API src

Found 488 results.

Stadtklimaanalyse Hamburg 2023

Die Stadtklimaanalyse Hamburg 2023 basiert auf einer modellgestützten Analyse zu den klimaökologischen Funktionen für das Hamburger Stadtgebiet. Die Berechnung mit FITNAH 3D erfolgte in einer hohen räumlichen Auflösung (10 m x 10 m Raster) und liefert Daten und Aussagen zur Temperatur und Kaltluftentstehung in Hamburg. Die Untersuchung wurde auf der Annahme einer besonders belastenden Sommerwetterlage für Mensch und Umwelt mit geringer Luftbewegung und hoher Temperaturbelastung erstellt. Als Grundlage für die flächenbezogenen Bewertungen und deren räumliche Abgrenzungen diente der ALKIS-Datensatz „Bodennutzung“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Weitere Informationen zur Stadtklimaanalyse Hamburg 2023 sind unter folgendem Link abrufbar: https://www.hamburg.de/landschaftsprogramm/18198308/stadtklima-naturhaushalt/ Dort stehen der Erläuterungsbericht, die Analyse- und Bewertungskarten sowie eine Erläuterungstabelle für den Datensatz, der als Grundlage für die Ebenen 11 bis 14 dient, zum Download zur Verfügung. Die Ebenen des Geodatensatzes „Stadtklimaanalyse Hamburg 2023“ werden wie folgt präzisiert: 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung) Die bodennahe Temperaturverteilung bedingt horizontale Luftdruckunterschiede, die wiederum Auslöser für lokale thermische Windsysteme sind. Ausgangspunkt dieses Prozesses sind die nächtlichen Temperaturunterschiede, die sich zwischen Siedlungsräumen und vegetationsgeprägten Freiflächen einstellen. An den geneigten Flächen setzt sich abgekühlte und damit schwerere Luft in Richtung zur tiefsten Stelle des Geländes als Kaltluftabfluss in Bewegung. Das sich zum nächtlichen Analysezeitpunkt 4 Uhr ausgeprägte Kaltluftströmungsfeld wird über Vektoren abgebildet, die für eine übersichtlichere Darstellung auf 100 m x 100 m Kantenlänge aggregiert werden. 02 Flurwinde und Kaltluftabflüsse Bei den nächtlichen Windsystemen werden Flurwinde von Kaltluftabflüssen unterschieden. Flurwinde werden durch den horizontalen Temperaturunterschied zwischen kühlen Grünflächen und warmer Bebauung ausgelöst. Kaltluftabflüsse bilden sich über Oberflächen mit Hangneigungen von mehr als 1 ° aus. 03 Bereiche mit besonderer Funktion für den Luftaustausch Diese Durchlüftungszonen verbinden Kaltluftentstehungsgebiete (Ausgleichsräume) und Belastungsbereiche (Wirkungsräume) miteinander und sind aufgrund ihrer Klimafunktion elementarer Bestandteil des Luftaustausches. Es handelt sich i.d.R. um gering überbaute und grüngeprägte Strukturen, die linear auf die jeweiligen Wirkungsräume ausgerichtet sind und insbesondere am Stadtrand das Einwirken von Kaltluft aus den Kaltluftentstehungsgebieten des Umlandes begünstigen. 04 Kaltlufteinwirkbereich innerhalb von Bebauung und Verkehrsflächen Hierzu zählen Siedlungs- und Verkehrsflächen, die sich im „Einwirkbereich“ eines klimaökologisch wirksamen Kaltluftstroms mit einem Wert von mehr als 5 m³/(s*m) befinden. Hier ist sowohl im bodennahen Bereich als auch darüber hinaus eine entsprechende Durchlüftung vorhanden. Die Eindringtiefe der Kaltluft beträgt, abhängig von der Bebauungsstruktur, zwischen ca. 100 m und bis zu 700 m. Darüber hinaus spielt auch die Hinderniswirkung des angrenzenden Bebauungstyps eine wesentliche Rolle. 05 Gebäude (Bestand und Planung) Mithilfe der Gebäudegrenzen werden Effekte auf das Mikroklima sowie insbesondere das Strömungsfeld berücksichtigt. Als Grundlage dient der ALKIS-Datensatz „Gebäude“ der Freien und Hansestadt Hamburg, Landesbetrieb Geoinformation und Vermessung (LGV) mit Stand Dezember 2022. Dieser Datensatz wurde anhand ausgewählter, zum Zeitpunkt der Bearbeitung im Verfahren sowie in Planung befindlicher Bebauungspläne und Großprojekte modifiziert. 06 Windgeschwindigkeit um 4 Uhr Siehe Hinweise zur Ebene 01 Windvektoren um 4 Uhr (aggregierte 100 m Auflösung). Die Rasterzellen stellen ergänzend zu den Windvektoren die Windgeschwindigkeit flächenhaft in 10 m x 10 m Auflösung dar. 07 Kaltluftvolumenstromdichte um 4 Uhr Der Kaltluftvolumenstrom beschreibt diejenige Menge an Kaltluft in der Einheit m³, die in jeder Sekunde durch den Querschnitt beispielsweise eines Hanges oder einer Kaltluftleitbahn fließt. Der Volumenstrom ist ein Maß für den Zustrom von Kaltluft und bestimmt neben der Strömungsgeschwindigkeit die Größenordnung des Durchlüftungspotenzials. Zum Zeitpunkt 4 Uhr morgens ist die Intensität der Kaltluftströme voll ausgeprägt. 07a Kaltluftvolumenstromdichte um 4 Uhr in den Grün- und Freiflächen Reduzierung der Ebene 07 Kaltluftvolumenstromdichte um 4 Uhr auf die Grün- und Freiflächen. 08 Lufttemperatur um 4 Uhr Der Tagesgang der Lufttemperatur ist direkt an die Strahlungsbilanz eines Standortes gekoppelt und zeigt daher i.d.R. einen ausgeprägten Abfall während der Abend- und Nachtstunden. Dieser erreicht kurz vor Sonnenaufgang des nächsten Tages ein Maximum. Das Ausmaß der Abkühlung kann je nach meteorologischen Verhältnissen, Lage des Standorts und landnutzungsabhängigen physikalischen Boden- bzw. Oberflächeneigenschaften große Unterschiede aufweisen. Besonders auffällig ist das thermische Sonderklima der Siedlungsräume mit seinen gegenüber dem Umland modifizierten klimatischen Verhältnissen. 08a Lufttemperatur um 4 Uhr im Siedlungsraum Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Siedlungsflächen. 08b Lufttemperatur um 4 Uhr in den Verkehrsflächen Reduzierung der Ebene 08 Lufttemperatur um 4 Uhr auf die Verkehrsflächen. 09 Lufttemperatur um 14 Uhr Die Lufttemperatur am Tage ist im Wesentlichen durch die großräumige Temperatur der Luftmasse in einer Region geprägt und wird weniger stark durch Verschattung beeinflusst, wie es bei der PET der Fall ist (Erläuterung „PET“ siehe Ebene 10 und 13). Daher weist die für die Tagsituation modellierte Lufttemperatur eine homogenere Ausprägung auf. 10 Physiologisch Äquivalente Temperatur (PET) um 14 Uhr Meteorologische Parameter wirken nicht unabhängig voneinander, sondern in biometeorologischen Wirkungskomplexen auf das Wohlbefinden des Menschen ein. Zur Bewertung werden Indizes verwendet (Kenngrößen), die Aussagen zur Lufttemperatur und Luftfeuchte, zur Windgeschwindigkeit sowie zu kurz- und langwelligen Strahlungsflüssen kombinieren. Wärmehaushaltsmodelle berechnen den Wärmeaustausch einer „Norm-Person“ mit seiner Umgebung und können so die Wärmebelastung eines Menschen abschätzen. Die hier genutzte Kenngröße PET (Physiologisch Äquivalente Temperatur, VDI 3787, Blatt 9) bezieht sich auf außenklimatische Bedingungen und zeigt eine starke Abhängigkeit von der Strahlungstemperatur. Mit Blick auf die Wärmebelastung ist sie damit vor allem für die Bewertung des Aufenthalts im Freien am Tage sinnvoll einsetzbar. 11 Bewertung nachts Siedlungs- und Verkehrsflächen: mittlere Lufttemperatur um 4 Uhr Zur Bewertung der bioklimatischen Situation wird die nächtliche Überwärmung in den Nachtstunden (4 Uhr morgens) herangezogen und räumlich differenziert betrachtet. Der nächtliche Wärmeinseleffekt wird anhand der Differenz zwischen der durchschnittlichen Lufttemperatur einer Siedlungs- oder Verkehrsfläche und der gesamtstädtischen Durchschnittstemperatur von etwa 17,1 °C bewertet. Die mittlere Überwärmung pro Blockfläche wird in fünf Bewertungsstufen untergliedert und reicht von sehr günstig (≥ 15,8 °C) bis sehr ungünstig (>= 20 °C). 12 Bewertung nachts Grün- und Freiflächen: bioklimatische Bedeutung Bei der Bewertung der bioklimatischen Bedeutung von grünbestimmten Flächen ist insbesondere die Lage der Grün- und Freiflächen zu Leitbahnen sowie zu bioklimatisch ungünstig oder weniger günstig bewerteten Siedlungsflächen entscheidend. Es handelt sich um eine anthropozentrisch ausgerichtete Wertung, die die Ausgleichsfunktionen der Flächen für den derzeitigen Siedlungsraum berücksichtigt. Die klimaökologischen Charakteristika der Grün- und Freiflächen werden anhand einer vierstufigen Skala (sehr hohe bioklimatische Bedeutung bis geringe bioklimatische Bedeutung) bewertet. 13 Bewertung tags Siedlungs- und Verkehrsflächen: bioklimatische Bedeutung (PET 14 Uhr) Zur Bewertung der Tagsituation wird der humanbioklimatische Index PET um 14:00 Uhr herangezogen. Für die PET existiert in der VDI-Richtlinie 3787, Blatt 9 eine absolute Bewertungsskala, die das thermische Empfinden und die physiologischen Belastungsstufen quantifiziert. Die Bewertung der thermischen Belastung im Stadtgebiet Hamburg orientiert sich daran und reicht auf einer fünfstufigen Skala von extrem belastet (> 41 °C) bis schwach belastet ( 41 °C) zu einer sehr geringen Aufenthaltsqualität führt. 14 Bewertung tags Grün- und Freiflächen: Aufenthaltsqualität (PET 14 Uhr) Die Zuweisung der Aufenthaltsqualität von Grün- und Freiflächen in der Bewertungskarte beruht auf der jeweiligen physiologischen Belastungsstufe. Es werden vier Bewertungsstufen unterschieden. Eine hohe Aufenthaltsqualität ergibt sich aus einer schwachen oder nicht vorhandenen Wärmebelastung (PET 41 °C) zu einer sehr geringen Aufenthaltsqualität führt.

WMS Klima Stadt Bremen

Darstellungsdienst Web Map Service (MWS) Klima der Stadtgemeinde Bremen. Bioklimatische Situation (Klimafunktionskarte): Die Klimafunktionskarte bildet die Funktionen und Prozesse des nächtlichen Luftaustausches für das Stadtgebiet von Bremen ab (Strömungsfeld, Kaltluftleitbahnen). Für Siedlungs- und Gewerbeflächen stellt sie die nächtliche Überwärmung dar, basierend auf der bodennahen Lufttemperatur in einer autochthonen Sommernacht um 04:00 Uhr morgens. Bioklimatische Situation der Siedlungsflächen (mit Kaltlufteinwirkbereich) • Siedlungsflächen im Einwirkbereich der Kaltluftströmung: Siedlungsbereiche die von nächtlicher Kaltluft durchströmt werden. Der Kaltlufteinwirkbereich kennzeichnet das bodennahe Ausströmen der Kaltluft aus den Grünflächen in die angrenzende Bebauung während einer autochthonen Sommernacht. Als Kaltlufteinwirkbereich sind Siedlungs- und Gewerbeflächen innerhalb des Stadtgebiets gekennzeichnet, die von einem überdurchschnittlich hohen Kaltluftvolumenstrom durchflossen werden oder durch eine Windgeschwindigkeit von mind. 0,2 m s-1 gekennzeichnet sind. • Bioklimatische Situation der Siedlungsflächen: Einteilung der bioklimatischen Situation in vier Klassen (sehr günstig, günstig, weniger günstig, ungünstig) in Relation zum Gebietsmittel auf Grundlage des z-transformierten PMV-Wertes (predicted mean vote). Siedlungsräume lassen sich in ausreichend durchlüftete Areale und damit meist klimatisch günstige Siedlungsstrukturen sowie klimatische Belastungsbereiche untergliedern. Die nächtliche Überwärmung beruht auf dem Temperaturunterschied zu den Grünflächen der Stadt. Der Wärmeinseleffekt ergibt sich als Abweichung von diesem Bezugswert und stellt somit eine geeignetere Kenngröße zur Erfassung des Stadtklimaeffekts dar als absolute Temperaturwerte. Bioklimatische Bedeutung der Grün- und Freiflächen (Kaltluftentstehung/-produktion) • Flächen mit sehr hoher Kaltluftentstehung/-produktion: Grünflächen mit sehr hoher Kaltluftproduktion sind Flächen, die in Relation zum Mittelwert im Untersuchungsraum eine mehr als überdurchschnittliche Kaltluftproduktion aufweisen. Sie werden durch Punktsymbole gekennzeichnet. Auswahlkriterium ist eine z-transformierte Kaltluftproduktionsrate größer 1. Kaltluftentstehungsgebiete kennzeichnen Grünflächen mit einer deutlich überdurchschnittlichen Kaltluftproduktionsrate und speisen die Kaltluftaustauschbereiche bzw. reichen auch über diese hinaus. • Bioklimatische Bedeutung der Grün- und Freiflächen: Einteilung der stadtklimatischen Bedeutung von Grünflächen in vier Klassen (gering, mittel, hoch, sehr hoch). In der Klimafunktionskarte werden Grün- und Freiflächen hinsichtlich ihres Kaltluftliefervermögens charakterisiert. Als Kaltluft produzierende Bereiche (Kaltluftentstehungsgebiete) gelten insb. unversiegelte Freiflächen (z.B. Wiesen, Weiden und Ackerflächen) sowie durch aufgelockerten Vegetationsbestand geprägte Grünflächen (z.B. Parkareale, Kleingärten und Friedhofsanlagen) und Wälder. Für die Charakterisierung dieser Ausgleichsleistung wird der Kaltluftvolumenstrom aus benachbarten Flächenherangezogen. • Siedlungsflächen mit klimarelevanter Funktion: Kaltluft kann in Einzelfällen auch über Siedlungsflächen mit geringer Baudichte, niedrigen Bauhöhen und/oder einem hohen Grünanteil weitergeleitet werden. Diese Siedlungsbereiche mit sehr hohen Kaltluftvolumenströmen haben eine Leitbahn ähnliche Funktion innerhalb des Siedlungsraumes und sind mit einer horizontalen Schraffur ausgewiesen. • Luftaustausch: Einteilung bzw. Bewertung des Kaltluftliefervermögens von Grünflächen in Relation zum Gebietsmittel (z-transformierter Kaltluftvolumenstrom). Kaltluftaustauschbereiche verbinden Kaltluftentstehungsgebiete (Ausgleichsräume) und Belastungs-bereiche (Wirkungsräume) über (lokale oder übergeordnete) Kaltluftleitbahnen miteinander oder erfüllen eine wichtige Durchlüftungsfunktion und sind somit elementarer Bestandteil des Luftaustausches.

Klima - Klimaanpassung Stadtgemeinde Bremen

Daten zur Klimaanpassungsstrategie ° Bioklimatische Situation (Klimafunktionskarte) ° Bioklimatische Situation (Siedlungsflächen, Grün- und Freiflächen) ° Klimakomfort: Wärmebelastung ° Windkomfort/Sturmgefahr Bioklimatische Situation (Klimafunktionskarte): Die Klimafunktionskarte bildet die Funktionen und Prozesse des nächtlichen Luftaustausches für das Stadtgebiet von Bremen ab (Strömungsfeld, Kaltluftleitbahnen). Für Siedlungs- und Gewerbeflächen stellt sie die nächtliche Überwärmung dar, basierend auf der bodennahen Lufttemperatur in einer autochthonen Sommernacht um 04:00 Uhr morgens. Bioklimatische Situation der Siedlungsflächen (mit Kaltlufteinwirkbereich) • Siedlungsflächen im Einwirkbereich der Kaltluftströmung: Siedlungsbereiche die von nächtlicher Kaltluft durchströmt werden. Der Kaltlufteinwirkbereich kennzeichnet das bodennahe Ausströmen der Kaltluft aus den Grünflächen in die angrenzende Bebauung während einer autochthonen Sommernacht. Als Kaltlufteinwirkbereich sind Siedlungs- und Gewerbeflächen innerhalb des Stadtgebiets gekennzeichnet, die von einem überdurchschnittlich hohen Kaltluftvolumenstrom durchflossen werden oder durch eine Windgeschwindigkeit von mind. 0,2 m s-1 gekennzeichnet sind. • Bioklimatische Situation der Siedlungsflächen: Einteilung der bioklimatischen Situation in vier Klassen (sehr günstig, günstig, weniger günstig, ungünstig) in Relation zum Gebietsmittel auf Grundlage des z-transformierten PMV-Wertes (predicted mean vote). Siedlungsräume lassen sich in ausreichend durchlüftete Areale und damit meist klimatisch günstige Siedlungsstrukturen sowie klimatische Belastungsbereiche untergliedern. Die nächtliche Überwärmung beruht auf dem Temperaturunterschied zu den Grünflächen der Stadt. Der Wärmeinseleffekt ergibt sich als Abweichung von diesem Bezugswert und stellt somit eine geeignetere Kenngröße zur Erfassung des Stadtklimaeffekts dar als absolute Temperaturwerte. Bioklimatische Bedeutung der Grün- und Freiflächen (Kaltluftentstehung/-produktion) • Flächen mit sehr hoher Kaltluftentstehung/-produktion: Grünflächen mit sehr hoher Kaltluftproduktion sind Flächen, die in Relation zum Mittelwert im Untersuchungsraum eine mehr als überdurchschnittliche Kaltluftproduktion aufweisen. Sie werden durch Punktsymbole gekennzeichnet. Auswahlkriterium ist eine z-transformierte Kaltluftproduktionsrate größer 1. Kaltluftentstehungsgebiete kennzeichnen Grünflächen mit einer deutlich überdurchschnittlichen Kaltluftproduktionsrate und speisen die Kaltluftaustauschbereiche bzw. reichen auch über diese hinaus. • Bioklimatische Bedeutung der Grün- und Freiflächen: Einteilung der stadtklimatischen Bedeutung von Grünflächen in vier Klassen (gering, mittel, hoch, sehr hoch). In der Klimafunktionskarte werden Grün- und Freiflächen hinsichtlich ihres Kaltluftliefervermögens charakterisiert. Als Kaltluft produzierende Bereiche (Kaltluftentstehungsgebiete) gelten insb. unversiegelte Freiflächen (z.B. Wiesen, Weiden und Ackerflächen) sowie durch aufgelockerten Vegetationsbestand geprägte Grünflächen (z.B. Parkareale, Kleingärten und Friedhofsanlagen) und Wälder. Für die Charakterisierung dieser Ausgleichsleistung wird der Kaltluftvolumenstrom aus benachbarten Flächenherangezogen. • Siedlungsflächen mit klimarelevanter Funktion: Kaltluft kann in Einzelfällen auch über Siedlungsflächen mit geringer Baudichte, niedrigen Bauhöhen und/oder einem hohen Grünanteil weitergeleitet werden. Diese Siedlungsbereiche mit sehr hohen Kaltluftvolumenströmen haben eine Leitbahn ähnliche Funktion innerhalb des Siedlungsraumes und sind mit einer horizontalen Schraffur ausgewiesen. • Luftaustausch: Einteilung bzw. Bewertung des Kaltluftliefervermögens von Grünflächen in Relation zum Gebietsmittel (z-transformierter Kaltluftvolumenstrom). Kaltluftaustauschbereiche verbinden Kaltluftentstehungsgebiete (Ausgleichsräume) und Belastungs-bereiche (Wirkungsräume) über (lokale oder übergeordnete) Kaltluftleitbahnen miteinander oder erfüllen eine wichtige Durchlüftungsfunktion und sind somit elementarer Bestandteil des Luftaustausches.

Laborversuche in einer Strömungsrinne mit skalierter Modelldüne (EbbSF)

Anhand von Experimenten im physikalischen Modell wurden durch Bodenformen verursachte Strömungs- und Turbulenzprozesse untersucht. Hierzu wurden Laborversuche in einer Strömungsumlaufrinne mit abstrahierten Modelldünen durchgeführt. Für die Erhebung eines umfangreichen Datensatzes zur Beschreibung des Strömungsfeldes über einer Bodenform wurde eine Modelldüne eingesetzt, deren Geometrie sich an in der Weser beobachteten Dünen mit sogenanntem Ebb Slip Face (EbbSF) orientiert. Die Dünenabmessungen und hydrodynamischen Größen wurden im Maßstab 1:10 nach Froude skaliert. Die Modelldüne wurde als zweidimensionale Einzeldüne eingebaut und einer unidirektionalen Strömung konstanter Geschwindigkeit und gleichbleibendem Wasserstand ausgesetzt. Durch die Verwendung von Riffelblech für die Herstellung der Modelldüne wurde die natürliche Oberflächenrauheit realer Dünen nicht nachgebildet. Für die Strömungsmessungen wurde im Bereich über und hinter dem Modellkörper eine enge Verteilung der Messpositionen gewählt, sodass ein umfassender Rohdatensatz mit hochfrequenten, akustischen Strömungsdaten bereitgestellt wird. Literatur: - Carstensen, C., Holzwarth, I. (2023): Flow and Turbulence over an Estuarine Dune – Large-Scale Flume Experiments. Die Küste. https://doi.org/10.18171/1.093103 - Bundesanstalt für Wasserbau (2021): FAUST. Teilprojekt E: Laboruntersuchungen BAW. FuE-Abschlussbericht B3955.02.04.70230. https://hdl.handle.net/20.500.11970/108336 Zitat für diesen Datensatz (Daten DOI): - Bundesanstalt für Wasserbau (2021): Laborversuche in einer Strömungsrinne mit skalierter Modelldüne (EbbSF) [Data set]. Bundesanstalt für Wasserbau. https://doi.org/10.48437/02.2021.K.9900.0001

Strömungsfeld (Stadtgemeinde Bremerhaven)

Flurwinde mit einer Windgeschwindigkeit größer als 0,1 m/s. Für eine vereinfachte Darstellung wurde das Windfeld in einer Zielauflösung von 300 m aggregiert. Quelle: Stadtklimaanalyse Bremerhaven, 2019. Gutachten i.A. der Senatorin für Klimaschutz, Umwelt, Mobilität, Stadtentwicklung und Wohnungsbau. Ansprechpartnerin: Freie Hansestadt Bremen – Die Senatorin für Klimaschutz, Umwelt, Mobilität, Stadtentwicklung und Wohnungsbau Referat 26 Naturschutz und Landschaftspflege An der Reeperbahn 2 28217 Bremen

Klimainformationssystem Bremen

Das Klimainformationssystem Bremen zeigt die Bioklimatische Situation im Land Bremen als Klimafunktionskarte. Die Klimafunktionskarte bildet die Funktionen und Prozesse des nächtlichen Luftaustausches für das Stadtgebiet von Bremen und Bremerhaven ab (Strömungsfeld, Kaltluftleitbahnen). Für Siedlungs- und Gewerbeflächen stellt sie die nächtliche Überwärmung dar, basierend auf der bodennahen Lufttemperatur in einer autochthonen Sommernacht um 04:00 Uhr morgens. Die Klimafunktionskarte ist ein Fachplan für die Belange des Stadtklimas und eine wichtige Grundlage für die gesamtstädtische räumliche Entwicklung. Die Karte bildet eine wichtige Abwägungsgrundlage für die bauliche Entwicklung in Bremen und für eine Weiterentwicklung klimawirksamer Freiflächen und Siedlungsstrukturen. Das Klimainformationssystem wurde vom Referat 20 Umweltinnovationen und Anpassung an den Klimawandel der Freien Hansestadt Bremen in Zusammenarbeit mit dem Landesamt GeoInformation Bremen aufgebaut. Die Anwendung selbst, basiert auf dem Open Source Webkarten-Client ‚Masterportal‘. Die Einbindung der Anwendung in eine eigene Webseite ist über einen IFrame möglich.

Klimamodell Berlin - Analysekarten 2005

Eine wichtige Ursache für die Entstehung und die Ausbildung eines Stadtklimas sind die gegenüber dem Umland veränderten Boden- und Oberflächeneigenschaften im urbanen Raum. Daraus resultiert die städtische Überwärmung genauso wie eine städtische Lokalwindzirkulation. Wind und Temperatur sowie daraus abgeleitete Größen sind die dominierenden Einflussfaktoren zur Bewertung des Stadtklimas unter human-biometeorologischen und lufthygienischen Gesichtspunkten. Die Untersuchung und Erfassung des Stadtklimas kann mit Hilfe verschiedener Methoden erfolgen. Hierzu zählen Feldmessungen und Fernerkundungsverfahren genauso wie Windkanalstudien und die Anwendung numerischer Simulationsmodelle. Gerade numerische Simulationsmodelle sind in vorteilhafter Weise in der Lage, die aufgrund der großen Komplexität der Bebauungsstrukturen räumlich und zeitlich sehr stark veränderlichen meteorologischen Größen zu erfassen. Die detaillierte Berechnung der Wind- und Temperaturverhältnisse im Großraum Berlin wurde auch in dieser Aktualisierung mit dem fortgeschriebenen Modell FITNAH (Flow over Irregular Terrain with Natural and Antropogenic Heat Sources) durchgeführt. Eine genaue mathematische und physikalische Beschreibung des Modells ist bei Groß 1993 und Richter & Röckle o.J. zu finden. In diesen Quellen können weitere detaillierte Hinweise zu Grundgerüst und Arbeitsansatz des dreidimensionalen Modells FITNAH sowie zur Interpretation der Modellergebnisse anhand eines beispielhaften Vergleiches mit Messdaten unter Methode / ergänzende Hinweise eingesehen werden. Generell gilt, dass numerische Simulationsmodelle in sehr vielen Gebieten der Meteorologie eingesetzt werden, da die resultierenden Erkenntnisse wichtige Basisinformationen für viele Lebensbereiche liefern (vgl. Übersicht der wichtigsten Modelle). Die Wettervorhersage für die nächsten 1-5 Tage wird fast ausschließlich von solchen komplexen und umfangreichen Computermodellen erstellt. Auch die Erkenntnisse zu den möglichen Veränderungen unseres globalen Klimas in den nächsten Jahrzehnten resultieren aus solchen Rechnungen. Und schließlich werden Modelle ähnlichen Typs auch dazu verwendet, die lokalen und die regionalen Verteilungen der meteorologischen Variablen in der Atmosphäre zu berechnen (Groß 2002). Ausschließlich durch Modelle kann das Immissionsverhalten von Luftschadstoffen in der Atmosphäre simuliert werden. Auf der Basis der FITNAH-Rechenergebnisse war es möglich, ein realistisches Ausbreitungsverhalten des untersuchten Gases Stickstoffdioxid durchzuführen. Dabei wurden die Strömungs- und Turbulenzfelder, die mit dem dreidimensionalen Modell FITNAH berechnet wurden, genutzt. Die Ergebnisse zu den berechneten NO 2 -Konzentrationen in Grünflächen werden in den Bewertungskarten 04.11 dargestellt und in den Begleittexten beschrieben. Die o.g. Computermodelle für die verschiedenen Skalen und Aufgabenstellungen und auch das hier eingesetzte Modell FITNAH basieren alle auf dem gleichen mathematisch-physikalischen Gleichungssystem. Lediglich im Detail finden sich skalenspezifische Unterschiede. Neben den modellinternen Festsetzungen spielen die meteorologischen Randbedingungen eine große Rolle. Während Hochdruckwetterlagen können sich die lokalklimatischen Besonderheiten einer Landschaft besonders gut ausprägen. Eine solche Wetterlage wird durch wolkenlosen Himmel und einen nur sehr schwachen überlagerten synoptischen Wind gekennzeichnet. Bei den hier durchgeführten numerischen Simulationen wurden die großräumigen synoptischen Rahmenbedingungen entsprechend festgelegt. FITNAH basiert in der horizontalen Ausrichtung auf einem gleichmäßigen, in der Vertikalen auf einem gestreckten Gitternetz. Durch die anteilmäßige Zuordnung der Eingangsparameter wie Flächennutzung, Geländehöhen etc. auf dieses Raster kann für jedes Rastervolumen nur ein repräsentativer Wert berechnet, der einen gewichteten Mittelwert aus allen eingegangenen Daten darstellt (vgl. Methode / ergänzende Hinweise). Zur Überprüfung der aus den Modellläufen abgeleiteten Informationen wurde auf eine Studie zu den lokalklimatischen Funktionen der Freiflächen im Bereich des Gleisdreieckes in Berlin-Schöneberg zurückgegriffen. Anhand eines umfangreichen Vergleiches wurden die Messergebnisse der Studie mit den Simulationsresultaten der Modellanwendung verglichen. Im Ergebnis dieses Vergleiches kann eine gute Übereinstimmung zwischen den Ergebnissen der Messkampagne und der Modellierung des lokalen Strömungsfeldes mit FITNAH in der Region Gleisdreieck festgestellt werden. Die eigenbürtigen, lokalen Strömungsphänomene, die durch die Modellrechnung postuliert werden, können zum großen Teil über die Messungen belegt werden. Angaben zur Strömungsrichtung und -geschwindigkeit liegen in den gleichen Größenordnungen. Die relevanten Luftaustauschprozesse – kleinräumige, orographisch bedingte Kaltluftabflüsse aus dem Viktoriapark/Kreuzberg und thermisch induzierte Ausgleichsströmungen zwischen den Freiflächen des Gleisdreiecks und der angrenzenden Bebauung – werden qualitativ und quantitativ gleich erfasst und dargestellt (vgl. Vogt 2002a, S. 26 ff). Eine eher regional geprägte Ausgleichsströmung zwischen Berliner Innenstadt und Umland kann hingegen durch beide methodischen Ansätze nicht belegt werden (vgl. Methode / ergänzende Hinweise). Nachfolgend werden umfangreiche Zusatzinformationen zum Themenkomplex der methodischen Bearbeitung des Klimamodells Berlin angeboten. Der Text ergänzt damit die Inhalte des Kapitels Methode. Das Grundgerüst des dreidimensionalen Modells FITNAH besteht aus den Erhaltungsgleichungen für Impuls, Masse und innerer Energie sowie Bilanzgleichungen für Feuchtekomponenten und Luftbeimengungen. Die verschiedenen turbulenten Flüsse werden mit Hilfe empirischer Ansätze mit den berechenbaren mittleren Größen verknüpft. Der dabei auftretende turbulente Diffusionskoeffizient wird aus der turbulenten kinetischen Energie berechnet, für die eine zusätzliche Gleichung gelöst wird. Die Erwärmungs- und Abkühlungsraten in der Atmosphäre aufgrund der Divergenz der langwelligen Strahlungsflüsse werden über ein Verfahren berechnet, bei dem die Emissivität des Wasserdampfes in der Luft berücksichtigt wird. Bei detaillierten Simulationen in realem Gelände müssen neben der Orographie insbesondere auch der Einfluss von Wäldern und urbanen Strukturen auf die Verteilung der meteorologischen Größen realitätsnah berücksichtigt werden. Hierzu sind in FITNAH besondere Parametrisierungen vorgesehen. Ein Wald oder Baumbestand findet über bestandsspezifische Größen wie Baumhöhe, Bestandsdichte und Baumart Eingang in das Modell. Damit gelingt es u.a., die Reduzierung der mittleren Geschwindigkeit im Bestand, die Erhöhung der Turbulenz im Kronenbereich und die starke nächtliche Abkühlung im oberen Kronendrittel in Übereinstimmung mit verfügbaren Beobachtungen zu simulieren. Unter Berücksichtigung der stadtspezifischen Größen Gebäudehöhe, Versiegelungs- und Überbauungsgrad und anthropogene Abwärme kann die typische Ausbildung der städtischen Wärmeinsel bei verringerter mittlerer Strömung simuliert werden (vgl. Groß 1989). Das gesamte Gleichungssystem einschließlich der Parametrisierungen wird in ein dem Gelände folgendes Koordinatensystem transformiert. Damit gelingt es insbesondere, die Randbedingungen der verschiedenen meteorologischen Größen am unteren Rand, dem Erdboden, problemspezifisch zu formulieren. Die Berechnung der Erdoberflächentemperatur erfolgt über eine Energiestrombilanz, bei der fühlbarer und latenter Wärmestrom, der Bodenwärmestrom, kurz- und langwellige Strahlungskomponenten sowie der anthropogene Wärmestrom Berücksichtigung finden. Die Differentialgleichung des benutzten Gleichungssystems werden auf einem numerischen Gitter gelöst. Die hier verwendete räumliche Maschenweite Δx beträgt in beide horizontale Raumrichtungen 50 m. Die vertikale Gitterweite ist nicht äquidistant und in der bodennahen Atmosphäre sind die Rechenflächen besonders dicht angeordnet, um die starke Variation der meteorologischen Größen realistisch zu erfassen. So liegen die untersten Rechenflächen in Höhen von 5, 10, 15, 20, 30, 40, 50 und 70 m. Nach oben hin wird der Abstand Δz immer größer und die Modellobergrenze liegt in einer Höhe von 3.000 m über Grund. In dieser Höhe wird angenommen, dass die am Erdboden durch Orographie und Landnutzung verursachten Störungen abgeklungen sind (vgl. Abbildung 4). Während Hochdruckwetterlagen (autochthone Wetterlagen) können sich die lokalklimatischen Besonderheiten einer Landschaft besonders gut ausprägen. Eine solche Wetterlage wird durch wolkenlosen Himmel und einen nur sehr schwachen überlagernden synoptischen Wind gekennzeichnet. Bei den hier durchgeführten numerischen Simulationen wurden die großräumigen synoptischen Rahmenbedingungen entsprechend festgelegt: Bedeckungsgrad 0/8 geostrophische Windgeschwindigkeit 0 m/s relative Feuchte der Luftmasse 50 %. Aufgrund der verwendeten horizontalen Maschenweite von 50 m können beispielsweise einzelne Häuser und Bauten nicht explizit aufgelöst werden. Vielmehr wird vom Modell ein für dieses Rastervolumen (Δx·Δy·Δz) repräsentativer Wert berechnet, der einen gewichteten Mittelwert aus den vorhandenen Landnutzungen darstellt. Dieser Sachverhalt soll an Hand der Windgeschwindigkeit U verdeutlicht werden: Sind beispielsweise 40 % des Rastervolumens mit Bauten ausgefüllt (U Haus = 0 m/s) und 60 % ohne Strömungshindernisse (z.B. U Frei = 1 m/s), so beträgt die repräsentative Windgeschwindigkeit, die auch vom Modell berechnet wird, 40 % · U Haus + 60 % · U Frei = 0,6 m/s. Auch bei der Berechnung der Temperatur ist eine ähnliche Wichtung der einzelnen Landnutzungen verfahrensbedingt im Modell enthalten und muss bei der Interpretation der Simulationsergebnisse berücksichtigt werden. Sind beispielsweise in einem Raster vier verschiedene Landnutzungen mit unterschiedlichen Flächenanteilen vorhanden, so z.B. Landnutzung Flächenanteil Temperatur Wasser Flächenanteil 20 % T Wasser = 18 °C Freiland Flächenanteil 40 % T Frei = 14 °C Stadt Flächenanteil 30 % T Stadt = 17 °C Wald Flächenanteil 10 % T Wald = 16 °C so berechnet sich ein für das Raster repräsentativer Wert von T Modell = 15,9 °C. Zur Überprüfung der aus den Modellläufen abgeleiteten Informationsebenen kann auf eine Studie zu den lokalklimatischen Funktionen der Freiflächen im Bereich Gleisdreieck zurückgegriffen werden. Die orientierende Untersuchung zu den Strömungs- und Temperaturfeldern im Bereich Gleisdreieck setzte sich methodisch aus stationären Messungen aus dem Sommerhalbjahr 2001 (vier Messkampagnen) und mobilen Messungen aus dem Winterhalbjahr 2001/2002 (vier Messkampagnen) zusammen. Die meteorologischen Rahmenbedingungen schienen geeignet, dass sich eigenbürtige Strömungssysteme im Umfeld des Areals Gleisdreieck ausbilden konnten (vgl. Vogt 2002a und Vogt 2002b). Folgende Arbeitshypothesen sollten im Zuge der Messkampagnen überprüft werden: es gibt eine autochthone, regionale Strömung, die Kaltluft über die rauigkeitsarmen Strukturen des Gleiskörpers (= Leitbahn) aus dem Raum Teltow in die Innenstadt Berlins transportiert das durch Freiflächen geprägte Areal Gleisdreieck liefert Kaltluft in die unmittelbar angrenzenden bebauten Stadtteile es gibt einen Kaltluftabfluss aus dem Bereich Kreuzberg/Viktoriapark, der in die Freiflächen des Gleisdreiecks eingreift. Diese Annahmen decken sich mit den Vorstellungen zur Ausprägung von autochthonen Strömungssystemen zwischen unterschiedlich strukturierten urbanen Arealen in dieser Untersuchung und sollten sich somit auch in den Modellergebnissen der FITNAH-Simulationen wiederfinden lassen. Deshalb können hier die Messdaten zum Strömungsfeld für die Überprüfung der Plausibilität der Modellergebnisse herangezogen werden. Allerdings muss von einer eingeschränkten Aussagefähigkeit dieses Vergleichs ausgegangen werden: Die meteorologischen Rahmenbedingungen für die Messungen waren nicht in jedem Fall ideal für die Ausprägung von eigenbürtigen Strömungssystemen mobile und stationäre Messungen können immer nur einen Stichprobencharakter haben (räumlich und zeitlich) die mobilen Messungen sind im Winterhalbjahr während starker Frostperioden durchgeführt worden es handelt sich auch eher um „quasistationäre“ Kurzzeitmessungen, da an jedem der 37 Messplätze nacheinander für ca. 4 Minuten die Windfeldparameter erfasst worden sind. Die Messkampagnen zur Erfassung des Windfelds für diesen Raum werden 4 bis 5 Stunden gedauert haben. Es handelt sich somit nicht um die Wiedergabe eines Windfeldes für einen definierten Zeitschnitt bei den Modellläufen, die für den Vergleich herangezogen werden, wird von idealen Rahmenbedingungen für die Ausbildung von eigenbürtigen Strömungssystemen ausgegangen, d.h. die Oberströmung weist eine Geschwindigkeit von 0 m/s auf. Betrachtet werden bei diesem Abgleich vorrangig die Ergebnisse, die in den frühen Nachtstunden in 2,5 m über Grund erzielt werden. So ist in dieser Hinsicht eine weitgehende Vergleichbarkeit der Ergebnisse Modell/Messung gewährleistet. Der Abgleich erfolgt an Hand der aufgestellten Arbeitshypothesen zur Strömungssituation im Untersuchungsraum: es gibt eine autochthone, regionale Strömung, die Kaltluft über die rauigkeitsarmen Strukturen des Gleiskörpers (= Leitbahn) aus dem Raum Teltow in die Innenstadt Berlins transportiert. Weder in den Messkampagnen noch in den Modellrechnungen kann eine regionale Strömung, die die rauigkeitsarmen Freiflächen der Bahnanlagen als Leitbahn nutzen, nachgewiesen werden. Am Messplatz „Monumentenbrücke“ hätte sich ein solches Strömungssystem in den Messwerten abbilden müssen (vgl. Vogt 2002a, S. 14). Nachgewiesen werden konnte aber innerhalb der Messkampagnen lediglich das Durchgreifen der Oberströmung in den relativ rauigkeitsarmen, vegetationsgeprägten Flächen des Gleisdreiecks. Auch im Rahmen der mobilen, winterlichen Messungen wurde diese Strömung nicht erfasst (vgl. Vogt 2002b, Abb. 78 ff.). Auch das Modellergebnis spricht gegen eine großräumigere Austauschströmung. Das Strömungsfeld (22.00 Uhr) zeigt ein lokal geprägtes Mosaik von kleinräumig wirksamen Luftaustauschzellen, die vorrangig thermisch induziert werden. Die räumliche Ausdehnung dieser „Strömungszellen“ beträgt in der Regel zwischen 500 m und 1200 m (vgl. Abbildung 5). Das von Freiflächen geprägte Areal Gleisdreieck liefert Kaltluft in die unmittelbar angrenzenden, bebauten Stadtteile. Die Messungen lieferten klare Hinweise auf das Vorhandensein dieser lokalen Ausgleichströmungen (vgl. Vogt 2002a, S. 15). Allerdings wurde eine umfassende Abbildung dieser Strömungssysteme durch die nicht bei allen Messkampagnen optimalen meteorologischen Rahmenbedingungen und den zeitlichen Versatz bei mobilen Messungen verhindert. Die mit FITNAH erzeugten Modellergebnisse zeichnen dagegen ein umfassendes Bild der räumlichen Ausprägung dieser lokalen, vorrangig thermisch induzierten Strömungssysteme nach. Zusätzlich zu den punktuellen Aussagen der Messungen erlauben die Modellergebnisse Aussagen zur Reichweite (= Eindringtiefe) der Strömungen in die angrenzende Bebauung. Exemplarisch kann hier auf den Bereich zwischen den Messpunkten Lützowstraße und Kurfürstenstraße am Westrand des Areals Gleisdreiecks verwiesen werden (Abb. 5). Hier dringt die lokal gebildete Kaltluft ca. 500 m in die Bebauung ein. Die Strömungsgeschwindigkeiten, die gemessen bzw. modelliert werden, erreichen sehr ähnliche Größenordnungen. In der Regel gehen diese thermisch induzierten Strömungssysteme mit Windgeschwindigkeiten von 0,1 bis 0,5 m/s einher. Die Messkampagnen zeigten, dass diese Werte sowohl im Sommer- als auch im Winterhalbjahr erreicht werden (vgl. Vogt 2002a, S. 19 und 22). Es zeigt sich außerdem ein Vordringen der Kaltluft im Bereich Möckernstraße, wobei die Eindringtiefe mit bis zu 150 m geringer ausgeprägt ist (vgl. Abb. 5). Es gibt einen Kaltluftabfluss im Bereich Kreuzberg/Victoriapark. Die Messergebnisse zu den lokalen Kaltluftabflüssen aus dem Bereich Viktoriapark/Kreuzberg bestätigen darüber hinaus die FITNAH-basierten Simulationsrechnungen (vgl. Vogt 2002a, S. 17). In den Messungen spiegelte sich die Kanalisierung des Kaltluftabflusses vor allem über die Kreuzbergstraße sowie Großbeerenstraße wieder. Diese Strömungen gingen mit geringen Windgeschwindigkeiten von 0,7 bis 0,2 m/s einher. Insgesamt gibt es eine gute Übereinstimmung zwischen den Ergebnissen der Messkampagne und der Modellierung des lokalen Strömungsfeldes mit FITNAH in der Region Gleisdreieck. Die eigenbürtigen, lokalen Strömungsphänomene, die durch die Modellrechnung postuliert werden, können zum großen Teil über die Messungen belegt werden. Angaben zur Strömungsrichtung und -geschwindigkeit liegen in den gleichen Größenordnungen. Die relevanten Luftaustauschprozesse – kleinräumige, orographisch bedingte Kaltluftabflüssen aus dem Viktoriapark/Kreuzberg und thermisch induzierte Ausgleichsströmungen zwischen den Freiflächen des Gleisdreiecks und der angrenzenden Bebauung – werden qualitativ und quantitativ gleich erfasst und dargestellt (vgl. Vogt 2002a, S. 26 ff). Eine eher regional geprägte Ausgleichsströmung zwischen Berliner Innenstadt und Umland kann hingegen durch beide methodischen Ansätze nicht belegt werden.

Klimamodell Berlin - Analysekarten 2001

Eine wichtige Ursache für die Entstehung und die Ausbildung eines Stadtklimas sind die gegenüber dem Umland veränderten Boden- und Oberflächeneigenschaften im urbanen Raum. Daraus resultiert die städtische Überwärmung genauso wie eine städtische Lokalwindzirkulation. Wind und Temperatur sowie daraus abgeleitete Größen sind die dominierenden Einflussfaktoren zur Bewertung des Stadtklimas unter human-biometeorologischen und lufthygienischen Gesichtspunkten. Die Untersuchung und Erfassung des Stadtklimas können mit Hilfe verschiedener Methoden erfolgen. Hierzu zählen Feldmessungen und Fernerkundungsverfahren genauso wie Windkanalstudien und die Anwendung numerischer Simulationsmodelle. Bisher wurden im Umweltatlas der Senatsverwaltung für Stadtentwicklung vorrangig die Bereiche Feldmessung und Fernerkundung zur Erfassung stadtklimatischer Phänomene eingesetzt. Gerade numerische Simulationsmodelle sind in vorteilhafter Weise in der Lage, die aufgrund der großen Komplexität der Bebauungsstrukturen räumlich und zeitlich sehr stark veränderlichen meteorologischen Größen zu erfassen. Die detaillierte Berechnung der Wind- und Temperaturverhältnisse im Großraum Berlin wurde mit dem Modell FITNAH (Flow over Irregular Terrain with Natural and Anthropogenic Heat Sources) durchgeführt. Eine genaue mathematische und physikalische Beschreibung des Modells ist bei Groß 1993 und Richter& Röckle o.J. zu finden. An dieser Stelle können weitere detaillierte Hinweise zu Grundgerüst und Arbeitsansatz des dreidimensionalen Modells FITNAH sowie zur Interpretation der Modellergebnisse anhand eines beispielhaften Vergleiches mit Messdaten unter Methode / ergänzende Hinweise eingesehen werden. Generell gilt, dass numerische Simulationsmodelle in sehr vielen Gebieten der Meteorologie eingesetzt werden, da die resultierenden Erkenntnisse wichtige Basisinformationen für viele Lebensbereiche liefern (vgl. Übersicht der wichtigsten Modelle). Die Wettervorhersage für die nächsten 1-5 Tage wird fast ausschließlich von solchen komplexen und umfangreichen Computermodellen erstellt. Auch die Erkenntnisse zu den möglichen Veränderungen unseres globalen Klimas in den nächsten Jahrzehnten resultieren aus solchen Rechnungen. Und schließlich werden Modelle ähnlichen Typs auch dazu verwendet, die lokalen und die regionalen Verteilungen der meteorologischen Variablen in der Atmosphäre zu berechnen (Groß 2002). Die o.g. Computermodelle für die verschiedenen Skalen und Aufgabenstellungen und auch das hier eingesetzte Modell FITNAH basieren alle auf dem gleichen mathematisch-physikalischen Gleichungssystem. Lediglich im Detail finden sich skalenspezifische Unterschiede. Neben den modellinternen Festsetzungen spielen die meteorologischen Randbedingungen eine große Rolle. Während Hochdruckwetterlagen können sich die lokalklimatischen Besonderheiten einer Landschaft besonders gut ausprägen. Eine solche Wetterlage wird durch wolkenlosen Himmel und einen nur sehr schwachen überlagerten synoptischen Wind gekennzeichnet. Bei den hier durchgeführten numerischen Simulationen wurden die großräumigen synoptischen Rahmenbedingungen entsprechend festgelegt. Hinweise zur Interpretation der Modellergebnisse FITNAH basiert in der horizontalen Ausrichtung auf einem gleichmäßigen, in der Vertikalen auf einem gestreckten Gitternetz. Durch die anteilmäßige Zuordnung der Eingangsparameter wie Flächennutzung, Geländehöhen etc. auf dieses Raster kann für jedes Rastervolumen nur ein repräsentativer Wert berechnet, der einen gewichteten Mittelwert aus allen eingegangenen Daten darstellt (vgl. Methode / ergänzende Hinweise). Verifizierung der Ergebnisse des Klimamodelles FITNAH Zur Überprüfung der aus den Modellläufen abgeleiteten Informationen wurde auf eine Studie zu den lokalklimatischen Funktionen der Freiflächen im Bereich des so genannten Gleisdreieckes in Berlin-Schöneberg zurückgegriffen. Anhand eines umfangreichen Vergleiches wurden die Messergebnisse der Studie mit den Simulationsresultaten der Modellanwendung verglichen. Im Ergebnis dieses Vergleiches kann eine gute Übereinstimmung zwischen den Ergebnissen der Messkampagne und der Modellierung des lokalen Strömungsfeldes mit FITNAH in der Region Gleisdreieck festgestellt werden. Die eigenbürtigen, lokalen Strömungsphänomene, die durch die Modellrechnung postuliert werden, können zum großen Teil über die Messungen belegt werden. Angeben zur Strömungsrichtung und -geschwindigkeit liegen in den gleichen Größenordnungen. Die relevanten Luftaustauschprozesse – kleinräumige, orographisch bedingte Kaltluftabflüssen aus dem Viktoriapark/Kreuzberg und thermisch induzierte Ausgleichsströmungen zwischen den Freiflächen des Gleisdreiecks und der angrenzenden Bebauung – werden qualitativ und quantitativ gleich erfasst und dargestellt (vgl. Vogt 2002a, S. 26 ff). Eine eher regional geprägte Ausgleichsströmung zwischen Berliner Innenstadt und Umland kann hingegen durch beide methodischen Ansätze nicht belegt werden (vgl. Methode / ergänzende Hinweise). Nachfolgend werden umfangreiche Zusatzinformationen zum Themenkomplex der methodischen Bearbeitung des Klimamodells Berlin angeboten. Der Text ergänzt damit die Inhalte des Kapitels Methode. Konzept und Verfahren des Klimamodells FITNAH Das Grundgerüst des dreidimensionalen Modells FITNAH besteht aus den Erhaltungsgleichungen für Impuls, Masse und innerer Energie sowie Bilanzgleichungen für Feuchtekomponenten und Luftbeimengungen. Die verschiedenen turbulenten Flüsse werden mit Hilfe empirischer Ansätze mit den berechenbaren mittleren Größen verknüpft. Der dabei auftretende turbulente Diffusionskoeffizient wird aus der turbulenten kinetischen Energie berechnet, für die eine zusätzliche Gleichung gelöst wird. Die Erwärmungs- und Abkühlungsraten in der Atmosphäre aufgrund der Divergenz der langwelligen Strahlungsflüsse werden über ein Verfahren berechnet, bei dem die Emissivität des Wasserdampfes in der Luft berücksichtigt wird. Bei detaillierten Simulationen in realem Gelände müssen neben der Orographie insbesondere auch der Einfluss von Wäldern und urbanen Strukturen auf die Verteilung der meteorologischen Größen realitätsnah berücksichtigt werden. Hierzu sind in FITNAH besondere Parametrisierungen vorgesehen. Ein Wald oder Baumbestand findet über bestandsspezifische Größen wie Baumhöhe, Bestandsdichte und Baumart Eingang in das Modell. Damit gelingt es u.a., die Reduzierung der mittleren Geschwindigkeit im Bestand, die Erhöhung der Turbulenz im Kronenbereich und die starke nächtliche Abkühlung im oberen Kronendrittel in Übereinstimmung mit verfügbaren Beobachtungen zu simulieren. Unter Berücksichtigung der stadtspezifischen Größen Gebäudehöhe, Versiegelungs- und Überbauungsgrad und anthropogene Abwärme kann die typische Ausbildung der städtischen Wärmeinsel bei verringerter mittlerer Strömung simuliert werden (vgl. Groß 1989). Das gesamte Gleichungssystem einschließlich der Parametrisierungen wird in ein dem Gelände folgendes Koordinatensystem transformiert. Damit gelingt es insbesondere, die Randbedingungen der verschiedenen meteorologischen Größen am unteren Rand, dem Erdboden, problemspezifisch zu formulieren. Die Berechnung der Erdoberflächentemperatur erfolgt über eine Energiestrombilanz, bei der fühlbarer und latenter Wärmestrom, der Bodenwärmestrom, kurz- und langwellige Strahlungskomponenten sowie der anthropogene Wärmestrom Berücksichtigung finden. Die Differentialgleichung des benutzten Gleichungssystems werden in Differenzengleichungen überführt und auf einem numerischen Gitter gelöst. Die hier verwendete räumliche Maschenweite Δx beträgt in beide horizontale Raumrichtungen 50 m bzw. 200 m. Die vertikale Gitterweite ist nicht äquidistant und in der bodennahen Atmosphäre sind die Rechenflächen besonders dicht angeordnet, um die starke Variation der meteorologischen Größen realistisch zu erfassen. So liegen die untersten Rechenflächen in Höhen von 5, 10, 15, 20, 30, 40, 50 und 70 m. Nach oben hin wird der Abstand Δz immer größer und die Modellobergrenze liegt in einer Höhe von 3000 m über Grund. In dieser Höhe wird angenommen, dass die am Erdboden durch Orographie und Landnutzung verursachten Störungen abgeklungen sind (vgl. Abbildung 4). Während Hochdruckwetterlagen (autochthone Wetterlagen) können sich die lokalklimatischen Besonderheiten einer Landschaft besonders gut ausprägen. Eine solche Wetterlage wird durch wolkenlosen Himmel und einen nur sehr schwachen überlagernden synoptischen Wind gekennzeichnet. Bei den hier durchgeführten numerischen Simulationen wurden die großräumigen synoptischen Rahmenbedingungen entsprechend festgelegt: Bedeckungsgrad 0/8 geostrophische Windgeschwindigkeit 2 m/s (0 m/s) relative Feuchte der Luftmasse 50 %. Hinweise zur Interpretation der Modellergebnisse Aufgrund der verwendeten horizontalen Maschenweite von 50 m bzw. 200 m können beispielsweise einzelne Häuser und Bauten nicht explizit aufgelöst werden. Vielmehr wird vom Modell ein für dieses Rastervolumen (Δx·Δy·Δz) repräsentativer Wert berechnet, der einen gewichteten Mittelwert aus den vorhandenen Landnutzungen darstellt. Dieser Sachverhalt soll an Hand der Windgeschwindigkeit U verdeutlicht werden: Sind beispielsweise 40 % des Rastervolumens mit Bauten ausgefüllt (U Haus = 0 m/s) und 60 % ohne Strömungshindernisse (z.B. U Frei = 1 m/s), so beträgt die repräsentative Windgeschwindigkeit, die auch vom Modell berechnet wird, 40 % · U Haus + 60 % · U Frei = 0,6 m/s. Auch bei der Berechnung der Temperatur ist eine ähnliche Wichtung der einzelnen Landnutzungen verfahrensbedingt im Modell enthalten und muss bei der Interpretation der Simulationsergebnisse berücksichtigt werden. Sind beispielsweise in einem Raster vier verschiedene Landnutzungen mit unterschiedlichen Flächenanteilen vorhanden, so z.B. Landnutzung Flächenanteil Temperatur Wasser Flächenanteil 20 % T Wasser = 18 °C Freiland Flächenanteil 40 % T Frei = 14 °C Stadt Flächenanteil 30 % T Stadt = 17 °C Wald Flächenanteil 10 % T Wald = 16 °C so berechnet sich ein für das Raster repräsentativer Wert von T Modell = 15,9 °C. Zur Überprüfung der aus den Modellläufen abgeleiteten Informationsebenen kann auf eine Studie zu den lokalklimatischen Funktionen der Freiflächen im Bereich Gleisdreieck zurückgegriffen werden. Die orientierende Untersuchung zu den Strömungs- und Temperaturfeldern im Bereich Gleisdreieck setzte sich methodisch aus stationären Messungen aus dem Sommerhalbjahr 2001 (vier Messkampagnen) und mobilen Messungen aus dem Winterhalbjahr 2001/2002 (vier Messkampagnen) zusammen. Die meteorologischen Rahmenbedingungen schienen geeignet, dass sich eigenbürtige Strömungssysteme im Umfeld des Areals Gleisdreieck ausbilden konnten (vgl. Vogt 2002a und Vogt 2002b). Folgende Arbeitshypothesen sollten im Zuge der Messkampagnen überprüft werden: es gibt eine autochthone, regionale Strömung, die Kaltluft über die rauigkeitsarmen Strukturen des Gleiskörpers (= Leitbahn) aus dem Raum Teltow in die Innenstadt Berlins transportiert das durch Freiflächen geprägte Areal Gleisdreieck liefert Kaltluft in die unmittelbar angrenzenden bebauten Stadtteile es gibt einen Kaltluftabfluss aus dem Bereich Kreuzberg/Viktoriapark, der in die Freiflächen des Gleisdreiecks eingreift. Diese Annahmen decken sich mit den Vorstellungen zur Ausprägung von autochthonen Strömungssystemen zwischen unterschiedlich strukturierten urbanen Arealen in dieser Untersuchung und sollten sich somit auch in den Modellergebnissen der FITNAH-Simulationen wiederfinden lassen. Deshalb können hier die Messdaten zum Strömungsfeld für die Überprüfung der Plausibilität der Modellergebnisse herangezogen werden. Allerdings muss von einer eingeschränkten Aussagefähigkeit dieses Vergleichs ausgegangen werden: Die meteorologischen Rahmenbedingungen für die Messungen waren nicht in jedem Fall ideal für die Ausprägung von eigenbürtigen Strömungssystemen mobile und stationäre Messungen können immer nur einen Stichprobencharakter haben (räumlich und zeitlich) die mobilen Messungen sind im Winterhalbjahr während starker Frostperioden durchgeführt worden es handelt sich auch eher um „quasistationäre“ Kurzzeitmessungen, da an jedem der 37 Messplätze nacheinander für ca. 4 Minuten die Windfeldparameter erfasst worden sind. Die Messkampagnen zur Erfassung des Windfelds für diesen Raum werden 4 bis 5 Stunden gedauert haben. Es handelt sich somit nicht um die Wiedergabe eines Windfeldes für einen definierten Zeitschnitt bei den Modellläufen, die für den Vergleich herangezogen werden, wird von idealen Rahmenbedingungen für die Ausbildung von eigenbürtigen Strömungssystemen ausgegangen, d.h. die Oberströmung weist eine Geschwindigkeit von 0 m/s auf. Betrachtet werden bei diesem Abgleich vorrangig die Ergebnisse, die in den frühen Nachtstunden in 2,5 m über Grund erzielt werden. So ist in dieser Hinsicht eine weit gehende Vergleichbarkeit der Ergebnisse Modell/Messung gewährleistet. Der Abgleich erfolgt an Hand der aufgestellten Arbeitshypothesen zur Strömungssituation im Untersuchungsraum: es gibt eine autochthone, regionale Strömung, die Kaltluft über die rauigkeitsarmen Strukturen des Gleiskörpers (= Leitbahn) aus dem Raum Teltow in die Innenstadt Berlins transportiert. Weder in den Messkampagnen noch in den Modellrechnungen kann eine regionale Strömung, die die rauigkeitsarmen Freiflächen der Bahnanlagen als Leitbahn nutzen, nachgewiesen werden. Am Messplatz „Monumentenbrücke“ hätte sich ein solches Strömungssystem in den Messwerten abbilden müssen (vgl. Vogt 2002a, S. 14). Nachgewiesen werden konnte aber innerhalb der Messkampagnen lediglich das Durchgreifen der Oberströmung in den relativ rauigkeitsarmen, vegetationsgeprägten Flächen des Gleisdreiecks. Auch im Rahmen der mobilen, winterlichen Messungen wurde diese Strömung nicht erfasst (vgl. Vogt 2002b, Abb. 78 ff.). Auch das Modellergebnis spricht gegen eine großräumigere Austauschströmung. Das Strömungsfeld (22.00 Uhr) zeigt ein lokal geprägtes Mosaik von kleinräumig wirksamen Luftaustauschzellen, die vorrangig thermisch induziert werden. Die räumliche Ausdehnung dieser „Strömungszellen“ beträgt in der Regel zwischen 800 m und 2000 m (vgl. Abbildung 5). Das von Freiflächen geprägte Areal Gleisdreieck liefert Kaltluft in die unmittelbar angrenzenden, bebauten Stadtteile. Die Messungen lieferten klare Hinweise auf das Vorhandensein dieser lokalen Ausgleichströmungen (vgl. Vogt 2002a, S. 15). Allerdings wurde eine umfassende Abbildung dieser Strömungssysteme durch die nicht bei allen Messkampagnen optimalen meteorologischen Rahmenbedingungen und den zeitlichen Versatz bei mobilen Messungen verhindert. Die mit FITNAH erzeugten Modellergebnisse zeichnen dagegen ein umfassendes Bild der räumlichen Ausprägung dieser lokalen, vorrangig thermisch induzierten Strömungssysteme nach. Zusätzlich zu den punktuellen Aussagen der Messungen erlauben die Modellergebnisse Aussagen zur Reichweite (= Eindringtiefe) der Strömungen in die angrenzende Bebauung. Exemplarisch kann hier auf den Bereich zwischen den Messpunkten Lützowstraße und Kurfürstenstraße am Westrand des Areals Gleisdreiecks verwiesen werden. Hier dringt die lokal gebildete Kaltluft ca. 440 m in die Bebauung ein. Die Strömungsgeschwindigkeiten, die gemessen bzw. modelliert werden, erreichen sehr ähnliche Größenordnungen. In der Regel gehen diese thermisch induzierten Strömungssysteme mit Windgeschwindigkeiten von 0,1 bis 0,5 m/s einher. Die Messkampagnen zeigten, dass diese Werte sowohl im Sommer- als auch im Winterhalbjahr erreicht werden (vgl. Vogt 2002a, S. 19 und 22). Es gibt einen Kaltluftabfluss aus dem Bereich Kreuzberg/Victoriapark, der in die Freiflächen Gleisdreieck eingreift Die Messergebnisse zu den lokalen Kaltluftabflüssen aus dem Bereich Viktoriapark/Kreuzberg bestätigen die FITNAH-basierten Simulationsrechnungen (vgl. Vogt 2002a, S. 17). In den Messungen spiegelte sich die Kanalisierung des Kaltluftabflusses über die Katzbachstraße und Möckernstraße wieder. Diese Strömungen gingen mit geringen Windgeschwindigkeiten von 0,7 bis 0,2 m/s einher. Auch das Vordringen der orographisch bedingten Kaltluftabflüsse bis in den Bereich Gleisdreieck wird über das Modellergebnis belegt. Im Bereich Yorkstraße/Katzbachstraße kann ein Vordringen der Kaltluft bis in die Freiflächen des Gleisdreiecks festgestellt werden. Die Eindringtiefe der Kaltluft aus dem Bereich Victoriapark beträgt etwa 300 m (vgl. Abbildung 5). Insgesamt gibt es eine gute Übereinstimmung zwischen den Ergebnissen der Messkampagne und der Modellierung des lokalen Strömungsfeldes mit FITNAH in der Region Gleisdreieck. Die eigenbürtigen, lokalen Strömungsphänomene, die durch die Modellrechnung postuliert werden, können zum großen Teil über die Messungen belegt werden. Angeben zur Strömungsrichtung und -geschwindigkeit liegen in den gleichen Größenordnungen. Die relevanten Luftaustauschprozesse – kleinräumige, orographisch bedingte Kaltluftabflüssen aus dem Viktoriapark/Kreuzberg und thermisch induzierte Ausgleichsströmungen zwischen den Freiflächen des Gleisdreiecks und der angrenzenden Bebauung – werden qualitativ und quantitativ gleich erfasst und dargestellt (vgl. Vogt 2002a, S. 26 ff). Eine eher regional geprägte Ausgleichsströmung zwischen Berliner Innenstadt und Umland kann hingegen durch beide methodischen Ansätze nicht belegt werden.

Klimamodell Berlin - Bewertungskarten 2005

Karte 04.11.1 Klimafunktionen Die Klimafunktionskarte bildet den planungsrelevanten Ist-Zustand der Klimasituation ab. Dabei werden bioklimatische Belastungszustände, Ausgleichsleistungen kaltluftproduzierender Flächen sowie räumliche Beziehungen zwischen Ausgleichs- und Wirkungsräumen dargestellt. Da sowohl die Ausgleichsleistungen als auch die Belastungen klassifizierbar sind, lassen sich planerische Prioritäten ermitteln um zu verdeutlichen, welche Siedlungsflächen von Veränderungen in Ausgleichsräumen betroffen sein können. Grün- und Freiflächenbestand Vegetationsbestandene Freiflächen mit nennenswerter Kaltluftproduktion stellen klima- und immissionsökologische Ausgleichsräume dar. Eine hohe langwellige nächtliche Ausstrahlung während austauscharmer Hochdruckwetterlagen führt zu einer starken Abkühlung der bodennahen Luftschicht, wodurch vor allem emittentennahe innerstädtische Parkanlagen als sehr immissionsgefährdet gelten müssen. Die Menge der produzierten Kaltluft hängt ab vom vorherrschenden Vegetationstyp, den Bodeneigenschaften und der damit verbundenen nächtlichen Abkühlungsrate. Insgesamt wurden 699 Grünflächeneinheiten ausgewiesen, welche sich aus den jeweiligen Block- und Blockteilflächen der ISU5 zusammensetzen. Die qualitative Einordnung hinsichtlich des Kaltluftmassenstroms zeigt Tabelle 4. Die Gesamtfläche der potenziell kaltluftproduzierenden Grünflächen beziffert sich auf ca. 47.420 Hektar, was einem Flächenanteil von rund 53 % des gesamten Stadtgebietes entspricht und als hoch angesehen werden kann. Die Ausprägung der Kaltluftlieferung innerhalb von Grünarealen ist dabei meist räumlich differenziert. Oft weisen bei innerstädtischen Grünflächen die zentralen Bereiche einen niedrigeren Kaltluftvolumenstrom auf als die an die Bebauung angrenzenden Teilflächen. Dies ist darauf zurück zu führen, dass, angetrieben durch den Temperaturunterschied zwischen Freifläche und Bebauung, die Kaltluft erst beschleunigt werden muss und dann die Werte in Richtung auf die Bebauung zunehmen. Im Übergangsbereich von Grünfläche und Bebauung ist der Temperaturgradient und damit auch die Intensität des Luftaustausches am höchsten. Grün- und Freiflächen mit einem hohen Kaltluftmassenstrom sind insbesondere am Stadtrand anzutreffen. Generell erweisen sich die größeren Wald- und Ruderalflächen, Friedhöfe und Kleingartenanlagen als sehr kaltluftproduktiv. Die für die Stadtmitte flächenhaft wichtigsten stadtklimatischen Beiträge gehen vom Großen Tiergarten , dem ehemaligen Flughafen Tempelhof und den Kleingartenkolonien am Priesterweg aus. Diese Flächen sind durch ihre ausgedehnten Kaltlufteinwirkbereiche gekennzeichnet. Zu den bedeutsamen Freiflächen mit Bezug zur Innenstadt zählen auch Teile des Grunewaldes . Die in Richtung auf die Stadtmitte vorgelagerten, durchgrünten Siedlungstypen sowie auftretende Hangneigungen > 1° unterstützen die Kaltluftströmung erheblich, so dass Kaltluftreichweiten in die Bebauung der Ortsteile Schmargendorf und Wilmersdorf von bis zu 2.000 m erzielt werden (vgl. dazu auch die ausführliche Beschreibung innerhalb der Karte 04.10 Klimamodell Berlin). Zusammen mit den Kleingartenanlagen nördlich des Spandauer Damms, am Heckerdamm sowie den Volksparken Jungfernheide und Rehberge ergibt sich ein ca. 10 km langer, die westliche Stadtmitte umrahmender Kaltlufteinwirkbereich. Eine ähnliche Bedeutung haben in der östlichen Stadtmitte die Grünbereiche um den Volkspark Prenzlauer Berg bzw. den Zentralfriedhof Lichtenberg. Mit einer Anzahl von 3.797 Blockflächen und einer Gesamtfläche von ca. 12.297 Hektar beträgt der Anteil dieser Kategorie am Grünflächenbestand ca. 26 %. Dazu zählen die ausgedehnten Wald- und Freiflächen in stadtrandnaher Lage mit hohen Kaltluftvolumenströmen vor allem im Norden und Westen Berlins. Die Ausgleichsleistung von Flächen mit einem mittleren Kaltluftmassenstrom ist ebenfalls als bedeutsam einzuschätzen. In der Innenstadt treten der Schlosspark Charlottenburg, der Volkspark Friedrichshain sowie der Volkspark Humboldthain mit einem ausgeprägten Kaltlufteinwirkbereich hervor. Im Süden des Stadtgebietes weisen verbreitet die durchgrünten Siedlungstypen ohne Anbindung an Park- oder Waldflächen einen mittleren Massenstrom auf. Die Flächensumme der als mittel einzustufenden Freiflächen beläuft sich auf 16.506 Hektar, was in etwa 35% aller hier bewerteten Flächen entspricht. Grünflächen, die einen geringen Kaltluftmassenstrom aufweisen, haben mit ca. 18.221 Hektar einen Anteil von 38 % am Grünflächenbestand. Dazu zählen vor allem die kleineren Friedhöfe, Kleingärten und Parkareale mit einer Flächengröße von bis zu 10 ha. Solange diese Areale in eine insgesamt wärmere Umgebungsbebauung eingebettet sind, bilden sie nur selten einen eigenen Einwirkbereich aus. In Nachbarschaft zu kaltluftproduktiveren Grünarealen können sie jedoch deren Wirkungen unterstützen und damit den jeweiligen klimatischen Einwirkbereich vergrößern. Grünflächen mit einem sehr geringen Kaltluftmassenstrom bilden in der Regel auch keinen Einwirkbereich mehr aus. Dabei handelt es sich vor allem um kleinere, innerhalb der Bebauung gelegene Flächen von bis zu 2,5 ha. Innerhalb von Belastungsbereichen können aber auch diese Flächen eine bedeutsame Funktion als klimaökologische Komfortinseln erfüllen, sofern sie ein Mosaik aus unterschiedlichen Mikroklimaten wie beispielsweise beschattete und besonnte Bereiche oder kühlende Wasserflächen aufweisen (Mikroklimavielfalt). Der Anteil dieses Flächentyps am Gesamtbestand beträgt mit 396 Hektar lediglich ca. 1 %. Einen räumlichen Überblick über die Verteilung der einzelnen Kaltluft-Produktivitätsklassen bietet Abbildung 5. Die Kaltluftentstehungsgebiete des Umlandes stehen oftmals in direktem Kontakt zu denen des Stadtgebietes und sind quasi als deren Erweiterung anzusehen. Aufgrund der größeren Distanz zu Siedlungsräumen ist das Strömungsfeld erst zum 06.00-Uhr-Zeitpunkt voll ausgeprägt. Die größten Kaltluftentstehungsgebiete sind im Nordosten Berlins anzutreffen. Der hier im Verhältnis auffallende Anstieg der Geländehöhe begünstigt in diesem Bereich ein weiträumiges Einströmen der Kaltluft in Richtung auf die Stadt. Zahlreiche kleinere Gebiete sind an der südlichen Stadtgrenze gruppiert, während am Westrand lediglich zwei Kaltluftentstehungsgebiete ausgewiesen werden konnten. Der Kaltluftmassenstrom ist verbreitet als hoch einzustufen. Die Relevanz der umlandbürtigen Flächen steigt mit der Nähe zu Siedlungsbereichen und ist somit in den Räumen Spandau, Marzahn sowie am südlichen Stadtrand am größten. Siedlungsräume Wie unter Methode beschrieben, ist die bioklimatische Belastungssituation auf Basis der Z-Transformation des modellierten PMV (Predicted Mean Vote) ermittelt worden. Mit diesem Vorgehen lässt sich eine räumliche Untergliederung des Siedlungsraumes in belastete und bioklimatisch eher ungünstige Bereiche einerseits sowie bioklimatische Gunsträume andererseits durchführen. Letztere sind meist als Kaltlufteinwirkbereiche durch eine moderate Überwärmung und eine ausreichende Durchlüftung aufgrund der von einer kaltluftproduzierenden Freifläche ausgehenden Strömungen gekennzeichnet. Die Reichweite der Kaltluftströmung in die Bebauung hängt neben der Kaltluftproduktivität von der Hinderniswirkung des angrenzenden Bebauungstyps ab. Abbildung 6 zeigt die Situation im Umfeld des Großen Tiergartens, wobei das konzentrische, nächtliche Ausströmen der Kaltluft als Einwirkbereich deutlich wird. Im Gegensatz zu den randlichen Stadtteilen verbleiben im Innenstadtbereich auch die von Kaltluft durchströmten Areale oft auf einem weniger günstigen Niveau. Im zentralen Bereich des Tiergartens ist eine Zone reduzierter Strömungsgeschwindigkeiten von weniger als 0,2 m/s zu erkennen. Von hier aus wird die produzierte Kaltluft beschleunigt und dringt, angetrieben vom nutzungsbedingten Temperaturunterschied, in die angrenzende Bebauung ein. Grüne Areale stellen Grünflächen dar, während orange die weniger günstigen und rot die bioklimatisch ungünstigen Baublöcke kennzeichnen. Von den Wohlfahrtswirkungen größerer innerstädtischer Freiflächen wie dem ehemaligen Flughafen Tempelhof oder dem Volkspark Friedrichshain profitieren selbst in der Innenstadt weiträumige Siedlungsbereiche. Hierbei dienen vorgelagerte, kleinere Freiflächen oftmals als “grüne Trittsteine” und erleichtern das Vordringen von Kaltluft in die Bebauung. Diesen Gunsträumen stehen Belastungsbereiche mit einer überdurchschnittlichen Wärmebelastung und einem Durchlüftungsmangel gegenüber. Dies betrifft vor allem Gebiete folgender Bezirke: Mitte, Pankow, Friedrichshain-Kreuzberg, Lichtenberg, Tempelhof-Schöneberg. Aber auch mehr peripher gelegene, verdichtete Stadtteilzentren weisen eine erhöhte potenzielle bioklimatische Belastung auf, so z.B. in den Bezirken bzw. Ortsteilen Spandau, Weißensee, Hohenschönhausen, Marzahn, Ober- und Niederschöneweide, Mariendorf. Darüber hinaus treten in fast allen Ortsteilen vereinzelte Baublöcke mit weniger günstigen Verhältnissen hervor. Dabei weisen Hochhaussiedlungen strukturbedingt über Abstandsflächen eine tendenziell günstigere Durchlüftung auf als im Kartenbild dargestellt. Stellenweise kann aber das Belastungsniveau so ausgeprägt sein, dass es auch durch eine vorhandene Kaltluftströmung nicht ausgeglichen werden kann. Verkehrsbedingte Luftbelastung Insbesondere innerstädtische Hauptverkehrsstraßen sind von erhöhten Belastungen betroffen; in der Summe liegen nach jetziger Einschätzung rund 8 % des untersuchten Verkehrsnetzes oberhalb des späteren Grenzwertes. Bei der potenziellen flächenhaften Belastung von Grünflächen durch die Stickstoffdioxid-Emissionen des Verkehrs sind besonders die Konstellationen interessant, in denen Flächen mit einem hohen bzw. mittleren Kaltluftproduktionsvermögen von NO 2 -Konzentrationen > 80 µg/m 3 betroffen sein können. Dies ist auf rund 3,3 % der Flächen mit hohem oder mittlerem Kaltluftbildungsvermögen der Fall. Zwar erscheint diese Zahl relativ gering, in innenstadtnahen Grünflächen jedoch sind z.T. die gesamte Flächenausdehnung (Schlosspark Charlottenburg) oder zumindest größere Teilflächen (westl. Bereich des Großen Tiergarten) betroffen (vgl. Abbildung 7). Im Hinblick auf eine Optimierung der klimatischen Funktionen dieser Grünräume auch durch Verbesserung der lufthygienischen Situation ist diesen Konstellationen besondere Aufmerksamkeit zuzuwenden. Luftaustausch Strukturen, die den Luftaustausch ermöglichen und Kaltluft heranführen, sind das zentrale Bindeglied zwischen Ausgleichsräumen und bioklimatisch belasteten Wirkungsräumen. Leitbahnen sollten generell eine geringe Oberflächenrauhigkeit aufweisen, wobei gehölzarme Tal- und Auenbereiche, größere Grünflächen und Bahnareale als geeignete Strukturen in Frage kommen. Breite Straßen können aufgrund ihrer Immissionsbelastung nur dem Klimaausgleich, nicht jedoch dem Heranführen unbelasteter Luft dienen. Die Leitbahnen werden in der Klimafunktionskarte hinsichtlich des Prozessgeschehens untergliedert, wobei auch eine kaltluftproduzierende (Teil-) Fläche eine Leitbahnfunktion ausüben kann. Es überwiegen die vorwiegend thermisch induzierten Leitbahntypen im Zusammenhang mit einer rein auf die nutzungsbedingten Temperaturunterschiede zurückzuführenden Ausgleichsströmung. Beispielhaft für solche Strömungen seien als eine der innenstadtnächsten Leitbahnen die Kleingartenanlagen am Priesterweg angeführt, die Kaltluft vom Friedhof an der Bergstraße in Steglitz und vom Insulaner in Richtung Norden transportieren. Des Weiteren leiten die Kleingartenanlagen am Heckerdamm sowie der Volkspark Rehberge einen Teil der auf dem Flughafen Tegel produzierten Kaltluft in Richtung Innenstadt. Eine weitere Anzahl thermisch induzierter Leitbahnen konnte nördlich einer Linie Tegel – Lichtenberg sowie im Süden zwischen Lichterfelde und Bohnsdorf ausgewiesen werden. Im westlichen Stadtgebiet gruppieren sich Leitbahnen um Spandau und führen Kaltluft aus dem nördlichen Gatower Feld sowie dem Umland heran. Grenzt eine Grünfläche direkt an die Bebauung, kommt es hingegen nicht gesondert zu einer Leitbahnausweisung. Vorwiegend orographisch induzierte Leitbahnen sind auf das östliche Stadtgebiet konzentriert. Dabei handelt es sich um Talbereiche z.B. der Wuhle und dem Mühlenfließ, die aufgrund ihrer Ausrichtung, Breite und Oberflächenbeschaffenheit als Leitbahnen angesprochen werden können. Im westlichen Stadtgebiet kann dahingehend die vom Grunewald ausgehende Tiefenlinie Hundekehlsee – Dianasee – Koenigssee – Halensee eingeordnet werden. Die Niederungen der größeren Fliessgewässer wie Spree und Havel gehen über diese Funktion hinaus und besitzen zudem eine Eigenschaft als übergeordnete Luftleit- und Ventilationsbahnen . Sie begünstigen den Luftaustausch in der angrenzenden Bebauung auch bei stärkeren, übergeordneten Wetterlagen. Ein flächenhafter Kaltluftabfluss ist auf Areale mit Hangneigungen > 1° begrenzt und tritt im Stadtgebiet Berlin aufgrund der vergleichsweise geringen Höhenunterschiede selten auf. Daher ist dieser Prozess an die wenigen Bereiche mit einer nennenswerten Hangneigung wie die des Grunewaldes und der Köpenicker Bürgerheide gekoppelt. Darüber hinaus kann nördlich des Tegeler Sees, in Kaulsdorf sowie im Forst Düppel vereinzelt von einem Kaltluftabfluss ausgegangen werden. Die Kaltluftlieferung ist auf diesen geneigten Waldflächen überdurchschnittlich hoch, da die Ausstrahlung und damit die primäre Abkühlung hauptsächlich aus dem oberen Kronenbereich und nicht aus unmittelbarer Bodennähe erfolgt. Aufgrund der großen, ausstrahlenden Oberfläche des Bestandes fließt die Kaltluft auch im und über den Kronenbereich ab, statt erst in den Stammraum einzusinken (Groß 1989). Karte 04.11.2 Planungshinweise Stadtklima Die Planungshinweiskarte Stadtklima stellt eine integrierende Bewertung der in der Klimafunktionskarte dargestellten Sachverhalte im Hinblick auf planungsrelevante Belange dar. Aus ihr lassen sich Schutz- und Entwicklungsmaßnahmen zur Verbesserung von Klima und – über die Effekte der Verdünnung und des Abtransportes – auch der Luft ableiten. Dem Leitgedanken dieser Bemühungen entsprechen die Ziele zur Sicherung, Entwicklung und Wiederherstellung klima- und immissionsökologisch wichtiger Oberflächenstrukturen (Mosimann et al. 1999). Die zugeordneten Planungshinweise geben Auskunft über die Empfindlichkeit gegenüber Nutzungsänderungen, aus denen sich klimatisch begründete Anforderungen und Maßnahmen im Rahmen der räumlichen Planung ableiten lassen. Sie sollen darüber hinaus helfen, die im Kontext der Anpassung an den Klimawandel notwendigen planerischen Festlegungen zu treffen. Im Folgenden wird auf die planerische Einordnung der klimaökologisch relevanten Elemente in Berlin eingegangen. Ausführliche, blockbezogene Planungsempfehlungen sind der digitalen Version der Planungshinweiskarte zu entnehmen. Grün- und Freiflächenbestand Innerstädtische und siedlungsnahe Grünflächen haben eine wesentliche Wirkung auf das Stadtklima und beeinflussen die direkte Umgebung in mikroklimatischer Sicht positiv. Aus größeren, zusammenhängenden Grünarealen ergibt sich somit das klimatische Regenerationspotenzial. Der produzierte Kaltluftmassenstrom als qualifizierender Parameter tritt aber an dieser Stelle in den Hintergrund. Für die planerische Einordnung ist vielmehr die Lage im Raum entscheidend und damit die Frage, welche bioklimatische Belastung eine zugeordnete Bebauung aufweist. Denn letztendlich kann auch eine Grünfläche mit geringer Kaltluftproduktion eine signifikante Wohlfahrtswirkung in stark überbauten Bereichen erbringen. Eine sehr hohe stadtklimatische Bedeutung erlangen daher Grün- und Freiflächen mit Einfluss auf bioklimatisch belastete Siedlungsräume. Dazu zählen vor allem die großen, innenstadtnahen Grünflächen wie der Große Tiergarten, die unbebauten Bereiche des Flughafens Tempelhof oder der Volkspark Friedrichshain. Eine sehr hohe Bedeutung kann darüber hinaus auch den kleineren Park-, Ruderal- und Brachflächen oder gering versiegelten Sportplätzen zukommen, sofern sie Entlastungswirkungen für benachbarte Bebauung erzeugen können. Daraus resultiert für diese Flächen die höchste Empfindlichkeit gegenüber einer Nutzungsintensivierung mit den folgenden Planungsempfehlungen: Vermeidung von Austauschbarrieren gegenüber bebauten Randbereichen, Reduzierung von Emissionen und Vernetzung mit Freiflächen. Dies bedeutet, dass bauliche und zur Versiegelung beitragende Nutzungen dieser Flächen zu weiteren, bedenklichen klimatischen Beeinträchtigungen führen können. Neben den angesprochenen und weiteren Einzelflächen dieser Klasse sind auch größere, randständige Areale wie die Freiflächen bei Blankenfelde oder die Wuhlheide dieser Kategorie zuzuordnen. Grün- und Freiflächen, die einen Bezug zu Siedlungsräumen mit einem geringen Belastungsniveau oder sogar günstigem Kleinklima aufweisen, besitzen eine hohe bis mittlere stadtklimatische Bedeutung . Sie sind vorwiegend innenstadtfern lokalisiert und haben Bezug zu den weniger bioklimatisch belasteten Siedlungsräumen außerhalb des S-Bahnrings. Dazu zählen die folgenden Bereiche: Grünflächen bzw. durchgrünte Siedlungen zwischen Bucher Forst und Malchow, Krummendammer- und Köpenicker Bürgerheide, Grunewald nordwestlich der Avus sowie Jungfernheide und Forst Spandau. Für diese Flächen ergibt sich eine hohe Empfindlichkeit gegenüber einer Nutzungsintensivierung, bei der insbesondere der Luftaustausch mit der Umgebung berücksichtigt werden sollte. Als dritte Kategorie werden Grün- und Freiflächen mit einer geringen stadtklimatischen Bedeutung ausgewiesen. Dabei handelt es sich um Flächen, die entweder einen geringen Einfluss auf – belastete – Siedlungsbereiche ausüben oder eine unbedeutende Kaltluftproduktion aufweisen. Letztere besitzen oft eine geringe Flächengröße und sind insbesondere im Innenstadtbereich anzutreffen. Diesen Flächen kann dann durchaus noch eine Rolle als klimaökologische Komfortinsel zukommen, sofern sie eine Mikroklimavielfalt aufweisen (z.B. Gewässer, beschattete und besonnte Bereiche). Zu den größeren Arealen mit einer geringen Empfindlichkeit zählen vor allem die dem Grünflächenbestand zugeordneten, stadtklimatisch relevanten grüngeprägten Siedlungen (s. klimatisch günstige Siedlungsräume). Sofern sie nicht direkt an belastete Bereiche angrenzen, wären dort bauliche Eingriffe, die den lokalen Luftaustausch nicht wesentlich beeinträchtigen, nur mit geringen klimatischen Veränderungen verbunden. Siedlungsräume Bei klimatisch günstigen Siedlungsräumen handelt es sich um locker bebaute und durchgrünte Siedlungen wie z.B. Villenbebauung mit einem geringen Versiegelungsgrad, hohem Vegetationsanteil und relativ hoher nächtlicher Abkühlungsrate. Diese Areale sind zu einem gewissen Maße selbst Kaltluftproduzenten und unterstützen die Kaltluftströmung benachbarter Freiflächen. Durchgrünte Siedlungen sind vor allem außerhalb des S-Bahn-Rings anzutreffen, aber auch in Innenstadtnähe (z.B. die Gartenstadt Tempelhof westlich des Flughafens). Diese Gebiete führen weder zu einer intensiven bioklimatischen Belastung noch zu Beeinträchtigungen des Luftaustausches. Daher haben sie einen meist niedrigen PMV-Wert (vgl. Siedlungsräume im Kapitel Methode), der Grundlage für die Bewertung der bioklimatischen Situation in vier Klassen (sehr günstig / günstig / weniger günstig / ungünstig) gemäß VDI-Richtlinie 3785 ist. Dabei weisen die bioklimatisch sehr günstigen Siedlungsflächen im allgemeinen eine mittlere Empfindlichkeit gegenüber Nutzungsintensivierungen auf, sofern die Bauhöhen gering gehalten und die Baukörperstellung beachtet wird. In direkter Nachbarschaft zu Belastungsbereichen ist aufgrund der Klimarelevanz jedoch von der höchsten Empfindlichkeit auszugehen. Zur ebenfalls gering belasteten Wohnbebauung zählen die bioklimatisch günstigen Siedlungsräume , welche aber nicht immer einen Kaltlufteinwirkbereich aufweisen. Grenzen diese Flächen an Belastungsräume an, ergibt sich eine hohe Empfindlichkeit hinsichtlich einer Nutzungsintensivierung und die Anforderung an eine Vermeidung weiterer Verdichtung. Bei fehlender Nachbarschaft zu Belastungsräumen besteht lediglich eine geringe Empfindlichkeit gegenüber baulichen Eingriffen. Belastungsbereiche dagegen weisen einen Durchlüftungsmangel und eine überdurchschnittliche Wärmebelastung auf. Hier werden Siedlungsräume mit den Bewertungskategorien weniger günstig sowie ungünstig unterschieden. Unter Berücksichtigung des Belastungsniveaus ergibt sich eine hohe bzw. sehr hohe Empfindlichkeit gegenüber einer Nutzungsintensivierung. Diese Gebiete sind unter stadtklimatischen Gesichtspunkten sanierungsbedürftig, woraus sich die folgenden Planungshinweise ergeben: Keine weitere Verdichtung, Verbesserung der Durchlüftung und Erhöhung des Vegetationsanteils, Erhalt aller Freiflächen und Entsiegelung und ggf. Begrünung der Blockinnenhöfe. Neben dem innerstädtischen Raum sind auch stärker überbaute Bezirkszentren wie z.B. Spandau, Weißensee oder Hohenschönhausen betroffen. Eine lokale bioklimatische Belastung kann darüber hinaus im gesamten Stadtgebiet auftreten und ist nicht auf die Verdichtungsbereiche beschränkt. Vereinzelt kommt es zum Auftreten einer Belastung trotz vorhandenem Kaltlufteinwirkbereich. In einem solchen Fall ist die potentielle Belastungssituation so hoch, dass selbst eine Kaltluftluftströmung keinen signifikanten Ausgleich herstellen kann. Die Situation im randstädtischen Bereich von Tempelhof-Schöneberg zeigt Abbildung 8. Sehr deutlich treten die bioklimatisch belasteten Gewerbegebiete hervor, insbesondere im Ortsteil Mariendorf. Gleichzeitig ist die grüngeprägte Bebauung als klimatisch günstiger Siedlungsraum erkennbar (hellgrüne und beige Farbe). Kaltluftleitbahnen, die in diesem Beispiel Kaltluft aus dem Umland heranführen, sind durch die Pfeilsignatur gekennzeichnet. Als Leitbahnen dienen die durchgrünten Siedlungstypen sowie der Freizeitpark Marienfelde. Aufgrund der Zuordnung zu den genannten Belastungsbereichen kommt den beteiligten Grünflächen eine sehr hohe stadtklimatische Bedeutung zu, was gleichermaßen für deren Leitbahnfunktion gilt. Verkehrsbedingte Luftbelastung Die Darstellung der potenziellen verkehrsbedingten Luftbelastung entlang von Hauptverkehrsstraßen und in Grünflächen ergänzt das Spektrum auftretender Belastungen (vgl. Methodik). Außerdem sind die mit FITNAH modellierten Bereiche innerhalb von Grünflächen ausgewiesen, in denen NO 2 -Konzentrationen von mehr als 80 µg/m 3 während austauscharmer Wetterlagen auftreten können. Eine ausführliche Darstellung der Screening-Ergebnisse im Hauptstraßennetz findet sich in der Umweltatlas-Karte 03.11 „Verkehrsbedingte Luftbelastung“ (SenStadt 2008a). Planungsempfehlungen sind in diesem Zusammenhang Teil immissions- bzw. verkehrsbezogener Fachplanungen, wie sie z.B. im Luftreinhalteplan für Berlin (vgl. SenStadt 2008) oder dem Stadtentwicklungsplan (StEP) Verkehr (vgl. SenStadt 2002ff) beschrieben sind. Aus stadtklimatischer Sicht ist der Verweis auf eine möglichst schadstoffarme Atmosphäre in den Klimafunktionsräumen zur Erhaltung bzw. Förderung von Frischluft von zentraler Bedeutung. Nur so kann ein Erhalt bzw. eine Optimierung der städtischen Belüftung gesichert werden. Luftaustausch Kaltluftleitbahnen und -abflüsse werden in der Planungshinweiskarte in zwei Kategorien untergliedert, wobei die Wertigkeit mit der räumlichen Nähe zu Belastungsbereichen ansteigt. Leitbahnen mit einer sehr hohen Bedeutung begünstigen das Vordringen von Kaltluft in den Innenstadtbereich und zu belasteten Stadtteilzentren. Dazu zählen u.a. die Kolonien am S-Bahnhof Priesterweg, die Kaltluft vom Friedhof an der Bergstraße bzw. vom Insulaner in Richtung Norden führen oder der Volkspark Rehberge, der das Vordringen der auf dem Flughafen Tegel produzierten Kaltluft in Richtung Mitte ermöglicht. Weitere Leitbahnen dieser Kategorie sind nördlich und südlich des S-Bahnrings gruppiert. Ein flächenhafter Kaltluftabfluss mit einer sehr hohen Bedeutung tritt dagegen lediglich im Grunewald auf, an dessen Ostseite hohe Kaltluftreichweiten angenommen werden können. Leitbahnen einer mittleren bis hohen Bedeutung sind vorwiegend im Randbereich Berlins anzutreffen, was auch für den flächenhaften Kaltluftabfluss dieser Kategorie gilt. Für diese bedeutsamen Strukturen bzw. Prozesse ergeben sich die folgenden, gemeinsamen Planungshinweise: Vermeidung baulicher Hindernisse, die einen Kaltluftstau verursachen könnten, Bauhöhe möglichst gering halten, Neubauten längs zur Leitbahn ausrichten Randbebauung möglichst vermeiden und Erhalt des Grün- und Freiflächenanteils. Als großräumige Luftleit- und Ventilationsbahnen treten einige Talabschnitte der großen Fließgewässer Havel und Spree in Erscheinung, deren Funktion über den lokalen Luftaustausch hinaus geht. Sie begünstigen den Luftaustausch in die angrenzende Bebauung auch bei stärkeren, übergeordneten Wetterlagen. Aus fachplanerischer Sicht sollte daher die Uferlage freigehalten oder möglichst offen bebaut werden.

Klimamodell Berlin - Bewertungskarten 2001

Karte 04.11.1 Klimafunktionen Die Klimafunktionskarte bildet den planungsrelevanten Ist-Zustand der Klimasituation ab. Dabei werden bioklimatische Belastungszustände, Ausgleichsleistungen kaltluftproduzierender Flächen sowie räumliche Beziehungen zwischen Ausgleichs- und Wirkungsräumen dargestellt. Da sowohl die Ausgleichsleistungen als auch die Belastungen klassifizierbar sind, lassen sich planerische Prioritäten ermitteln um zu verdeutlichen, welche Siedlungsflächen von Veränderungen in Ausgleichsräumen betroffen sein können. Grün- und Freiflächenbestand Vegetationsbestandene Freiflächen mit nennenswerter Kaltluftproduktion stellen klima- und immissionsökologische Ausgleichsräume dar. Eine hohe langwellige nächtliche Ausstrahlung während austauscharmer Hochdruckwetterlagen führt zu einer starken Abkühlung der bodennahen Luftschicht, wodurch vor allem emittentennahe innerstädtische Parkanlagen als sehr immissionsgefährdet gelten müssen. Die Menge der produzierten Kaltluft hängt ab vom vorherrschenden Vegetationstyp, den Bodeneigenschaften und der damit verbundenen nächtlichen Abkühlungsrate. Insgesamt wurden 701 Grünflächeneinheiten ausgewiesen, deren qualitative Einordnung hinsichtlich des Kaltluftmassenstroms Tabelle 4 zeigt. Die Gesamtfläche der kaltluftproduzierenden Areale beziffert sich auf ca. 43 854 Hektar, was einem Flächenanteil von rund 49 % des gesamten Stadtgebietes entspricht und als sehr hoch angesehen werden kann. Grün- und Freiflächen mit einem hohen Kaltluftmassenstrom sind insbesondere am Stadtrand anzutreffen. Generell erweisen sich die größeren Wald- und Ruderalflächen, Friedhöfe und Kleingartenanlagen als sehr kaltluftproduktiv. Die für die Stadtmitte flächenhaft wichtigsten stadtklimatischen Beiträge gehen vom Großen Tiergarten , dem Flughafen Tempelhof und den Kleingartenkolonien am Priesterweg aus. Diese Flächen sind durch ihre ausgedehnten Kaltlufteinwirkbereiche gekennzeichnet. Zu den bedeutsamen Freiflächen mit Bezug zur Innenstadt zählt auch ein großer Teil des Grunewaldes . Die in Richtung auf die Stadtmitte vorgelagerten, durchgrünten Siedlungstypen sowie auftretende Hangneigungen > 1° unterstützen die Kaltluftströmung erheblich, so dass Kaltluftreichweiten in die Bebauung der Ortsteile Schmargendorf und Wilmersdorf von bis zu 2000 m erzielt werden (vgl. dazu auch die ausführliche Beschreibung innerhalb der Karte 04.10 Klimamodell Berlin). Zusammen mit den Kleingartenanlagen nördlich des Spandauer Damms, am Heckerdamm sowie den Volksparken Jungfernheide und Rehberge ergibt sich ein ca. 10 km langer, die westliche Stadtmitte umrahmender Kaltlufteinwirkbereich. Eine ähnliche Bedeutung haben in der östlichen Stadtmitte die Grünbereiche um den Volkspark Prenzlauer Berg bzw. den Zentralfriedhof Lichtenberg. Mit einer Anzahl von 58 Grünflächeneinheiten und einer Gesamtfläche von ca. 37 820 Hektar stellt sich diese Kategorie als die flächenmäßig größte dar. Ihr Grünflächenanteil beträgt somit ca. 86 % an der Gesamtgrünfläche, was insbesondere auf die ausgedehnten Waldflächen am Stadtrand zurückzuführen ist. Die Ausgleichsleistung von Flächen mit einem mittleren Kaltluftmassenstrom ist ebenfalls als bedeutsam einzuschätzen. In der Innenstadt treten der Schlosspark Charlottenburg, der Volkspark Friedrichshain sowie der Volkspark Humboldthain mit einem ausgeprägten Kaltlufteinwirkbereich hervor. Im Süden des Stadtgebietes weisen verbreitet die durchgrünten Siedlungstypen ohne Anbindung an Park- oder Waldflächen einen mittleren Massenstrom auf. Die Flächensumme der als mittel einzustufenden Freiflächen beläuft sich auf 5 157 Hektar, was in etwa 12% der Gesamtgrünfläche entspricht. Grünflächen, die einen geringen Kaltluftmassenstrom aufweisen, haben mit ca. 738 Hektar einen Anteil von 1,7 % am Grünflächenbestand. Dazu zählen vor allem die kleineren Friedhöfe, Kleingärten und Parkareale mit einer Flächengröße von bis zu 10 ha. Solange diese Areale in eine insgesamt wärmere Umgebungsbebauung eingebettet sind, bilden sie nur selten einen eigenen Einwirkbereich aus. In Nachbarschaft zu kaltluftproduktiveren Grünarealen können sie jedoch deren Wirkungen unterstützen und damit den jeweiligen klimatischen Einwirkbereich vergrößern. Grünflächen mit einem sehr geringen Kaltluftmassenstrom bilden in der Regel auch keinen Einwirkbereich mehr aus. Dabei handelt es sich vor allem um kleinere, innerhalb der Bebauung gelegene Flächen von bis zu 2,5 ha. Innerhalb von Belastungsbereichen können aber auch diese Flächen eine bedeutsame Funktion als klimaökologische Komfortinseln erfüllen, sofern sie ein Mosaik aus unterschiedlichen Mikroklimaten wie beispielsweise beschattete und besonnte Bereiche oder kühlende Wasserflächen aufweisen (Mikroklimavielfalt). Der Anteil dieses Flächentyps am Gesamtbestand beträgt mit 139 Hektar lediglich ca. 0,3 %. Die Kaltluftentstehungsgebiete des Umlandes stehen oftmals in direktem Kontakt zu denen des Stadtgebietes und sind quasi als deren Erweiterung anzusehen. Aufgrund der größeren Distanz zu Siedlungsräumen ist das Strömungsfeld erst zum 06.00 Uhr-Zeitpunkt voll ausgeprägt. Die größten Kaltluftentstehungsgebiete sind im Nordosten Berlins anzutreffen. Der hier im Verhältnis auffallende Anstieg der Geländehöhe begünstigt in diesem Bereich ein weiträumiges Einströmen der Kaltluft in Richtung auf die Stadt. Zahlreiche kleinere Gebiete sind an der südlichen Stadtgrenze gruppiert, während am Westrand lediglich zwei Kaltluftentstehungsgebiete ausgewiesen werden konnten. Der Kaltluftmassenstrom ist verbreitet als hoch einzustufen. Dagegen weist lediglich das kleinste Kaltluftentstehungsgebiet westlich von Frohnau ein mittleres Potenzial auf. Die Relevanz der umlandbürtigen Flächen steigt mit der Nähe zu Siedlungsbereichen und ist somit in den Räumen Spandau, Marzahn sowie am südlichen Stadtrand am größten. Siedlungsräume Wie unter Methode beschrieben, ist die bioklimatische Belastungssituation auf Basis der Parameter Windgeschwindigkeit und positiver Abweichung vom PMV-Mittelwert des Stadtgebietes ermittelt worden. Aus dieser Synthese lässt sich eine räumliche Untergliederung des Siedlungsraumes in bioklimatisch belastete Bereiche einerseits und unbelastete bzw. lediglich gering belastete andererseits durchführen. Letztere sind als Kaltlufteinwirkbereiche durch eine moderate Überwärmung und eine ausreichende Durchlüftung aufgrund der von einer kaltluftproduzierenden Freifläche ausgehenden Strömungen gekennzeichnet. Die Reichweite der Kaltluftströmung in die Bebauung hängt neben der Kaltluftproduktivität von der Hinderniswirkung des angrenzenden Bebauungstyps ab. Abbildung 5 zeigt die Situation im Umfeld des Großen Tiergartens, wobei das konzentrische, nächtliche Ausströmen der Kaltluft als Einwirkbereich deutlich wird. Im Bereich zwischen der John-Foster-Dulles-Allee und der Straße des 17. Juni im nördlichen Großen Tiergarten ist eine Zone reduzierter Strömungsgeschwindigkeiten von weniger als 0,2 m/s zu erkennen. Von hier aus wird die produzierte Kaltluft beschleunigt und dringt, angetrieben vom nutzungsbedingten Temperaturunterschied, in die angrenzende Bebauung ein. Grüne Siedlungsbereiche sind hierbei unbelastet, orange und rot kennzeichnen belastete Baublöcke. Von den Wohlfahrtswirkungen größerer innerstädtischer Freiflächen wie dem Flughafen Tempelhof oder dem Volkspark Friedrichshain profitieren selbst in der Innenstadt weiträumige Siedlungsbereiche. Hierbei dienen vorgelagerte, kleinere Freiflächen oftmals als “grüne Trittsteine” und erleichtern das Vordringen von Kaltluft in die Bebauung. Diesen Gunsträumen stehen Belastungsbereiche mit einer überdurchschnittlichen Wärmebelastung und einem Durchlüftungsmangel gegenüber. Dies betrifft vor allem Gebiete folgender Bezirke: Mitte, Pankow, Friedrichshain-Kreuzberg, Lichtenberg, Schöneberg Aber auch mehr peripher gelegene, verdichtete Stadtteilzentren weisen eine erhöhte potenzielle bioklimatische Belastung auf, so z.B. in den Bezirken bzw. Ortsteilen Spandau, Weißensee, Hohenschönhausen, Marzahn, Ober- und Niederschöneweide, Mariendorf. Darüber hinaus treten in fast allen Ortsteilen vereinzelte Baublöcke mit einer potenziellen Belastung hervor. Dabei weisen Hochhaussiedlungen strukturbedingt über Abstandsflächen eine tendenziell günstigere Durchlüftung auf als im Kartenbild dargestellt. Stellenweise kann aber das Belastungsniveau so ausgeprägt sein, dass es auch durch eine vorhandene Kaltluftströmung nicht ausgeglichen werden kann. Die Darstellung der potenziellen verkehrsbedingten Luftbelastung entlang von Hauptverkehrsstraßen ergänzt das Spektrum auftretender Belastungen. Hierbei handelt es sich um eine modellgestützte Berechnung für das Bezugsjahr 2001, inwiefern in einzelnen Straßenabschnitten die Grenzwerte der 22. BImSchV für NO 2 im Jahresmittel, die bis zum 01.01.2010 einzuhalten sind, möglicherweise oder mit großer Wahrscheinlichkeit überschritten werden. Insbesondere innerstädtische Hauptverkehrsstraßen sind von erhöhten Belastungen betroffen; in der Summe liegen rund 10 % des untersuchten Verkehrsnetzes oberhalb des späteren Grenzwertes. Luftaustausch Strukturen, die den Luftaustausch ermöglichen und Kaltluft heranführen, sind das zentrale Bindeglied zwischen Ausgleichsräumen und bioklimatisch belasteten Wirkungsräumen. Leitbahnen sollten generell eine geringe Oberflächenrauhigkeit aufweisen, wobei gehölzarme Tal- und Auenbereiche, größere Grünflächen und Bahnareale als geeignete Strukturen in Frage kommen. Breite Straßen können aufgrund ihrer Immissionsbelastung nur dem Klimaausgleich, nicht jedoch dem Heranführen unbelasteter Luft dienen. Die Leitbahnen werden in der Klimafunktionskarte hinsichtlich des Prozessgeschehens untergliedert, wobei auch eine kaltluftproduzierende (Teil-) Fläche eine Leitbahnfunktion ausüben kann. Es überwiegen die vorwiegend thermisch induzierten Leitbahntypen im Zusammenhang mit einer rein auf die nutzungsbedingten Temperaturunterschiede zurückzuführenden Ausgleichsströmung. Beispielhaft für solche Strömungen seien als eine der innenstadtnächsten Leitbahnen die Kleingartenanlagen am Priesterweg angeführt, die Kaltluft vom Friedhof an der Bergstraße in Steglitz und vom Insulaner in Richtung Norden transportieren. Des Weiteren leiten die Kleingartenanlagen am Heckerdamm sowie der Volkspark Rehberge einen Teil der auf dem Flughafen Tegel produzierten Kaltluft in Richtung Innenstadt. Eine weitere Anzahl thermisch induzierter Leitbahnen konnte nördlich einer Linie Tegel – Lichtenberg sowie im Süden zwischen Lichterfelde und Bohnsdorf ausgewiesen werden. Im westlichen Stadtgebiet gruppieren sich Leitbahnen um Spandau und führen Kaltluft aus dem nördlichen Grunewald sowie dem Umland heran. Grenzt eine Grünfläche direkt an die Bebauung, kommt es hingegen nicht gesondert zu einer Leitbahnausweisung. Vorwiegend orographisch induzierte Leitbahnen sind auf das östliche Stadtgebiet konzentriert. Dabei handelt es sich um Talbereiche z.B. der Wuhle und dem Mühlenfließ, die aufgrund ihrer Ausrichtung, Breite und Oberflächenbeschaffenheit als Leitbahnen angesprochen werden können. Im westlichen Stadtgebiet kann dahingehend die vom Grunewald ausgehende Tiefenlinie Hundekehlsee – Dianasee – Koenigssee – Halensee eingeordnet werden. Die Niederungen der größeren Fliessgewässer wie Spree und Havel gehen über diese Funktion hinaus und besitzen zudem eine Eigenschaft als übergeordnete Luftleit- und Ventilationsbahnen . Sie begünstigen den Luftaustausch in der angrenzenden Bebauung auch bei stärkeren, übergeordneten Wetterlagen. Ein flächenhafter Kaltluftabfluss ist auf Areale mit Hangneigungen > 1° begrenzt und tritt im Stadtgebiet Berlin aufgrund der vergleichsweise geringen Höhenunterschiede selten auf. Daher ist dieser Prozess an die wenigen Bereiche mit einer nennenswerten Hangneigung wie die des Grunewaldes und der Köpenicker Bürgerheide gekoppelt. Darüber hinaus kann nördlich des Tegeler Sees, in Kaulsdorf sowie im Forst Düppel vereinzelt von einem Kaltluftabfluss ausgegangen werden. Die Kaltluftlieferung ist auf diesen geneigten Waldflächen überdurchschnittlich hoch, da die Ausstrahlung und damit die primäre Abkühlung hauptsächlich aus dem oberen Kronenbereich und nicht aus unmittelbarer Bodennähe erfolgt. Aufgrund der großen, ausstrahlenden Oberfläche des Bestandes fließt die Kaltluft auch im und über den Kronenbereich ab, statt erst in den Stammraum einzusinken (Groß 1989). Karte 04.11.2 Planungshinweise Stadtklima Die Planungshinweiskarte Stadtklima stellt eine integrierende Bewertung der in der Klimafunktionskarte dargestellten Sachverhalte im Hinblick auf planungsrelevante Belange dar. Aus ihr lassen sich Schutz- und Entwicklungsmaßnahmen zur Verbesserung von Klima und – über die Effekte der Verdünnung und des Abtransportes – auch der Luft ableiten. Dem Leitgedanken dieser Bemühungen entsprechen die Ziele zur Sicherung, Entwicklung und Wiederherstellung klima- und immissionsökologisch wichtiger Oberflächenstrukturen (Mosimann et al. 1999). Die zugeordneten Planungshinweise geben Auskunft über die Empfindlichkeit gegenüber Nutzungsänderungen, aus denen sich klimatisch begründete Anforderungen und Maßnahmen im Rahmen der räumlichen Planung ableiten lassen. In Folgendem wird auf die planerische Einordnung der klimaökologisch relevanten Elemente in Berlin eingegangen. Grün- und Freiflächenbestand Innerstädtische und siedlungsnahe Grünflächen haben eine wesentliche Wirkung auf das Stadtklima und beeinflussen die direkte Umgebung in mikroklimatischer Sicht positiv. Aus größeren, zusammenhängenden Grünarealen ergibt sich somit das klimatische Regenerationspotenzial. Der produzierte Kaltluftmassenstrom als qualifizierender Parameter tritt aber an dieser Stelle in den Hintergrund. Für die planerische Einordnung ist vielmehr die Lage im Raum entscheidend und damit die Frage, welche bioklimatische Belastung eine zugeordnete Bebauung aufweist. Denn letztendlich kann auch eine Grünfläche mit geringer Kaltluftproduktion eine signifikante Wohlfahrtswirkung in stark überbauten Bereichen erbringen. Eine sehr hohe stadtklimatische Bedeutung erlangen daher Grün- und Freiflächen mit Einfluss auf bioklimatisch belastete Siedlungsräume. Dazu zählen vor allem die großen, innenstadtnahen Grünflächen wie der Große Tiergarten, die unbebauten Bereiche des Flughafens Tempelhof oder der Volkspark Friedrichshain. Eine sehr hohe Bedeutung kann darüber hinaus auch den kleineren Park-, Ruderal- und Brachflächen oder gering versiegelten Sportplätzen zukommen, sofern sie Entlastungswirkungen für benachbarte Bebauung erzeugen können. Daraus resultiert für diese Flächen die höchste Empfindlichkeit gegenüber einer Nutzungsintensivierung mit den folgenden Planungsempfehlungen: Vermeidung von Austauschbarrieren gegenüber bebauten Randbereichen, Reduzierung von Emissionen und Vernetzung mit Freiflächen. Dies bedeutet, dass bauliche und zur Versiegelung beitragende Nutzungen dieser Flächen zu weiteren, bedenklichen klimatischen Beeinträchtigungen führen können. Neben den angesprochenen und weiteren Einzelflächen dieser Klasse sind auch größere, randständige Areale wie die Freiflächen bei Blankenfelde oder die Wuhlheide dieser Kategorie zuzuordnen. Das größte zusammenhängende Gebiet in diesem Zusammenhang erstreckt sich vom Grunewald über die grünbestimmten Siedlungen von Lichtenrade bis nach Rudow. Grün- und Freiflächen, die einen Bezug zu Siedlungsräumen mit einem geringen Belastungsniveau oder sogar günstigem Kleinklima aufweisen, besitzen eine hohe bis mittlere stadtklimatische Bedeutung . Sie sind vorwiegend innenstadtfern lokalisiert und haben Bezug zu den weniger bioklimatisch belasteten Siedlungsräumen außerhalb des S-Bahnrings. Dazu zählen die folgenden Bereiche: Grünflächen bzw. durchgrünte Siedlungen zwischen Bucher Forst und Malchow, Krummendammer- und Köpenicker Bürgerheide, Grunewald nordwestlich der Avus sowie das Flughafenareal Tegel und Forst Spandau. Für diese Flächen ergibt sich eine hohe Empfindlichkeit gegenüber einer Nutzungsintensivierung, bei der insbesondere der Luftaustausch mit der Umgebung berücksichtigt werden sollte. Als dritte Kategorie werden Grün- und Freiflächen mit einer geringen stadtklimatischen Bedeutung ausgewiesen. Dabei handelt es sich um Flächen, die entweder einen geringen Einfluss auf – belastete – Siedlungsbereiche ausüben oder eine unbedeutende Kaltluftproduktion aufweisen. Letztere besitzen oft eine geringe Flächengröße und sind insbesondere im Innenstadtbereich anzutreffen. Diesen Flächen kann dann durchaus noch eine Rolle als klimaökologische Komfortinsel zukommen, sofern sie eine Mikroklimavielfalt aufweisen (z.B. Gewässer, beschattete und besonnte Bereiche). Zu den großflächigen Arealen mit einer geringen Bedeutung zählen die Gatower Heide sowie die durchgrünten Siedlungen bei Frohnau und Heiligensee. Dort wären bauliche Eingriffe, die den lokalen Luftaustausch nicht wesentlich beeinträchtigen, nur mit geringen klimatischen Veränderungen verbunden. Siedlungsräume Die im Kaltlufteinwirkbereich einer Grünfläche befindlichen Siedlungsräume sind in der Regel ausreichend durchlüftet und weisen eine lediglich geringe bis keine bioklimatische Belastung auf (vgl. Karte 04.11.1 Klimafunktionen). Um diesen günstigen Zustand zu erhalten, ergibt sich eine hohe Empfindlichkeit gegenüber einer Nutzungsintensivierung. Aus planerischer Sicht gilt daher vor allem die Vermeidung von Austauschbarrieren und weiterer Verdichtung. Bei klimatisch günstigen Siedlungsräumen handelt es sich um locker bebaute und durchgrünte Siedlungen wie z.B. Villenbebauung mit einem geringen Versiegelungsgrad, hohem Vegetationsanteil und relativ hoher nächtlicher Abkühlungsrate. Diese Areale sind zu einem gewissen Maße selbst Kaltluftproduzenten und unterstützen die Kaltluftströmung benachbarter Freiflächen. Durchgrünte Siedlungen sind vor allem außerhalb des S-Bahn-Rings anzutreffen, aber auch in Innenstadtnähe (z.B. die Gartenstadt Tempelhof westlich des Flughafens). Diese Gebiete führen weder zu einer intensiven bioklimatischen Belastung noch zu Beeinträchtigungen des Luftaustausches. Sie weisen im Allgemeinen eine geringe Empfindlichkeit gegenüber Nutzungsintensivierungen auf, sofern die Bauhöhen gering gehalten und die Baukörperstellung beachtet wird. In direkter Nachbarschaft zu Belastungsbereichen ist aufgrund der Klimarelevanz jedoch von einer hohen Empfindlichkeit auszugehen. Zur vergleichsweise gering belasteten Wohnbebauung zählen auch nicht durchlüftete Siedlungsräume mit geringer bioklimatischer Belastung . Ausschlaggebend für diese Einordnung ist weniger der nicht vorhandene Kaltlufteinwirkbereich, sondern vielmehr die geringe potenzielle Wärmebelastung. Daraus ergibt sich eine hohe Empfindlichkeit hinsichtlich einer Nutzungsintensivierung und die Vermeidung weiterer Verdichtung. Belastungsbereiche dagegen weisen einen Durchlüftungsmangel und eine überdurchschnittliche Wärmebelastung auf. Unterschieden werden Siedlungsräume mit geringer, in Einzelfällen mäßiger sowie mäßiger, in Einzelfällen hoher bioklimatischer Belastung. Unter Berücksichtigung des Belastungsniveaus ergibt sich eine hohe bzw. sehr hohe Empfindlichkeit gegenüber einer Nutzungsintensivierung. Diese Gebiete sind unter stadtklimatischen Gesichtspunkten sanierungsbedürftig, woraus sich die folgenden Planungshinweise ergeben: Keine weitere Verdichtung, Verbesserung der Durchlüftung und Erhöhung des Vegetationsanteils, Erhalt aller Freiflächen und Entsiegelung und ggf. Begrünung der Blockinnenhöfe. Neben dem innerstädtischen Raum sind auch stärker überbaute Bezirkszentren wie z.B. Spandau, Weißensee oder Hohenschönhausen betroffen. Eine lokale geringe, in Einzelfällen mäßige Belastung kann darüber hinaus im gesamten Stadtgebiet auftreten und ist nicht auf die Verdichtungsbereiche beschränkt. Vereinzelt kommt es zum Auftreten einer bioklimatischen Belastung trotz vorhandenem Kaltlufteinwirkbereich. In einem solchen Fall ist die potentielle Belastungssituation so hoch, dass selbst eine Kaltluftluftströmung keinen signifikanten Ausgleich herstellen kann. Die Situation im randstädtischen Bereich von Tempelhof zeigt Abbildung 6. Sehr deutlich treten die bioklimatisch belasteten Gewerbegebiete entlang der S-Bahntrasse hervor, insbesondere im Ortsteil Mariendorf. Kaltluftleitbahnen, die in diesem Beispiel Kaltluft aus dem Umland heranführen, sind durch die Pfeilsignatur gekennzeichnet. Als Leitbahnen dienen die durchgrünten Siedlungstypen sowie der Freizeitpark Marienfelde. Aufgrund der Zuordnung zu den genannten Belastungsbereichen kommt den beteiligten Grünflächen eine sehr hohe stadtklimatische Bedeutung zu, was gleichermaßen für deren Leitbahnfunktion gilt. Die Darstellung der potenziellen verkehrsbedingten Luftbelastung entlang von Hauptverkehrsstraßen ergänzt das Spektrum auftretender Belastungen. Hierbei handelt es sich um eine modellgestützte Berechnung für das Bezugsjahr 2001, inwiefern in einzelnen Straßenabschnitten die Grenzwerte der 22. BImSchV für NO 2 im Jahresmittel, die bis zum 01.01.2010 einzuhalten sind, möglicherweise oder mit großer Wahrscheinlichkeit überschritten werden. Insbesondere innerstädtische Hauptverkehrsstraßen sind von erhöhten Belastungen betroffen; in der Summe liegen rund 10 % des untersuchten Verkehrsnetzes oberhalb des späteren Grenzwertes. Luftaustausch Kaltluftleitbahnen und -abflüsse werden in der Planungshinweiskarte in zwei Kategorien untergliedert, wobei die Wertigkeit mit der räumlichen Nähe zu Belastungsbereichen ansteigt. Leitbahnen mit einer sehr hohen Bedeutung begünstigen das Vordringen von Kaltluft in den Innenstadtbereich und zu belasteten Stadtteilzentren. Dazu zählen u.a. die Kolonien am S-Bahnhof Priesterweg, die Kaltluft vom Friedhof an der Bergstraße bzw. vom Insulaner in Richtung Norden führen oder der Volkspark Rehberge, der das Vordringen der auf dem Flughafen Tegel produzierten Kaltluft in Richtung Mitte ermöglicht. Weitere Leitbahnen dieser Kategorie sind nördlich und südlich des S-Bahnrings gruppiert. Ein flächenhafter Kaltluftabfluss mit einer sehr hohen Bedeutung tritt dagegen lediglich im Grunewald auf, an dessen Ostseite hohe Kaltluftreichweiten angenommen werden können. Leitbahnen einer mittleren bis hohen Bedeutung sind vorwiegend im Randbereich Berlins anzutreffen, was auch für den flächenhaften Kaltluftabfluss dieser Kategorie gilt. Für diese bedeutsamen Strukturen bzw. Prozesse ergeben sich die folgenden, gemeinsamen Planungshinweise: Vermeidung baulicher Hindernisse, die einen Kaltluftstau verursachen könnten, Bauhöhe möglichst gering halten, Neubauten längs zur Leitbahn ausrichten Randbebauung möglichst vermeiden und Erhalt des Grün- und Freiflächenanteils. Als großräumige Luftleit- und Ventilationsbahnen treten einige Talabschnitte der großen Fließgewässer Havel und Spree in Erscheinung, deren Funktion über den lokalen Luftaustausch hinaus geht. Sie begünstigen den Luftaustausch in die angrenzende Bebauung auch bei stärkeren, übergeordneten Wetterlagen. Aus planerischer Sicht sollte daher die Uferlage freigehalten oder möglichst offen bebaut werden.

1 2 3 4 547 48 49