API src

Found 555 results.

Nachweis subletaler Veraenderungen bei Aalen und anderen Fischen unter dem Einfluss von organischen Chemikalien

Untersuchungen zu subletalen Wirkungen niederer Konzentrationen von Schadstoffen, die 1986 nach dem Lagerbrand in Basel das Fischsterben im Rhein verursachten. Ziel: (1) Erfassung der Reaktion von Fischen auf sehr niedrige, umweltrelevante Schadstoffkonzentrationen, (2) biologische Erklaerung des Fischsterbens 1986 (3) Besonderheiten des Aals in der Reaktion auf Schadstoffe, und (4) Korrelation zwischen strukturellen und funktionellen schadstoffinduzierten Veraenderungen. Erfassung struktureller und funktioneller Parameter in Leber, Niere, Kiemen , Darm und Milz von Aal, Regenbogenforelle, Goldorfe und Zebrabaerbling. Untersuchte Pestizide: Atrazin, Endosulfan, Lindan, Disulfoton und Dinitro-o-kresol in Einzel- und Kombinationsexperimenten.

Wirkung von Umweltschadstoffen auf Fischgewebe

In vivo-Belastung von Fischen (Regenbogenforelle, Zebrabaerbling, Goldorfe, Aal, Medaka) mit organischen Schadstoffen. Ziel: Entwicklung eines Biomonitoring-Modells fuer den Nachweis subletaler Veraenderungen durch umweltrelevante Konzentration von organischen Schadstoffen auf der Basis cytologischer und biochemischer Untersuchungen. Bisher untersuchte Schadstoffe: 4-Nitrophenol, 4-Chloranilin, Atrazin Endosulfan, Lindan, Dinitro-o-kresol, Disulfoton, Linuron, Tributylzinnoxid, Triphenylzinnacetat, Ochratoxin, Malachitgruen, Nonylphenol, Estradiol, Estradiolsulfat.

Errichtung einer Anlage zur Schwefelverbrennung für die CO2-freie Herstellung von Prozessdampf und die optimale Versorgung mit Rohstoffen

Die Chemiewerk Bad Köstritz GmbH ist ein mittelständischer Hersteller von anorganischen Spezialchemikalien. Für die chemischen Herstellungsprozesse im Werk wird Dampf benötigt, für dessen Erzeugung Erdgas verbrannt wird. Zur Herstellung von Thiosulfaten und Sulfiten kommen flüssiges Schwefeldioxid und Schwefel zum Einsatz. Um Kieselsole und -gele herzustellen, wird konzentrierte Schwefelsäure verwendet. Bisher werden die benötigten Rohstoffe von externen Lieferanten bezogen und am Standort gelagert. Gegenstand des Vorhabens ist die Umsetzung eines innovativen Verfahrenskonzepts, mit welchem auf Basis von flüssigem Schwefel die weiteren benötigten Rohstoffe nach Bedarf am Standort hergestellt werden können. Im Zentrum steht die Errichtung einer Anlage zur Verbrennung von flüssigem Schwefel, der als Abprodukt bei Entschwefelungsprozessen in Raffinerien oder Kraftwerken anfällt. Das bei der Verbrennung entstehende Schwefeldioxid (SO 2 ) wird mit einem Abhitzekessel abgekühlt. Ein Teil davon wird im Anschluss mit Hilfe einer Adsorptionskälteanlage verflüssigt. Der andere Teil des SO 2 wird in einem Konverter mittels eines Katalysators zu Schwefeltrioxid (SO 3 ) oxidiert und anschließend in einem Adsorber in konzentrierte Schwefelsäure umgewandelt, das Verhältnis SO 2 zu H 2 SO 4 (Schwefelsäure) kann dem Bedarf der Produktion flexibel angepasst werden. Mit der bei den Prozessen entstehenden Wärme wird Dampf erzeugt, welcher für den Antrieb des Gebläses für die Verbrennungsluft, zum Betrieb der Adsorptionskälteanlage und mittels einer Turbine zur Stromerzeugung genutzt wird. Der restliche Dampf wird in das vorhandene Dampfnetz des Werks eingespeist. Der erzeugte Strom wird zum Betrieb der Anlage und darüber hinaus für den Eigenbedarf am Standort verwendet. Das innovative Verfahrenskonzept geht deutlich über den Stand der Technik in der Chemiebranche hinaus und hat Modellcharakter. Es zeigt auf, wie an einem Standort aus einem einzigen Rohstoff verschiedene Produkte wirtschaftlich, bedarfsgerecht und gleichzeitig umweltfreundlich hergestellt werden können. Die Reduzierung der Anzahl der Rohstofftransporte trägt zur Umweltentlastung bei. Das Verfahren erzeugt keine Abfälle und Abwässer. Mit der konsequenten Abwärmenutzung zur Dampferzeugung können ca. 50 Prozent des Grundbedarfs an Dampf des Werks gedeckt und dadurch etwa die Hälfte des bisher zur Dampferzeugung genutzten Erdgases eingespart werden. Gegenüber dem gegenwärtigen Produktionsverfahren können insgesamt ca. 3.400 Tonnen CO 2 -Emissionen jährlich vermieden werden, was einer Minderung um etwa 33 Prozent entspricht. Branche: Chemische und pharmazeutische Erzeugnisse, Gummi- und Kunststoffwaren Umweltbereich: Ressourcen Fördernehmer: Chemiewerk Bad Köstritz GmbH Bundesland: Thüringen Laufzeit: seit 2019 Status: Laufend

Abfallerzeuger, Abfallmengen (gefährliche Abfälle):Deutschland, Jahre, Abfallarten (EAV 2- und 6-Steller)

Errichtung einer Anlage zur Schwefelverbrennung für die CO2-freie Herstellung von Prozessdampf und die optimale Versorgung mit Rohstoffen

Die Chemiewerk Bad Köstritz GmbH ist ein mittelständischer Hersteller von anorganischen Spezialchemikalien. Für die chemischen Herstellungsprozesse im Werk wird Dampf benötigt, für dessen Erzeugung Erdgas verbrannt wird. Zur Herstellung von Thiosulfaten und Sulfiten kommen flüssiges Schwefeldioxid und Schwefel zum Einsatz. Um Kieselsole und -gele herzustellen, wird konzentrierte Schwefelsäure verwendet. Bisher werden die benötigten Rohstoffe von externen Lieferanten bezogen und am Standort gelagert. Gegenstand des Vorhabens ist die Umsetzung eines innovativen Verfahrenskonzepts, mit welchem auf Basis von flüssigem Schwefel die weiteren benötigten Rohstoffe nach Bedarf am Standort hergestellt werden können. Im Zentrum steht die Errichtung einer Anlage zur Verbrennung von flüssigem Schwefel, der als Abprodukt bei Entschwefelungsprozessen in Raffinerien oder Kraftwerken anfällt. Das bei der Verbrennung entstehende Schwefeldioxid (SO2) wird mit einem Abhitzekessel abgekühlt. Ein Teil davon wird im Anschluss mit Hilfe einer Adsorptionskälteanlage verflüssigt. Der andere Teil des SO2 wird in einem Konverter mittels eines Katalysators zu Schwefeltrioxid (SO3) oxidiert und anschließend in einem Adsorber in konzentrierte Schwefelsäure umgewandelt, das Verhältnis SO2 zu H2SO4 (Schwefelsäure) kann dem Bedarf der Produktion flexibel angepasst werden. Mit der bei den Prozessen entstehenden Wärme wird Dampf erzeugt, welcher für den Antrieb des Gebläses für die Verbrennungsluft, zum Betrieb der Adsorptionskälteanlage und mittels einer Turbine zur Stromerzeugung genutzt wird. Der restliche Dampf wird in das vorhandene Dampfnetz des Werks eingespeist. Der erzeugte Strom wird zum Betrieb der Anlage und darüber hinaus für den Eigenbedarf am Standort verwendet. Das innovative Verfahrenskonzept geht deutlich über den Stand der Technik in der Chemiebranche hinaus und hat Modellcharakter. Es zeigt auf, wie an einem Standort aus einem einzigen Rohstoff verschiedene Produkte wirtschaftlich, bedarfsgerecht und gleichzeitig umweltfreundlich hergestellt werden können. Die Reduzierung der Anzahl der Rohstofftransporte trägt zur Umweltentlastung bei. Das Verfahren erzeugt keine Abfälle und Abwässer. Mit der konsequenten Abwärmenutzung zur Dampferzeugung können ca. 50 Prozent des Grundbedarfs an Dampf des Werks gedeckt und dadurch etwa die Hälfte des bisher zur Dampferzeugung genutzten Erdgases eingespart werden. Gegenüber dem gegenwärtigen Produktionsverfahren können insgesamt ca. 3.400 Tonnen CO2-Emissionen jährlich vermieden werden, was einer Minderung um etwa 33 Prozent entspricht.

Sonderabfallkleinmengen (Problem- oder gefährliche Abfälle)

Als Sonderabfallkleinmengen (Problem- oder gefährliche Abfälle) werden z.B. ätzende, giftige, explosive und leicht entflammbare Produkte wie etwa Reste von Lacken, Frostschutzmitteln oder Fleckentfernern, Fotochemikalien und Altbatterien bezeichnet. Derartige Abfälle haben zwar nur einen relativ geringen Anteil am Hausmüll (bis zu 1 %), sie sind jedoch maßgeblich für Umwelt- und Gesundheitsgefährdungen bei dessen Entsorgung (Deponierung, Verbrennung) verantwortlich. Sonderabfallkleinmengen fallen in Haushalten sowie beim Handel, Handwerk und Gewerbe an. Diese Sonderabfallkleinmengen sind von anderen Abfällen getrennt zu halten und können bei den Berliner Stadtreinigungsbetrieben (BSR) auf ihren Schadstoffsammelhöfen abgegeben werden. Schadstoffsammelstellen Um mehr über die Entsorgung zu erfahren, wenden sie sich bitte an das Servicetelefon der Berliner Stadtreinigungsbetriebe (BSR) Tel.: (030) 7592-4900 Sprechzeiten: Mo. – Do. 08:00-16:00 Uhr und Fr. 08:00-15:00 Uhr Problemabfälle gefährliche Abfälle in kleiner Menge privater Sondermüll Haushalts-Sonderabfall Schadstoffmüll umweltgefährdende Abfälle Abflußreiniger Altöl Autopolitur Backofenreiniger Batterien Beizen Benzin Bremsflüssigkeit Energiesparlampen Entkalker Farbreste Fensterreiniger Pulver-Feuerlöscher Fleckenentferner Fotoentwickler und Fixierbäder Frostschutzmittel Holzbehandlungsmittel Imprägniermittel Klebstoffe Kosmetika Lackreste Laugen Leuchtstofflampen Lösungsmittel Medikamente Nagellackentferner Ölfilter Pflanzenschutzmittel Putzmittel Rostschutzmittel Säuren Schädlingsbekämpfungsmittel Spraydosen Terpentin Thermometer Unkrautbekämpfungsmittel Verdünner Wachsreiniger WC-Reiniger

Auf Vorschlag der EU wird Endosulfan als POP in das Stockholmer Übereinkommen aufgenommen

Für den chemischen Wirkstoff Endosulfan wird ein weltweites Herstellungs- und Anwendungsverbot in Pflanzenschutzmitteln eingeführt. Das beschloss die fünfte Vertragsstaatenkonferenz zum Stockholmer Übereinkommen über persistente organische Schadstoffe, kurz POPs, die vom 25. bis 29. April 2011 in Genf stattfand. Das Verbot tritt mit mehrjährigen Übergangsfristen in Kraft. Bisher wird Endosulfan für die Schädlingsbekämpfung verwendet, insbesondere beim Anbau von Tee, Kaffee, Soja und Baumwolle. Endosulfan ist die Nummer 22 auf der Liste der Schadstoffe der Stockholmer Konvention.

MV Princess of Stars hatte Pestizide an Bord

Die während des Taifuns Fengshen am 21. Juni 2008 vor den Philippinen gesunkene Fähre Princess of the Stars hatte neben anderen Chemikalien zehn Tonnen von dem hochgiftigen Pestizid Endosulfan an Bord.

Fließgewässermessstelle am Gewässer Mittellandkanal (410505)

Dieser Datensatz beschreibt die Fließgewässermessstelle am Gewässer Mittellandkanal (410505) in Sachsen-Anhalt. Die Probenart ist: Wasser EP. Es ist Teil des Messnetzes: Überwachung zu Ermittlungszwecken. Der Fließgewässertyp nach LAWA ist: K.Die betrachteten Stoffgruppen umfassen: Ionen, Metalle, Metalle-gelöst, organische Belastung, PAK, PBSM-GC, PBSM-LC, SHKW, Summenparameter, VOC, vor-Ort-Parameter

Schadstoffe, Abfälle, Industriebranchen

Nach der europäischen PRTR-Verordnung ( E-PRTR-Verordnung ) müssen Betriebe über zu 91 Schadstoffe und Schadstoffgruppen berichten. Dabei wird unterschieden zwischen Freisetzungen in Luft, Gewässer und Boden, wobei unterschiedliche Schwellenwerte gelten. Diese Schwellenwerte geben an, ab welcher Menge an freigesetzten Schadstoffen ein Betrieb tatsächlich seine Daten an die zuständigen Behörden berichten muss, ab wann er also berichtspflichtig wird – sie haben nichts mit einer potentiellen Gefährlichkeit des Stoffes zu tun. Dies soll dazu dienen, kleine Betriebe nicht unnötig zu belasten. Die Schwellenwerte sollen so gesetzt sein, dass ca. 90% der Freisetzungen damit erfasst werden. Verordnung (EG) Nr. 166/2006 des Europäischen Parlaments und des Rates vom 18. Januar 2006 – Anhang II Nr. CAS-Nummer Schadstoff (1) Schwellenwerte für die Freisetzung in die Luft (Spalte 1a) kg/Jahr in Gewässer (Spalte 1b) kg/Jahr in den Boden (Spalte 1c) kg/Jahr 1 74-82-8 Methan (CH 4 ) 100.000 — (2) — 2 630-08-0 Kohlenmonoxid (CO) 500.000 — — 3 124-38-9 Kohlendioxid (CO 2 ) 100 Mio. — — 4 Teilfluorierte Kohlenwasserstoffe (HFKWs) (3) 100 — — 5 10024-97-2 Distickoxid (N 2 O) 10.000 — — 6 7664-41-7 Ammoniak (NH 3 ) 10.000 — — 7 Flüchtige organische Verbindungen ohne Methan (NMVOC) 100.000 — — 8 Stickoxide (NO x /NO 2 ) 100.000 — — 9 Perfluorierte Kohlenwasserstoffe (PFKWs) (4) 100 — — 10 2551-62-4 Schwefelhexafluorid (SF 6 ) 50 — — 11 Schwefeloxide (SO x /SO 2 ) 150.000 — — 12 Gesamtstickstoff — 50.000 50.000 13 Gesamtphosphor — 5.000 5.000 14 Teilhalogenierte Fluorchlorkohlenwasserstoffe (HFCKW) (5) 1 — — 15 Fluorchlorkohlenwasserstoffe (FCKWs) (6) 1 — — 16 Halone (7) 1 — — 17 Arsen und Verbindungen (als As) (8) 20 5 5 18 Cadmium und Verbindungen (als Cd) (8) 10 5 5 19 Chrom und Verbindungen (als Cr) (8) 100 50 50 20 Kupfer und Verbindungen (als Cu) (8) 100 50 50 21 Quecksilber und Verbindungen (als Hg) (8) 10 1 1 22 Nickel und Verbindungen (als Ni) (8) 50 20 20 23 Blei und Verbindungen (als Pb) (8) 200 20 20 24 Zink und Verbindungen (als Zn) (8) 200 100 100 25 15972-60-8 Alachlor — 1 1 26 309-00-2 Aldrin 1 1 1 27 1912-24-9 Atrazin — 1 1 28 57-74-9 Chlordan 1 1 1 29 143-50-0 Chlordecon 1 1 1 30 470-90-6 Chlorfenvinphos — 1 1 31 85535-84-8 Chloralkane, C 10 – C 13 — 1 1 32 2921-88-2 Chlorpyrifos — 1 1 33 50-29-3 DDT 1 1 1 34 107-06-2 1,2-Dichlorethan (EDC) 1.000 10 10 35 75-09-2 Dichlormethan (DCM) 1.000 10 10 36 60-57-1 Dieldrin 1 1 1 37 330-54-1 Diuron — 1 1 38 115-29-7 Endosulfan — 1 1 39 72-20-8 Endrin 1 1 1 40 Halogenierte organische Verbindungen (als AOX) (9) — 1.000 1.000 41 76-44-8 Heptachlor 1 1 1 42 118-74-1 Hexachlorbenzol (HCB) 10 1 1 43 87-68-3 Hexachlorbutadien (HCBD) — 1 1 44 608-73-1 1,2,3,4,5,6- Hexachlorcyclohexan (HCH) 10 1 1 45 58-89-9 Lindan 1 1 1 46 2385-85-5 Mirex 1 1 1 47 PCDD + PCDF (Dioxine + Furane) (als Teq) (10) 0,0001 0,0001 0,0001 48 608-93-5 Pentachlorbenzol 1 1 1 49 87-86-5 Pentachlorphenol (PCP) 10 1 1 50 1336-36-3 Polychlorierte Biphenyle (PCBs) 0,1 0,1 0,1 51 122-34-9 Simazin — 1 1 52 127-18-4 Tetrachlorethen (PER) 2.000 10 — 53 56- 23-5 Tetrachlormethan (TCM) 100 1 — 54 12002-48-1 Trichlorbenzole (TCB) (alle Isomere) 10 1 — 55 71-55-6 1,1,1-Trichlorethan 100 — — 56 79-34-5 1,1,2,2- Tetrachlorethan 50 — — 57 79-01-6 Trichlorethylen 2.000 10 — 58 67-66-3 Trichlormethan 500 10 — 59 8001- 35-2 Toxaphen 1 1 1 60 75-01-4 Vinylchlorid 1.000 10 10 61 120 -12-7 Anthracen 50 1 1 62 71-43-2 Benzol 1.000 200 (als BTEX) (11) 200 (als BTEX) (11) 63 Bromierte Diphenylether (PBDE) (12) — 1 1 64 Nonylphenol und Nonylphenolethoxylate (NP/NPEs) — 1 1 65 100-41-4 Ethylbenzol — 200 (als BTEX) (11) 200 (als BTEX) (11) 66 75-21-8 Ethylenoxid 1.000 10 10 67 34123-59-6 Isoproturon — 1 1 68 91-20-3 Naphthalin 100 10 10 69 Zinnorganische Verbindungen (als Gesamt-Sn) — 50 50 70 117-81-7 Di-(2-ethylhexyl)phtalat (DEHP) 10 1 1 71 108-95-2 Phenole (als Gesamt-C) (13) — 20 20 72 polyzyklische aromatische Kohlenwasserstoffe (PAK) (14) 50 5 5 73 108-88-3 Toluol — 200 (als BTEX) (11) 200 (als BTEX) (11) 74 Tributylzinn und Verbindungen (15) — 1 1 75 Triphenylzinn und Verbindungen (16) — 1 1 76 Gesamter organischer Kohlenstoff (TOC) (als Gesamt-C oder CSB/3) — 50.000 — 77 1582-09-8 Trifluralin — 1 1 78 1330-20-7 Xylole (17) — 200 (als BTEX) (11) 200 (als BTEX) (11) 79 Chloride (als Gesamt-Cl) — 2 Mio. 2 Mio. 80 Chlor und anorganische Verbindungen (als HCl) 10.000 — — 81 1332-21-4 Asbest 1 1 1 82 Cyanide (als Gesamt-CN) — 50 50 83 Fluoride (als Gesamt-F) — 2.000 2.000 84 Fluor und anorganische Verbindungen (als HF) 5.000 — — 85 74-90-8 Cyanwasserstoff (HCN) 200 — — 86 Feinstaub (PM 10 ) 50.000 — — 87 1806-26-4 Octylphenole und Octylphenolethoxylate — 1 — 88 206-44-0 Fluoranthen — 1 — 89 465-73-6 Isodrin — 1 — 90 36335-1-8 Hexabrombiphenyl 0,1 0,1 0,1 91 191-24-2 Benzo (g,h,i)perylen — 1 — (1) Sofern nicht anders festgelegt, wird jeder in Anhang II aufgeführte Schadstoff als Gesamtmenge gemeldet oder, falls der Schadstoff aus einer Stoffgruppe besteht, als Gesamtmenge dieser Gruppe. (2) Ein (—) bedeutet, dass der fragliche Parameter und das betreffende Medium keine Berichtspflicht zur Folge haben. (3) Gesamtmenge der Teilfluorierten Kohlenwasserstoffe: Summe von HFKW 23, HFKW 32, HFKW 41, HFKW 4310mee, HFKW 125, HFKW 134, HFKW 134a, HFKW 152a, HFKW 143, HFKW 143a, HFKW 227ea, HFKW 236fa, HFKW 245ca und HFKW 365mfc. (4) Gesamtmenge der Perfluorierten Kohlenwassestoffe: Summe von CF 4 , C 2 F 6 , C 3 F 8 , C 4 F 10 , c- C 4 F 8 , C 5 F 12 und C 6 F 14 . (5) Gesamtmenge der Stoffe, die in der Gruppe VIII des Anhangs I der Verordnung (EG) Nr. 2037/2000 des Europäischen Parlaments und des Rates vom 29. Juni 2000 über Stoffe, die zum Abbau der Ozonschicht führen (ABl. L 244 vom 29.9.2000, S. 1) aufgelistet sind, einschließlich ihrer Isomere. Geändert durch die Verordnung (EG) Nr. 1804/2003 (ABl. L 265 vom 16.10.2003, S. 1). (6) Gesamtmenge der Stoffe, die in den Gruppen I und II des Anhangs I der Verordnung (EG) Nr. 2037/2000 aufgelistet sind, einschließlich ihrer Isomere. (7) Gesamtmenge der Stoffe, die in den Gruppen III und VI des Anhangs I der Verordnung (EG) Nr. 2037/2000 aufgelistet sind, einschließlich ihrer Isomere. (8) Sämtliche Metalle werden als Gesamtmenge des Elements in allen chemischen Formen, die in der Freisetzung enthalten sind, gemeldet. (9) Halogenierte organische Verbindungen, die von Aktivkohle adsorbiert werden können, ausgedrückt als Chlorid. (10) Ausgedrückt als I-TEQ. (11) Einzelne Schadstoffe sind mitzuteilen, wenn der Schwellenwert für BTEX (d. h. der Summenparameter von Benzol, Toluol, Ethylbenzol und Xylol) überschritten wird. (12) Gesamtmenge der folgenden bromierten Diphenylether: Penta-BDE, Octa-BDE und Deca-BDE. (13) Gesamtmenge der Phenole und substituierten einfachen Phenole, ausgedrückt als Gesamtkohlenstoff. (14) Polyzyklische aromatische Kohlenwasserstoffe (PAK) sind für die Berichterstattung über Freisetzungen in die Luft als Benzo (a)pyren (50-32-8), Benzo(b)fluoranthen (205-99-2), Benzo(k)fluoranthen (207-08-9), Indeno(1,2,3-cd)pyren (193-39-5) zu messen (hergeleitet aus der Verordnung (EG) Nr. 850/2004 des Europäischen Parlaments und des Rates vom 29. April 2004 über persistente organische Schadstoffe (ABl. L 229 vom 29.6.2004, S. 5)). (15) Gesamtmenge der Tributylzinn-Verbindungen, ausgedrückt als Tributylzinn-Menge. (16) Gesamtmenge der Triphenylzinn-Verbindungen, ausgedrückt als Triphenylzinn-Menge. (17) Gesamtmenge der Xylene (Ortho-Xylene, Meta-Xylene, Para-Xylene).

1 2 3 4 554 55 56