor allem deren Unterschiede, in den zu untersuchenden Verteilnetzen untersucht, abgebildet, bewertet und lösungstechnisch abgebildet werden.
Eine realitätsnahe Bewertung der Risiken für die Vegetation durch bodennahes Ozon kann nur erfolgen, indem man den Ozonfluss in die Pflanze bewertet. Dafür wurde in Arbeitsgruppen der Genfer Luftreinhaltekonvention (CLRTAP) die Methode zur Berechnung der Phytotoxischen OzonDosis (POD) entwickelt. Einige wichtige Datengrundlagen zur Anwendung des POD-Modells bei Wäldern sind noch unsicher. Das Projekt soll bestehende Wissenslücken schließen bzw. verringern. In Klimakammer-Experimenten bzw. Freiland-Messungen werden die bisher genutzten Dosis-Wirkungsfunktionen sowie ausgewählte Eingabeparameter für die Modellierung des Ozonflusses überprüft. Darüber hinaus werden Wechselwirkungen von Faktoren des globalen Wandels (Klimaveränderungen, erhöhte CO2-Konzentrationen in der Atmosphäre) mit der Ozonbelastung untersucht.
Das Forschungsvorhaben 'ForschungsWKA Bannetze' bildet die Phasen 3 und 4 eines 8-Stufen-Plans, von dem bereits die Phasen 1 und 2 mit der Erarbeitung theoretischer Grundlage an der TU Braunschweig abgeschlossen werden konnten. Das Vorhaben umfasst fünf Teilvorhaben: 1. Teilvorhaben: Errichtung eines Forschungswasserkraftwerks in Kombination mit einem umfangreichen experimentellen Versuchsprogramm im Kurz-, Mittel- und Langzeitbereich. 2. Teilvorhaben: Experimentelle Untersuchungen im Wasserbaulabor an einem Modellwasserrad im Maßstab 1:10 und an einem physikalischen Flussabschnittsmodell im Maßstab 1:25, welches die Forschungswasserkraftanlage Bannetze detailgetreu abbildet. 3. Teilvorhaben: Begleitende analytische und numerische Untersuchungen zu Wasserrad und -anlage zur Entwicklung entsprechender Berechnungsmodelle und 'verfahren. 4. Teilvorhaben: Optimierung der Forschungswasserkraftanlage Bannetze und Weiterentwicklung der neuen Technologie. 5. Teilvorhaben: Ökologische Begleitforschung am Großrad, an der Wasserkraftanlage, der Horizontalrechenanlage und an der Abstiegsanlage mit dem kombinierten Sediment- und Treibgutableiter. Das Projekt ist in sechs Arbeitspakete unterteilt. AP 0 beinhaltet alle koordinativen Aufgaben und umfasst auch das wichtige Thema Kommunikation. Bei AP 1 liegt der Schwerpunkt auf der Entwicklung und Berechnung der Wasserkraftmaschine und des Wasserkraftwerks, was hauptsächlich von der TUBS mit Unterstützung der SZFG-TP und SZFG-TZ und SZMF durchgeführt wird. In AP 2 werden die notwendigen Bau- und Ausschreibungsunterlagen durch die Neubauabteilung zusammengestellt und in AP 3 werden die entsprechenden Komponenten gefertigt bzw. deren externe Fertigung intensiv begleitet und überwacht. Der Aufbau und die Inbetriebnahme des Wasserkraftwerks in Begleitung von Ingenieuren der SZFG-Energiewirtschaft erfolgt in AP4. Der spätere Forschungsbetrieb inklusive der ökologischen Begleitforschung durch die TUBS wird in AP5 bearbeitet.
Die zukünftigen Leichtbaukonzepte haben einen starken Einfluss auf das vibro-akustische Verhalten des Fahrzeuges. Sie beeinflussen maßgeblich das Übertragungsverhalten der Fahrzeugstruktur in Bezug auf globale und lokale Karosseriesteifigkeiten, Masseverteilungen sowie leichtbaukonforme Schalldämmung und -dämpfung. Daher nimmt die Beurteilung und Beeinflussung der Fahrzeugakustik und des Fahrzeugschwingungsverhaltens in frühen Phasen des Entwicklungsprozesses einen immer höheren Stellenwert ein. Gleichzeitig sollen bis 2020 nach den durch die Europäische Union definierten CO2-Richtlinien Treibhausgasemissionen im Vergleich zum Stand von 1990 um mindestens 20 % reduziert werden. Eine signifikante Reduktion des Energiebedarfs und somit der Emissionen von Kraftfahrzeugen kann durch die Verringerung der Fahrzeugmasse erreicht werden. Das Potenzial einer Gewichtsreduktion durch Leichtbaumaterialien hinsichtlich des Kraftstoffverbrauchs liegt bei ca. 5-10%. Bereits mit einer Reduktion der Fahrzeugmasse um 100 kg kann eine Verringerung des Kraftstoffverbrauchs um ca. 0,35 l pro 100 km - über verschiedene Fahr-zustände auf Basis des Neuen Europäischen Fahrzyklus (NEFZ) - erreicht werden. Eine Möglichkeit den Zielkonflikt zwischen Leichtbauanforderungen und vibro-akustischem Verhalten aufzulösen bietet die Adaptronik. Für die Auslegung adaptronischer Maßnahmen wird eine leistungsfähige Simulationsumgebung benötigt, die in diesem Projekt entwickelt werden soll.
Das Projekt 'CDO Speedbrakes' zielt darauf ab, Piloten über die besten und zweitbesten CDO-Trajektorien (Continuous Descent Operation) zu informieren und abzuschätzen, um wie viel Kraftstoffverbrauch und Emissionen dadurch reduziert werden. Eine Sinkflugbahn wird sowohl räumlich als auch zeitlich von Unsicherheiten in der Berechnung von Störgrößen und Fehlern beeinflusst, die nur schlecht vorhersagbar sind. In diesem Projekt werden Modelle entwickelt, um diese unsicheren Störgrößen und ihre Auswirkungen auf die CDO-Trajektorienberechnung zu beschreiben. Solche Modelle ermöglichen eine genauere Flugbahnberechnung und vermeiden unerwünschte horizontale Flugsegmente, wie im Bild gezeigt wird. Jedoch sind solche horizontalen Flugsegmente im heutigen Luftfahrtbetrieb für den Sinkflug oft unvermeidlich. Außerdem werden die zweitbesten CDO-Trajektorien modelliert. Sie können als alternative Optionen für die Piloten angesehen werden. Diese alternativen Lösungen sollen sicher stellen, dass die Flugeffizienz zumindest teilweise verbessert wird, selbst wenn eine vollständige und optimale CDO-Flugbahn nicht durchgeführt werden kann oder vom Fluglotsen verweigert wird. Das Hauptziel des Projekts ist es, die entwickelten Sinkflugtrajektorien und der daraus folgenden Anweisungen für den Piloten, in ein im Cockpit verfügbares Instrument zu integrieren und zu visualisieren. Dafür sind zur Auswertung überdies Versuchsreihen in dem an der Professur verfügbaren A320-Flugsimulator vorgesehen.
Das Ziel von marTech ist es, Teilaspekte der Technologieerprobung und -entwicklung für 1) Tragstrukturen von Offshore-Windenergieanlagen (3.1.4) sowie 2) Anlagen und Technologien zur Nutzung der Wellen- und Tideströmungsenergie (3.5) durch wissenschaftliche Begleitforschung in einer signifikant erweiterten, großmaßstäblichen Versuchseinrichtung im Großen Wellenkanal Hannover voranzutreiben. Konkret werden drei Pilotprojekte zu einem Wellenenergiekonverter, zu einer Filter- und Dichtungsbahn und einem Kolkschutzsystem unter Gewährleistung wirklichkeitsnaher Umweltrandbedingungen zusammen mit der Industrie konzeptioniert und durchgeführt. Das hier beantragte Projekt marTech bildet damit alle wesentlichen Einwirkungen durch Wellen, Tideströmung und die hydro-geotechnischen Prozesse im Seeboden in einer großmaßstäblichen Versuchseinrichtung ab und ermöglicht dadurch wirklichkeitsnahe Verhältnisse unter kontrollierten und reproduzierbaren Laborbedingungen, die es zukünftig erlaubt, neue maritime Technologien zusammen mit der Industrie belastbar zu erproben bzw. weiter zu entwickeln.
Das Ziel von marTech ist es, Teilaspekte der Technologieerprobung und -entwicklung für 1) Tragstrukturen von Offshore-Windenergieanlagen (3.1.4) sowie 2) Anlagen und Technologien zur Nutzung der Wellen- und Tideströmungsenergie (3.5) durch wissenschaftliche Begleitforschung in einer signifikant erweiterten, großmaßstäblichen Versuchseinrichtung im Großen Wellenkanal Hannover voranzutreiben. Konkret werden drei Pilotprojekte zu einem Wellenenergiekonverter, zu einer Filter- und Dichtungsbahn und einem Kolkschutzsystem unter Gewährleistung wirklichkeitsnaher Umweltrandbedingungen zusammen mit der Industrie konzeptioniert und durchgeführt. Das hier beantragte Projekt marTech bildet damit alle wesentlichen Einwirkungen durch Wellen, Tideströmung und die hydro-geotechnischen Prozesse im Seeboden in einer großmaßstäblichen Versuchseinrichtung ab und ermöglicht dadurch wirklichkeitsnahe Verhältnisse unter kontrollierten und reproduzierbaren Laborbedingungen, die es zukünftig erlaubt, neue maritime Technologien zusammen mit der Industrie belastbar zu erproben bzw. weiter zu entwickeln.
Origin | Count |
---|---|
Bund | 258 |
Type | Count |
---|---|
Förderprogramm | 258 |
License | Count |
---|---|
offen | 258 |
Language | Count |
---|---|
Deutsch | 246 |
Englisch | 27 |
Resource type | Count |
---|---|
Keine | 75 |
Webseite | 183 |
Topic | Count |
---|---|
Boden | 142 |
Lebewesen und Lebensräume | 133 |
Luft | 155 |
Mensch und Umwelt | 258 |
Wasser | 115 |
Weitere | 258 |