API src

Found 458 results.

Klimainformationssystem Bremen

Das Klimainformationssystem Bremen zeigt die Bioklimatische Situation im Land Bremen als Klimafunktionskarte. Die Klimafunktionskarte bildet die Funktionen und Prozesse des nächtlichen Luftaustausches für das Stadtgebiet von Bremen und Bremerhaven ab (Strömungsfeld, Kaltluftleitbahnen). Für Siedlungs- und Gewerbeflächen stellt sie die nächtliche Überwärmung dar, basierend auf der bodennahen Lufttemperatur in einer autochthonen Sommernacht um 04:00 Uhr morgens. Die Klimafunktionskarte ist ein Fachplan für die Belange des Stadtklimas und eine wichtige Grundlage für die gesamtstädtische räumliche Entwicklung. Die Karte bildet eine wichtige Abwägungsgrundlage für die bauliche Entwicklung in Bremen und für eine Weiterentwicklung klimawirksamer Freiflächen und Siedlungsstrukturen. Das Klimainformationssystem wurde vom Referat 20 Umweltinnovationen und Anpassung an den Klimawandel der Freien Hansestadt Bremen in Zusammenarbeit mit dem Landesamt GeoInformation Bremen aufgebaut. Die Anwendung selbst, basiert auf dem Open Source Webkarten-Client ‚Masterportal‘. Die Einbindung der Anwendung in eine eigene Webseite ist über einen IFrame möglich.

Ökologische Durchgängigkeit, Wanderkorridore einheimischer Fischarten in stauregulierten Bundeswasserstraßen

Nach derzeitigem Kenntnisstand nutzen wandernde Fischarten die Strömung eines Fließgewässers zur Orientierung. Sie schwimmen gegen die Strömung gerichtet flussaufwärts. Dabei verbrauchen sie Energie. Der Energieverbrauch steigt mit der stärke der Gegenströmung, die der Fisch im Querprofil des Flusses wählt. Es gibt Hinweise, dass der Wanderweg im Querschnitt eines Gewässers dabei nicht zufällig gewählt ist, sondern einen Wanderkorridor gewählt wird, in dem die Strömung zur Orientierung ausreicht aber möglichst geringe Energiekosten verursacht. Im Projekt soll untersucht werden, ob sich solch ein Wanderkorridor belegen und anhand welcher abiotischer Faktoren er sich beschreiben lässt. Dabei werden neben der Strömungsgeschwindigkeit und -richtung auch weitere Faktoren untersucht. Ziel des Projektes ist es, Wanderkorridore für unterschiedliche Arten modellhaft zu beschreiben und Schlüsselfaktoren für eine räumliche und zeitliche Abgrenzung von Wanderkorridoren zu ermitteln.

Untersuchung des Transfers von nordatlantischem Tiefenwasser durch den Südatlantik unter Verwendung des kompletten WOCE-Tracerdatensatzes

Der Südatlantik stellt für die Rolle des Nordatlantischen Tiefenwassers (NADW) in der globalen Tiefenwasserzirkulation ('convoy belt') eine Schlüsselregion dar. In dem Vorhaben soll der komplette südatlantische WOCE-Tracerdatensatz zusammen mit weiteren Daten (insbesondere US Programm SAVE) im Bereich des NADW analysiert werden mit dem Ziel, aufbauend auf dem vorliegenden Wissen die Wege und Raten des NADW vom Eintritt am Äquator bis zum Übertritt in den Antarktischen Zirkumpolarstrom weiter aufzuklären. Hierbei soll zwischen den verschiedenen Stockwerken des NADW differenziert werden. Wichtige Teilfragen sind der Austausch des Westlichen Randstroms mit den Wässern östlich hiervon bis hin zum afrikanischen Kontinentalabhang, wobei dem Mittelatlantischen Rücken vermutlich eine besondere Rolle zukommt, sowie der Grad der Rezirkulation des westlichen Randstroms. Die Untersuchung wird sich ausschließlich auf vorhandene Datensätze stützen, Feldarbeiten sind nicht vorgesehen. Ein Vergleich mit Strömungs- und Tracerfeldern eines hochauflösenden Zirkulationsmodells (C. Böning) soll die Untersuchung unterstützen und gleichzeitig den Realitätsgrad der Modellfelder überprüfen.

Schwerpunktprogramm (SPP) 1488: Planetary Magnetism (PlanetMag), Probing the Earth's subdecadal core-mantle dynamics based on satellite geomagnetic field models

The CHAMP mission provided a great amount of geomagnetic data all over the globe from 2000 to 2010. Its dense data coverage has allowed us to build GRIMM - GFZ Reference Internal Magnetic Model - which has the highest ever resolution for the core field in both space and time. We have already modeled the fluid flow in the Earth's outer core by applying the diffusionless magnetic induction equation to the latest version of GRIMM, to find that the flow evolves on subdecadal timescales, with a remarkable correlation to the observed fluctuation of Earth rotation. These flow models corroborated the presence of six-year torsional oscillations in the outer core fluid. Torsional oscillation (TO) is a type of hydromagnetic wave, theoretically considered to form the most important element of decadal or subdecadal core dynamics. It consists of relative azimuthal rotations of rigid fluid annuli coaxial with the mantle's rotation and dynamically coupled with the mantle and inner core. In preceding works, the TOs have been studied by numerical simulations, either with full numerical dynamos, or solving eigenvalue problems ideally representing the TO system. While these studies drew insights about dynamical aspects of the modeled TOs, they did not directly take into account the observations of geomagnetic field and Earth rotation. Particularly, there have been no observation-based studies for the TO using satellite magnetic data or models. In the proposed project, we aim at revealing the subdecadal dynamics and energetics of the Earth's core-mantle system on the basis of satellite magnetic observations. To that end, we will carry out four work packages (1) to (4), for all of which we use GRIMM. (1) We perform timeseries analyses of core field and flow models, to carefully extract the signals from TOs at different latitudes. (2) We refine the conventional flow modeling scheme by parameterizing the magnetic diffusion at the core surface. Here, the diffusion term is reinstated in the magnetic induction equation, which is dynamically constrained by relating it to the Lorentz term in the Navier-stokes equation. (3) We develop a method to compute the electromagnetic core-mantle coupling torque on the core fluid annuli, whereby the energy dissipation due to the Joule heating is evaluated for each annulus. This analysis would provide insights on whether the Earth's TOs are free or forced oscillations. (4) Bringing together physical implications and computational tools obtained by (1) to (3), we finally construct a dynamical model for the Earth's TOs and core-mantle coupling such that they are consistent with GRIMM and Earth rotation observation. This modeling is unique in that the force balances concerning the TOs are investigated in time domain, as well as that the modeling also aims at improving the observation-based core flow model by considering the core dynamics.

Verbesserte Minerallösungskinetik in der reaktiven Transportmodellierung

Reaktive Stofftransportmodelle sind wichtig für die Vorhersage von Mineralauflösungsreaktionen, der Entwicklung des Porennetzwerks, des Strömungsfelds und der Durchlässigkeit, was u.a. für die Verwitterung in der kritischen Zone, die Entwicklung von Karstsystemen und die technische Kohlenstoffspeicherung von Bedeutung ist. Die Zuverlässigkeit reaktiver Transportmodelle mit Mineralauflösung hängt von der Berücksichtigung der reaktiven Oberflächen ab. Dies in reaktiven Transportmodellen auf der Kontinuumsskala zu berücksichtigen ist schwierig, da die intrinsische Variabilität der Oberflächenreaktivität auf der Mikrometerskala schwer zu quantifizieren ist und die Auswirkungen des Zusammenspiels zwischen der kleinräumigen Variabilität von Strömung und Reaktivität auf den effektiven reaktiven Stofftransport auf größeren Skalen unbekannt sind. Ziel des Projekts ist es daher, die intrinsische Oberflächenreaktivität in reaktiven Transportmodellen zu implementieren, um die Vorhersagbarkeit der Mineralauflösung im Mikrometer- bis Zentimetermaßstab zu verbessern. Auf der Mikrometerskala wird der Einfluss der Oberflächen-Nanotopografie auf die Kalzitauflösung mit zwei Parametrisierungen der Nanorauigkeit bewertet: eine basierend auf der Standardabweichung der Oberflächenhöhe, die andere auf der Verteilung der Oberflächenneigung. Die reaktiven Transportmodelle im Mikrometermaßstab werden auf Testfälle der Mineralauflösung von einzelnen Kristallen bis zu komplexen Porennetzwerken angewandt, für die Datensätze mit gemessener Nanotopografie und Netto-Lösungsraten existieren. Als nächstes schlagen wir eine Upscaling-Strategie vor, um die Variabilität der intrinsischen Oberflächenreaktivität auf der Mikrometerskala in Simulationen auf der Zentimeterskala zu berücksichtigen. Es werden neue Beziehungen zwischen der Porosität und der Permeabilität aufgrund der mikrometerskaligen Simulationen entwickelt. Die hochskalierten Reaktionsraten und die petrophysikalischen Beziehungen werden in Modellen auf der Zentimeterskala implementiert, um die Vorhersagbarkeit der Mineralauflösung zu verbessern. Mit den entwickelten reaktiven Transportmodellen sollen experimentell abgeleitete heterogene Ratenverteilungen und beobachtete bevorzugte Auflösungsmuster reproduziert werden. Schließlich werden wir die Abhängigkeit der Mineralauflösungskinetik von räumlichen und zeitlichen Skalen in Systemen mit heterogener intrinsischer Oberflächenreaktivität untersuchen. Es werden Sensitivitätsstudien durchgeführt, um die Skalenabhängigkeit der effektiven Kalzitauflösung beinicht aufgelöster Variabilität der intrinsischen Oberflächenreaktivität zu verstehen. Für verschiedene Bedingungen werden wir eine Längenskala angeben, von der an die Heterogenität der intrinsischen Oberflächenreaktivität homogenisiert werden kann, was zu konstanten effektiven Koeffizienten führt. Wir erwarten, die allgemeine Anwendbarkeit der entwickelten reaktiven Stofftransportmodelle zu bestätigen.

Systemwirkungsgradoptimale Verdichterauslegung für PEM-Brennstoffzellen in mobilen Anwendungen

Stadtklimaanalyse Hamburg 2023

Die Stadtklimaanalyse Hamburg 2023 basiert auf einer modellgestützten Analyse zu den klimaökologischen Funktionen für das Hamburger Stadtgebiet. Die Berechnung mit FITNAH 3D erfolgte in einer hohen räumlichen Auflösung (10 m x 10 m Raster) und liefert Daten und Aussagen zur Temperatur und Kaltluftentstehung in Hamburg. Die Untersuchung wurde auf der Annahme einer besonders belastenden Sommerwetterlage für Mensch und Umwelt mit geringer Luftbewegung und hoher Temperaturbelastung erstellt. Als Grundlage für die flächenbezogenen Bewertungen und deren räumliche Abgrenzungen diente der ALKIS-Datensatz „Bodennutzung“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Weitere Informationen zur Stadtklimaanalyse Hamburg 2023 sind unter folgendem Link abrufbar: https://www.hamburg.de/politik-und-verwaltung/behoerden/bukea/themen/hamburgs-gruen/landschaftsprogramm/stadtklimaanalyse-hamburg-896054 Dort stehen der Erläuterungsbericht, die Analyse- und Bewertungskarten sowie eine Erläuterungstabelle für den Datensatz, der als Grundlage für die Ebenen 11 bis 14 dient, zum Download zur Verfügung. Die Ebenen des Geodatensatzes „Stadtklimaanalyse Hamburg 2023“ werden wie folgt präzisiert: 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung) Die bodennahe Temperaturverteilung bedingt horizontale Luftdruckunterschiede, die wiederum Auslöser für lokale thermische Windsysteme sind. Ausgangspunkt dieses Prozesses sind die nächtlichen Temperaturunterschiede, die sich zwischen Siedlungsräumen und vegetationsgeprägten Freiflächen einstellen. An den geneigten Flächen setzt sich abgekühlte und damit schwerere Luft in Richtung zur tiefsten Stelle des Geländes als Kaltluftabfluss in Bewegung. Das sich zum nächtlichen Analysezeitpunkt 4 Uhr ausgeprägte Kaltluftströmungsfeld wird über Vektoren abgebildet, die für eine übersichtlichere Darstellung auf 100 m x 100 m Kantenlänge aggregiert werden. 02 Flurwinde und Kaltluftabflüsse Bei den nächtlichen Windsystemen werden Flurwinde von Kaltluftabflüssen unterschieden. Flurwinde werden durch den horizontalen Temperaturunterschied zwischen kühlen Grünflächen und warmer Bebauung ausgelöst. Kaltluftabflüsse bilden sich über Oberflächen mit Hangneigungen von mehr als 1 ° aus. 03 Bereiche mit besonderer Funktion für den Luftaustausch Diese Durchlüftungszonen verbinden Kaltluftentstehungsgebiete (Ausgleichsräume) und Belastungsbereiche (Wirkungsräume) miteinander und sind aufgrund ihrer Klimafunktion elementarer Bestandteil des Luftaustausches. Es handelt sich i.d.R. um gering überbaute und grüngeprägte Strukturen, die linear auf die jeweiligen Wirkungsräume ausgerichtet sind und insbesondere am Stadtrand das Einwirken von Kaltluft aus den Kaltluftentstehungsgebieten des Umlandes begünstigen. 04 Kaltlufteinwirkbereich innerhalb von Bebauung und Verkehrsflächen Hierzu zählen Siedlungs- und Verkehrsflächen, die sich im „Einwirkbereich“ eines klimaökologisch wirksamen Kaltluftstroms mit einem Wert von mehr als 5 m³/(s*m) befinden. Hier ist sowohl im bodennahen Bereich als auch darüber hinaus eine entsprechende Durchlüftung vorhanden. Die Eindringtiefe der Kaltluft beträgt, abhängig von der Bebauungsstruktur, zwischen ca. 100 m und bis zu 700 m. Darüber hinaus spielt auch die Hinderniswirkung des angrenzenden Bebauungstyps eine wesentliche Rolle. 05 Gebäude (Bestand und Planung) Mithilfe der Gebäudegrenzen werden Effekte auf das Mikroklima sowie insbesondere das Strömungsfeld berücksichtigt. Als Grundlage dient der ALKIS-Datensatz „Gebäude“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Dieser Datensatz wurde anhand ausgewählter, zum Zeitpunkt der Bearbeitung im Verfahren sowie in Planung befindlicher Bebauungspläne und Großprojekte modifiziert. 06 Windgeschwindigkeit um 4 Uhr Siehe Hinweise zur Ebene 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung). Die Rasterzellen stellen ergänzend zu den Windvektoren die Windgeschwindigkeit flächenhaft in 10 m x 10 m Auflösung dar. 07 Kaltluftvolumenstromdichte um 4 Uhr Der Kaltluftvolumenstrom beschreibt diejenige Menge an Kaltluft in der Einheit m³, die in jeder Sekunde durch den Querschnitt beispielsweise eines Hanges oder einer Kaltluftleitbahn fließt. Der Volumenstrom ist ein Maß für den Zustrom von Kaltluft und bestimmt neben der Strömungsgeschwindigkeit die Größenordnung des Durchlüftungspotenzials. Zum Zeitpunkt 4 Uhr morgens ist die Intensität der Kaltluftströme voll ausgeprägt. 07a Kaltluftvolumenstromdichte um 4 Uhr in den Grün- und Freiflächen Reduzierung der Ebene 07 Kaltluftvolumenstromdichte um 4 Uhr auf die Grün- und Freiflächen. 08 Lufttemperatur um 4 Uhr Der Tagesgang der Lufttemperatur ist direkt an die Strahlungsbilanz eines Standortes gekoppelt und zeigt daher i.d.R. einen ausgeprägten Abfall während der Abend- und Nachtstunden. Dieser erreicht kurz vor Sonnenaufgang des nächsten Tages ein Maximum. Das Ausmaß der Abkühlung kann je nach meteorologischen Verhältnissen, Lage des Standorts und landnutzungsabhängigen physikalischen Boden- bzw. Oberflächeneigenschaften große Unterschiede aufweisen. Besonders auffällig ist das thermische Sonderklima der Siedlungsräume mit seinen gegenüber dem Umland modifizierten klimatischen Verhältnissen. 08a Lufttemperatur um 4 Uhr im Siedlungsraum Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Siedlungsflächen. 08b Lufttemperatur um 4 Uhr in den Verkehrsflächen Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Verkehrsflächen. 09 Lufttemperatur um 14 Uhr Die Lufttemperatur am Tage ist im Wesentlichen durch die großräumige Temperatur der Luftmasse in einer Region geprägt und wird weniger stark durch Verschattung beeinflusst, wie es bei der PET der Fall ist (Erläuterung „PET“ siehe Ebene 10 und 13). Daher weist die für die Tagsituation modellierte Lufttemperatur eine homogenere Ausprägung auf. 10 Physiologisch Äquivalente Temperatur (PET) um 14 Uhr Meteorologische Parameter wirken nicht unabhängig voneinander, sondern in biometeorologischen Wirkungskomplexen auf das Wohlbefinden des Menschen ein. Zur Bewertung werden Indizes verwendet (Kenngrößen), die Aussagen zur Lufttemperatur und Luftfeuchte, zur Windgeschwindigkeit sowie zu kurz- und langwelligen Strahlungsflüssen kombinieren. Wärmehaushaltsmodelle berechnen den Wärmeaustausch einer „Norm-Person“ mit seiner Umgebung und können so die Wärmebelastung eines Menschen abschätzen. Die hier genutzte Kenngröße PET (Physiologisch Äquivalente Temperatur, VDI 3787, Blatt 9) bezieht sich auf außenklimatische Bedingungen und zeigt eine starke Abhängigkeit von der Strahlungstemperatur. Mit Blick auf die Wärmebelastung ist sie damit vor allem für die Bewertung des Aufenthalts im Freien am Tage sinnvoll einsetzbar. 11 Bewertung nachts Siedlungs- und Verkehrsflächen: mittlere Lufttemperatur um 4 Uhr Zur Bewertung der bioklimatischen Situation wird die nächtliche Überwärmung in den Nachtstunden (4 Uhr morgens) herangezogen und räumlich differenziert betrachtet. Der nächtliche Wärmeinseleffekt wird anhand der Differenz zwischen der durchschnittlichen Lufttemperatur einer Siedlungs- oder Verkehrsfläche und der gesamtstädtischen Durchschnittstemperatur von etwa 17,1 °C bewertet. Die mittlere Überwärmung pro Blockfläche wird in fünf Bewertungsstufen untergliedert und reicht von sehr günstig (≥ 15,8 °C) bis sehr ungünstig (>= 20 °C). 12 Bewertung nachts Grün- und Freiflächen: bioklimatische Bedeutung Bei der Bewertung der bioklimatischen Bedeutung von grünbestimmten Flächen ist insbesondere die Lage der Grün- und Freiflächen zu Leitbahnen sowie zu bioklimatisch ungünstig oder weniger günstig bewerteten Siedlungsflächen entscheidend. Es handelt sich um eine anthropozentrisch ausgerichtete Wertung, die die Ausgleichsfunktionen der Flächen für den derzeitigen Siedlungsraum berücksichtigt. Die klimaökologischen Charakteristika der Grün- und Freiflächen werden anhand einer vierstufigen Skala (sehr hohe bioklimatische Bedeutung bis geringe bioklimatische Bedeutung) bewertet. 13 Bewertung tags Siedlungs- und Verkehrsflächen: bioklimatische Bedeutung (PET 14 Uhr) Zur Bewertung der Tagsituation wird der humanbioklimatische Index PET um 14:00 Uhr herangezogen. Für die PET existiert in der VDI-Richtlinie 3787, Blatt 9 eine absolute Bewertungsskala, die das thermische Empfinden und die physiologischen Belastungsstufen quantifiziert. Die Bewertung der thermischen Belastung im Stadtgebiet Hamburg orientiert sich daran und reicht auf einer fünfstufigen Skala von extrem belastet (> 41 °C) bis schwach belastet ( 41 °C) zu einer sehr geringen Aufenthaltsqualität führt. 14 Bewertung tags Grün- und Freiflächen: Aufenthaltsqualität (PET 14 Uhr) Die Zuweisung der Aufenthaltsqualität von Grün- und Freiflächen in der Bewertungskarte beruht auf der jeweiligen physiologischen Belastungsstufe. Es werden vier Bewertungsstufen unterschieden. Eine hohe Aufenthaltsqualität ergibt sich aus einer schwachen oder nicht vorhandenen Wärmebelastung (PET 41 °C) zu einer sehr geringen Aufenthaltsqualität führt.

Entwicklung von Verfahrensweisen zur Simulation bewegter Objekte mit OpenFOAM

3D-numerische Simulation von Starrkörperbewegungen Es ist heute möglich strömungsmechanische Berechnungen mit vertretbarem Zeitaufwand durchzuführen. Gleiches soll für die Simulation bewegter Objekte gelten. Im Rahmen des FuE-Projekts sollen Verfahrensweisen entwickelt werden, mit denen anfallende Fragestellungen zur Simulation bewegter Objekte mit OpenFOAM bearbeitet werden können. Aufgabenstellung und Ziel Die dreidimensionale numerische Simulation ist ein wertvolles Werkzeug, das detaillierte Einblicke in Strömungsvorgänge im Bauwerksnahfeld ermöglicht. Im Rahmen der Projektarbeit treten immer wieder Fragestellungen auf, bei denen bewegte Objekte eine wesentliche Rolle spielen und Einfluss auf das Simulationsergebnis haben. Die Simulation der Schleusung eines Schiffes ist ein Beispiel, das stellvertretend für die Schwierigkeiten bei der Modellierung bewegter Objekte steht. Der große Bewegungsumfang des schwimmenden Schiffes bei gleichzeitig sehr geringem Abstand zu statischen Umrandungen und die Querschnittsfreigabe an Verschlüssen erweisen sich als Herausforderungen für den Modellierungsprozess. Ein weiteres Beispiel ist die Modellierung von größeren, sich durch das Simulationsgebiet bewegenden Partikeln, wobei die Interaktion zwischen Partikeln und Strömungsfeld sowie die auf die Partikel wirkenden Kräfte korrekt abzubilden sind. Bedeutung für die Wasserstraßen- und Schifffahrtsverwaltung des Bundes (WSV) Beim Entwurf von Schleusen werden kurze Schleusungszeiten bei gleichzeitig geringen hydraulischen Krafteinwirkungen auf das zu schleusende Schiff durch eine optimierte Füllstrategie erreicht. Bislang wurden Schützfahrpläne sowie die Schiffskräfte meist mit gegenständlichen Modellen ermittelt. Die Entwicklung numerischer Methoden soll mittelfristig ermöglichen, derartige Problemstellungen auch mit numerischen Modellen zu bearbeiten. Der Aufwand für den Aufbau der Modelle ist gegenüber gegenständlichen Modellen gering, während die Simulation vergleichsweise viel Zeit in Anspruch nimmt. Ein Vorteil numerischer Modelle besteht in der leichten Auswertbarkeit der Strömungsdaten an beliebigen Stellen des Modells. Numerische und gegenständliche Modelle können dann entweder zeitgleich, z. B. für hybride Modellierungsansätze, oder unabhängig voneinander genutzt werden. Die Auftragsbearbeitenden werden in die Lage versetzt, für jede Fragestellung und zu jedem Zeitpunkt die geeignetste Untersuchungsmethode zu wählen, wodurch Effizienz und Qualität der Gesamtbearbeitung für die WSV gesteigert werden. Untersuchungsmethoden Die Bundesanstalt für Wasserbau (BAW) verwendet das Verfahren OpenFOAM® für die dreidimensionale numerische Strömungssimulation. Zur Berücksichtigung von Starrkörperbewegungen existieren unterschiedliche Methoden, die sich einerseits in Bezug auf die Komplexität, andererseits hinsichtlich des realisierbaren Bewegungsumfangs unterscheiden und jeweils individuelle Vor- und Nachteile aufweisen. Für die Modellierung eines Schleusungsprozesses wurde in diesem Vorhaben zunächst die Deforming-Mesh-Methode herangezogen. Weiterhin werden auch konkurrierende Ansätze wie die Overset-Mesh- und die ImmersedBoundary-Methode betrachtet. Diese ermöglichen hinsichtlich der Objektbewegung eine größere Flexibilität, weisen jedoch Einschränkungen in der Genauigkeit und Robustheit auf. Zur Modellierung von partikelauflösendem Sedimenttransport wird eine Methode betrachtet, die an der Hochschule Emden/Leer entwickelt wird. Dabei werden größere Partikel, ähnlich wie bei der Immersed-Boundary-Methode, durch das Gitter bewegt. Das Volumen der durch einzelne Partikel belegten Zellen wird dabei entsprechend korrigiert.

Lösungsansätze zur Vermeidung von Kabelschäden im Nahbereich von Offshore-Gründungsstrukturen unter Berücksichtigung der Fluid-Struktur-Boden Interaktion

Im Rahmen des Verbundvorhabens 'CableProtect - Lösungsansätze zur Vermeidung von Kabelschäden im Nahbereich von Offshore-Gründungsstrukturen unter Berücksichtigung der Fluid-Struktur-Boden Interaktion (CableProtect)' befasst sich das Teilvorhaben 'Experimentelle und numerische Untersuchung der dynamischen Lasten auf Kabel im Nahfeld von Offshore-Gründungsstrukturen' mit der Ermittlung von Einflussfaktoren auf ungewünschte Kabelbewegungen im Nahfeld von Offshore-Windenergie-Gründungsstrukturen und der Entwicklung erfolgversprechender Lösungsansätze. Motiviert sind die Arbeiten durch Kabelschäden, die durch Abrieb des äußeren Schutzmantels des Kabels am nah gelegenen Kolkschutz entstanden sind. Dabei gelten strömungs- und welleninduzierte Kräfte, die auf das freie Kabel zwischen der Anbindung an die Gründungsstruktur und der Einbettung am Meeresboden einwirken, als Ursachen für Kabelbewegungen. Die Vorhersage des Strömungsfelds ist jedoch komplex, da dieses signifikant von den örtlichen Umgebungsbedingungen und den hydrodynamischen und geomechanischen Wechselwirkungen zwischen Gründungsstruktur, Kabel und Kolkschutz am Meeresboden abhängt. In diesem Zusammenhang thematisiert das Teilvorhaben CableProtect-Loads die hydrodynamisch induzierten Kabellasten unter Berücksichtigung der elastischen Verformung des Kabels. Hierzu werden innovative Berechnungsverfahren auf Basis einer Feldmethode zur Lösung von Reynolds-gemittelten Navier-Stokes Gleichungen weiterentwickelt, um z.B.Wirkungen von Viskosität und Turbulenz (Wirbelablösungen) zu untersuchen. Im Weiteren werden zur Validierung der rechnerischen Ergebnisse der anderen Teilvorhaben Modellversuche zu hydromechanischen Kornumlagerungen unter Strömungs- und Welleneinfluss durchgeführt. Abschließend werden Lösungsansätze zur Reduktion des Schadensrisikos von Kabeln im Nahfeld von Gründungstrukturen mit Fokus auf eine reduzierte Erregung ermittelt, validiert und in einem Auslegungsleitfaden dokumentiert.

Lösungsansätze zur Vermeidung von Kabelschäden im Nahbereich von Offshore-Gründungsstrukturen unter Berücksichtigung der Fluid-Struktur-Boden Interaktion, Teilvorhaben: Experimentelle und numerische Untersuchung der dynamischen Lasten auf Kabel von Offshore-Gründungsstrukturen

Im Rahmen des Verbundvorhabens 'CableProtect - Lösungsansätze zur Vermeidung von Kabelschäden im Nahbereich von Offshore-Gründungsstrukturen unter Berücksichtigung der Fluid-Struktur-Boden Interaktion (CableProtect)' befasst sich das Teilvorhaben 'Experimentelle und numerische Untersuchung der dynamischen Lasten auf Kabel im Nahfeld von Offshore-Gründungsstrukturen' mit der Ermittlung von Einflussfaktoren auf ungewünschte Kabelbewegungen im Nahfeld von Offshore-Windenergie-Gründungsstrukturen und der Entwicklung erfolgversprechender Lösungsansätze. Motiviert sind die Arbeiten durch Kabelschäden, die durch Abrieb des äußeren Schutzmantels des Kabels am nah gelegenen Kolkschutz entstanden sind. Dabei gelten strömungs- und welleninduzierte Kräfte, die auf das freie Kabel zwischen der Anbindung an die Gründungsstruktur und der Einbettung am Meeresboden einwirken, als Ursachen für Kabelbewegungen. Die Vorhersage des Strömungsfelds ist jedoch komplex, da dieses signifikant von den örtlichen Umgebungsbedingungen und den hydrodynamischen und geomechanischen Wechselwirkungen zwischen Gründungsstruktur, Kabel und Kolkschutz am Meeresboden abhängt. In diesem Zusammenhang thematisiert das Teilvorhaben CableProtect-Loads die hydrodynamisch induzierten Kabellasten unter Berücksichtigung der elastischen Verformung des Kabels. Hierzu werden innovative Berechnungsverfahren auf Basis einer Feldmethode zur Lösung von Reynolds-gemittelten Navier-Stokes Gleichungen weiterentwickelt, um z.B.Wirkungen von Viskosität und Turbulenz (Wirbelablösungen) zu untersuchen. Im Weiteren werden zur Validierung der rechnerischen Ergebnisse der anderen Teilvorhaben Modellversuche zu hydromechanischen Kornumlagerungen unter Strömungs- und Welleneinfluss durchgeführt. Abschließend werden Lösungsansätze zur Reduktion des Schadensrisikos von Kabeln im Nahfeld von Gründungstrukturen mit Fokus auf eine reduzierte Erregung ermittelt, validiert und in einem Auslegungsleitfaden dokumentiert.

1 2 3 4 544 45 46