API src

Found 33 results.

Erneuerbare Energien: Ein 2030 Szenario für die EU

Basierend auf den Ergebnissen des 2011 veröffentlichten Energy Reports hat Ecofys für den WWF mögliche EU-2030-Ziele für Energieeffizienz und erneuerbare Energien entwickelt. Die Ergebnisse differenzieren zwischen den verschiedenen Nachfrage-Sektoren Gebäude, Industrie und Transport. Die Übertragung der Berechnungen des Energy Reports auf die EU-Ebene ergibt, dass die Primärenergienachfrage im Jahr 2030 um ca. 40Prozent gegenüber der Baseline-Entwicklung reduziert werden kann. Erneuerbare Energien können ca. 40Prozent des gesamten Energiebedarfs und über 65Prozent des Strombedarfs decken. Die Analyse beinhaltet auch einen umfassenden Vergleich der erarbeiteten Ergebnisse mit den Ergebnissen anderer EU-Szenarien.

Aufkommen und Verwertung von Verpackungsabfällen in Deutschland im Jahr 2019

Nach der EU-Richtlinie 94/62/EG über Verpackungen und Verpackungsabfälle vom 20.12.1994 in Verbindung mit der Richtlinie 2018/852 vom 30. Mai 2018 sind die EU-Mitgliedstaaten verpflichtet, jährlich über Verbrauch und Verwertung von Verpackungen zu berichten. Der Bericht hat auf der Grundlage der Entscheidung der Kommission vom 22.03.2005 zur Festlegung der Tabellenformate (2005/270/EG), zuletzt geändert durch den Durchführungsbeschluss (EU) 2019/665 vom 17. April 2019, zu erfolgen. Die Studie bestimmt die in Deutschland in Verkehr gebrachte Menge an Verpackungen (Verpackungsverbrauch) für die Materialgruppen Glas, Kunststoff, Papier / Karton, Aluminium, Eisenmetalle, Holz und Sonstige. Zur Verbrauchsberechnung wurden neben der in Deutschland eingesetzten Menge von Verpackungen auch die gefüllten Exporte und die gefüllten Importe ermittelt. Zur Bestimmung der Verwertungsmengen und Verwertungswege wurden die vorliegenden Daten von Verbänden, der Entsorgungswirtschaft und der Umweltstatistik systematisch zusammengetragen und dokumentiert. Der Verpackungsverbrauch zur Entsorgung stieg 2019 im Vergleich zum Vorjahr um 0,2 % bzw. um 47 kt auf 18,91 Mio. Tonnen an. Insgesamt 18,33 Mio. Tonnen Verpackungsabfälle wurden 2019 verwertet, 13,53 Mio. Tonnen stofflich und 4,8 Mio. Tonnen energetisch. Darüber hinaus dokumentiert der Bericht auch die Verbrauchs- und Recyclingmengen nach der Berechnungsmethode des Durchführungsbeschlusses (EU) 2019/665, die für die Meldung an die Europäische Kommission maßgebend sind. Der Verpackungsverbrauch ändert sich im Gesamtergebnis nicht. Die Recyclingmenge reduziert sich im Vergleich zur bisherigen Berechnungsmethode um 1,4 Mio. Tonnen auf 12,1 Mio. Tonnen. Die Menge der energetisch verwerteten Verpackungen erhöht sich um 1,2 Mio. Tonnen auf 6 Mio. Tonnen.

green2store - Integrative Speichernutzung in der 'Cloud' für den Ausbau von regenerativen Energien^green2store - Integrative Speichernutzung in der 'Cloud' für den Ausbau von regenerativen Energien^green2store - Integrative Speichernutzung in der 'Cloud' für den Ausbau von regenerativen Energien, green2store - Integrative Speichernutzung in der 'Cloud' für den Ausbau von regenerativen Energien

Innerhalb des durch OFFIS im Gesamtprojekt durchgeführten Teilvorhabens steht die standardbasierte Integration der einzelnen Komponenten Speicher, IKT, IT-Cloud sowie der Geschäftsprozessebene im Fokus. Dabei wird auf Basis der EU Smart grid Referenzarchitektur und ihrer Freiheitsgrade eine durchgängige IT-Kommunikation zwischen Speicher, Markt und Abrechnungssystemen umgesetzt. Auf Basis von so genannten emerging Standards wie der IEC 61850 zur Anlagenkommunikation, der IEC 62541 zur Automatisierung und der IEC 61970 zur Kommunikation mit Energiemanagementsystemen werden so genannten interoperable und sichere durchgängige Lösungen erforscht, entwickelt und erprobt. Wissenschaftliche Schwerpunkte stehen dabei in der Schaffung der semantischen und syntaktischen Interoperabilität zwischen den verschiedenen Standards in der Gesamtarchitektur. In Abstimmung mit den Partnern werden relevante Teile einzelner Standards ausgewählt, die Anlagen modelliert, eine Marktkommunikation zur Abrechnung Planung und für den Handel von Stromprodukten mittels CIM erarbeitet sowie die neuen Lösungen in die internationale Standardisierung eingebracht und Metriken zum Assessment der Technologieauswahl erarbeitet und evaluiert.

Inductive Norm Test by Exchange in Real Operation - InterOp, Inductive Norm Test by Exchange in Real Operation - InterOp

Ableitung eines Korridors für den Ausbau der erneuerbaren Wärme im Gebäudebereich (Kurztitel: Anlagenpotenzial)^Ableitung eines Korridors für den Ausbau der erneuerbaren Wärme im Gebäudebereich (Kurztitel: Anlagenpotenzial), Ableitung eines Korridors für den Ausbau der erneuerbaren Wärme im Gebäudebereich (Kurztitel: Anlagenpotenzial)

Gemäß den Zielen der Bundesregierung soll der Primärenergiebedarf zur Bereitstellung von Wärme in Gebäuden bis 2050 um 80 % gesenkt werden (Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung, 2010). Dies kann sowohl durch eine Minderung des Nutzenergiebedarfs als auch durch Effizienzsteigerungen bei der Wärmebereitstellung erfolgen. Mögliche Entwicklungsszenarien des zukünftigen Nutzenergiebedarfs wurden im Projekt Dämmpotenziale durch die Beuth Hochschule für Technik Berlin und das ifeu-Institut für Energie- und Umweltforschung Heidelberg detailliert analysiert. Zu den anlagenseitigen Effizienzsteigerungsmaßnahmen zählt die Substitution fossiler Energieträger durch erneuerbare Energien oder die Minderung des Einsatzes fossiler Energien durch Modernisierung fossiler Heizungsanlagentechnik. Diese technischen Maßnahmen lassen sich durch die Anlagenaufwandszahl ausdrücken. Mit der Kenntnis des aus technisch-baupraktischer Sicht theoretischen realisierbaren, minimalen Nutzenergiebedarfs und der im Jahre 2050 theoretisch realisierbaren, minimalen Anlagenaufwandszahl sind dann zwei Grenzen gegeben, innerhalb derer die verschiedenen Pfade zur Umsetzung des 80%-Minderungszieles der Bundesregierung liegen müssen. Die Kernfrage lautet, mit welcher Intensität sollten Gebäude gedämmt und mit welcher Intensität Heizungsanlagen modernisiert bzw. durch erneuerbare Energien ersetzt werden müssen. Hierzu müssen vorab die realisierbaren Potenziale der erneuerbaren Energien für den Gebäudebereich quantifiziert werden. Um die Variationsbreite der künftig verfügbaren Heizungsanlagen abzubilden, werden folgende Extrem-Szenarien modelliert: - Szenario Erneuerbare Wärme mit konventionellem Wärmeschutz bei der Entwicklung des Anlagenbestands wird ein deutlicher Schwerpunkt auf Solarthermie und Biomasse gelegt. - Szenario Erneuerbare Wärme mit ambitioniertem Wärmeschutz wie zuvor, jedoch mit besonders hohem Wärmeschutz und damit der Möglichkeit zu höheren Deckungsraten erneuerbarer Wärme - Szenario Elektroheizung mit konventionellem Wärmeschutz es wird ein Schwerpunkt auf elektrisch betriebene Wärmeerzeuger - insbesondere Wärmepumpen - gelegt. - Szenario Elektroheizung mit ambitioniertem Wärmeschutz wie zuvor, jedoch mit besonders hohem Wärmeschutzniveau. Für alle Szenarien ist die Kenntnis der Primärenergiefaktoren und ihrer Verläufe wichtig. Sie werden innerhalb der Szenarien für die verschiedenen Energieträger in Abhängigkeit der Zeit bestimmt. Ergebnis dieser Modellierung sind die maximalen Beiträge der Anlagentechnik zur Erreichung der Ziele in Abhängigkeit von den jeweiligen Potenzialen der Energieträger. Das bereits zur Bestimmung des Nutzwärmebedarfs des gesamten Gebäudebestands entwickelte Computermodell (GEMOD) wird um den heutigen und zukünftigen Wärmeerzeugerbestand erweitert. Dies macht die Berechnung von Szenarien zum Primärenergiebedarf möglich, so dass verschiedene Transformationspfade verglichen

Ableitung eines Korridors für den Ausbau der erneuerbaren Wärme im Gebäudebereich (Kurztitel: Anlagenpotenzial), Ableitung eines Korridors für den Ausbau der erneuerbaren Wärme im Gebäudebereich (Kurztitel: Anlagenpotenzial)

Gemäß den Zielen der Bundesregierung soll der Primärenergiebedarf zur Bereitstellung von Wärme in Gebäuden bis 2050 um 80 Prozent gesenkt werden (Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung, 2010). Dies kann sowohl durch eine Minderung des Nutzenergiebedarfs als auch durch Effizienzsteigerung bei der Wärmebereitstellung erfolgen. Mögliche Entwicklungsszenarien des zukünftigen Nutzenergiebedarfs wurden im Projekt 'Dämmpotenziale' durch die Beuth Hochschule für Technik Berlin und das ifeu-Institut für Energie- und Umweltforschung Heidelberg detailliert analysiert. Zu den anlagenseiteigen Effizienzsteigerungsmaßnahmen zählt die Substitution fossiler Energieträger durch erneuerbare Energien oder die Minderung des Einsatzes fossiler Energien durch Modernisierung fossiler Heizungsanlagentechnik. Diese technischen Maßnahmen lassen sich durch die Anlagenaufwandszahl ausdrücken. Mit der Kenntnis des aus technisch-baupraktischer Sicht theoretisch realisierbaren, minimalten Nutzenergiebedarfs und der im Jahre 2050 theoretisch realisierbaren, minimalte3n Anlagenaufwandszahl sind dann zwei Grenzen gegeben, innerhalb derer die verschiedenen Pfade zur Umsetzung des 80 Prozent Minderungszieles der Bundesregierung liegen müssen. Die Kernfrage lautet, mit welcher Intensität sollten Gebäude gedämmt und mit welcher Intensität Heizungsanlagen modernisiert bzw. durch erneuerbare Energien ersetzt werden müssen. Hierzu müssen vorab die realisierbaren Potenziale der erneuerbaren Energien für den Gebäudebereich quantifiziert werden. Um die Variationsbreite der künftig verfügbaren Heizungsanlagen abzubilden, werden folgende Extrem-Szenarien modelliert: - Szenario Erneuerbare Wärme mit konventionellem Wärmeschutz bei der Entwicklung des Anlagenbestands wird ein deutlicher Schwerpunkt auf Solarthermie und Biomasse gelegt - Szenario Erneuerbare Wärme mit ambitioniertem Wärmeschutz wie zuvor, jedoch mit besonders hohem Wärmeschutz und damit der Möglichkeit zu höheren Deckungsraten erneuerbarer Wärme - Szenario Elektroheizung mit konventionellem Wärmschutz, es wird ein Schwerpunkt auf elektrisch betriebene Wärmeerzeuger, insbesondere Wärmepumpen, gelegt - Szenario Elektroheizung mit ambitioniertem Wärmeschutz wie zuvor, jedoch mit besonders hohem Wärmschutzniveau. Für alle Szenarien ist die Kenntnis der Primärenergiefaktoren und ihrer Verläufe wichtig. Sie werden innerhalb der Szenarien für die verschiedenen Energieträger in Abhängigkeit der Zeit bestimmt. Ergebnis dieser Modellierung sind die maximalen Beiträge der Anlagentechnik zur Erreichung der Ziele in Abhängigkeit von den jeweiligen Potenzialen der Energieträger. Das bereits zur Bestimmung des Nutzwärmebedarfs des gesamten Gebäudebestands entwickelte Computermodell (GEMOD) wird um den heuteigen und zukünftigen Wärmeerzeugerbestand erweitert. Dies macht die Berechnung von Szenarien zum Primärenergiebedarf möglich, so dass verschiedene Transformationspfade verglichen werden können

Frankfurt RheinMain vernetzt - Dienstleistungen fördern elektrische Mobilität (DieMoRheinMain), Teilvorhaben: Entwicklung modellbasierter Verbrauchsprognosen für multimodale Auskunftssysteme und energieoptimales Routing

Ziel des Verbundprojektes ist es, vernetzte Einzeldienstleistungen für die Elektromobilität in einem Dienstleistungsverbund dauerhaft für die Region Frankfurt RheinMain zur Verfügung zu stellen. Ziel des Teilvorhabens ist es, multimodale Pre-trip und On-trip Routenplaner um besondere Anforderungen der Elektromobilität zu erweitern. Diese sind vor allem durch die Randbedingungen gekennzeichnet, welche aus begrenzter Reichweite und erheblichen Ladezeiten resultieren. Das Fraunhofer LBF erstellt dazu ein Fahrzeugmodell, das für verschiedene Elektrofahrzeugkonzepte und in Abhängigkeit von Strecken- und Umgebungsbedingungen den voraussichtlichen Energieverbrauch abschätzt und eine hinreichend verlässliche Verbrauchsprognose ermöglicht. Darauf aufbauend lassen sich energieoptimale Routen berechnen und Batterieladestopps effizient planen. Mit Hilfe der jeweils zur Verfügung stehenden Daten werden dabei neben den spezifischen Fahrzeugparametern weitere wesentliche Einflussgrößen wie Beladungszustand des Fahrzeugs, Höhenprofil der Strecke, voraussichtlicher Geschwindigkeitsverlauf auf Basis der Verkehrslage oder Umgebungstemperatur Berücksichtigung finden. Anhand von Untersuchungen hinsichtlich Rechenzeiten und Genauigkeitsanforderungen wird für die geplante Anwendung die ideale Modellkomplexität ermittelt und in die Routingalgorithmen integriert. Des Weiteren werden die mit diesem Modell erstellten Verbrauchsprognosen Genauigkeitsbetrachtungen unterzogen, um eine hinreichende Sicherheit der Routenplanung, insbesondere bezüglich der zugrunde gelegten Reichweite, zu gewährleisten. Mit der Integration von Verbrauchsprognosen für Elektrofahrzeuge und der speziell hierfür erforderlichen Daten wie Ladestationen oder Höhenprofile in multimodale Routenplaner wird ein wesentlicher Beitrag zur individuellen, umweltbewussten Mobilitätsplanung geleistet und die Nutzungsakzeptanz von Elektrofahrzeugen in der Bevölkerung auf eine breitere Basis gestellt.

Elektromobilität am Arbeitsplatz, Halböffentliches Laden an Unternehmensstandorten; Ladestationen an Werkstandorten (LAW) - Teilvorhaben: Daimler AG; 'charge work'

Im Rahmen des Projekts werden die Anforderungen durch komplexe Nutzungsmodalitäten (Mitarbeiterfahrzeuge, individuelle Dienstwagen, interner Werksverkehr, externe Fahrzeuge, Werksfahrzeuge) an das Energiemanagement und an eine verteilte Intelligenz zwischen Ladestationen, Back-end, sowie Fahrzeugen und den Implikationen auf das Management von Efz.-Pools im systemischen Zusammenhang untersucht. Dazu wird an fünf Daimler Werkstandorten (Möhringen, Mettingen, Böblingen, Sindelfingen, Untertürkheim) und dem Fraunhofer-Institutszentrum Stuttgart ein integriertes Lade- und Lastmanagement mit über 200 Ladepunkten erforscht und realisiert. Auf Basis der an den Daimler Standorten erfassten Realdaten werden in einem Demonstrator (Fraunhofer Gesellschaft) Optimierungen durch Simulationen und Parameteranpassungen durchgeführt und in die Realwelt zurückgespiegelt. Ein Schwerpunkt des Projekts ist das Laden von Mitarbeiterfahrzeugen am Arbeitsplatz und die damit verbundene Bereitstellung und Abrechnung der Energie. Das Gesamt-Projekt gliedert sich in acht Arbeitspakete. AP 100 Systemkonzept, AP 200 Ladeinfrastruktur in Mitarbeiterparkhäusern, AP 300 Micro-Smart-Grid Demonstrator, AP 400 Fahrzeugkonzept, AP 500 Lade- und Lastmanagement, AP 600 Feldtest, AP 700 Transfer und AP 800 Projektmanagement.

Reichweitenoptimierung von Elektrofahrzeugen durch ganzheitliche Verbrauchsprognostik (GreenNavigation), Teilvorhaben: Integration und Validierung

Das Teilvorhaben erforscht neue effiziente Methoden zur virtuellen Erprobung von Reichweiten- und Routenberechnungsdiensten für Elektrofahrzeuge. Damit soll es erstmals möglich sein, präzise Aussagen über die Leistungsfähigkeit, Robustheit und Benutzerfreundlichkeit von Reichweiten- und Routenberechnungsdiensten in unterschiedlichen Nutzungsprofilen bereits in frühen Phasen des Entwicklungsprozesses ohne Verfügbarkeit von realen Versuchsfahrzeugen ermitteln zu können. Das Problem wird durch folgende Innovationen im Teilvorhaben gelöst: 1) Effiziente Bedatungsverfahren für echtzeitfähige Simulationsmodelle von Elektrofahrzeugkomponenten.2) Integration von Wetterdaten im virtuellen Fahrversuch. 3) Berücksichtigung von Fahrstrategien und Fahrhinweisen im virtuellen Fahrer. Das Teilvorhaben Integration und Validierung wird in folgenden Arbeitspaketen strukturiert: AP 510 Definition der Validierungsumgebung, AP 520 Integration in die Validierungsumgebung, AP 530 Validierung am Simulator, AP 540 Integration in das Fahrzeug, AP 550 Durchführung und Auswertung realer Fahrzeugtests. Die Durchführung der Validierung im Teilvorhaben erfolgt in drei aufeinanderfolgenden Iterationsphasen mit Zunahme des Anteils der realen Komponenten und Teilsysteme: Phase 1 - Validierung von virtuellen Prototypen in Office-Umgebung, Phase 2 - Validierung von realen Prototypen am Fahrerlebnisplatz, Phase 3 - Validierung von realen Prototypen im realen Fahrzeug.

ALPRO - Selbstlernende Algorithmen zur Leistungsprognose für PV-Anlagen als Instrument zum dezentralen Energiemanagement, Teilvorhaben: Bewertung der entwickelten Prognose-Algorithmen auf Basis realer Systemdaten

Entwicklung selbstlernender Algorithmen zur Leistungsprognose für PV-Anlagen als Instrument zum dezentralen Energiemanagement. Ziel des Vorhabens ist die Bereitstellung von Algorithmen zur Generierung von adaptiven, auf das spezifische PV-System und dessen Standort optimierten intra-day und day-ahead Prognosen der PV-Erzeugungsleistung. Die zu entwickelnden Algorithmen sollen die Wirtschaftlichkeit von dezentralen Energiemanagementsystemen erhöhen im Hinblick auf eine oder mehrere vorgegebene Zielgrößen, bspw. die Maximierung des Eigenverbrauchs von lokal erzeugtem Strom, die Vermeidung von Abregelungsverlusten, die Netzdienlichkeit, die Spitzenlastreserve oder die Speicherauslegung. Die zu entwickelnden Algorithmen werden durch Feldmessungen an Einzelanlagen von Innogy SE und ISE validiert und in ihrer Prognosegenauigkeit mit nicht-adaptiven Verfahren nach dem Stand der Technik verglichen. Zusätzlich wird das wirtschaftliche Potential der Methode über die Modellierung eines konkreten Anwendungsfalls mit einem virtuellen Energiemanagementsystem, PV-Generator, Speicher und Lasten untersucht.

1 2 3 4