API src

Found 440 results.

Related terms

KI: Data Centre HEat Recovery with AI-Technologies, KI: Data Centre HEat Recovery with AI-Technologies

Konzeptstudie zur Abwärmenutzung in einem Luftspeicher-Gasturbinenkraftwerk (LGT)

Die Einspeicherung von Druckluft in die Kavernen des LGT muss nahezu isotherm erfolgen. Die dabei anfallende Verdichtungswärme wird bisher in die Umgebung abgegeben. In der Studie werden Möglichkeiten untersucht und bewertet, diese und auch die Turbinenabwärme bei Turbinenbetrieb in Form von Dampf zu speichern. Mit dem gespeicherten Dampf wird beim Ausspeichern ein integrierter Gas-Dampf-Prozess realisiert, mit dem die gespeicherte Energie genutzt werden kann, was zu deutlichen Brennstoffeinsparungen führt.

Referenzkraftwerk Lausitz, Teilvorhaben: Systemintegration, Regelung und thermische Konzeptionierung

Das Verbundprojekt Reallabor Referenzkraftwerk Lausitz 'RefLau' besteht aus einem kommerziellen und einem Forschungs- und Entwicklungsteil. Im F&E-Teil forschen das Fraunhofer IEG, die TU Dresden und die BTU Cottbus-Senftenberg an einem innovativen Kraftwerkskonzept, das in der Lage ist, alle Produkte und Dienstleistungen eines heutigen konventionellen, thermischen Kraftwerks zur Verfügung zu stellen. Die Kernkomponenten bestehen aus einer Batterie, einer Brennstoffzelle, einem Superkondensator und einem Elektrolyseur. Neben der Rückverstromung von Wasserstoff werden Systemdienstleistungen wie die Bereitstellung von Blindleistung, Regel- und Momentanreserve sowie von Fehlerstrom demonstriert. Es werden die benötigten Regel- und Steueralgorithmen entwickelt und das Zusammenwirken der Komponenten getestet. Weiterhin werden Möglichkeiten der Wärmerückgewinnung und -aufwertung untersucht und eine technische Lösung konzipiert. Zur Simulation kritischer Anlagenfahrweisen wird ein Digitaler Zwilling erstellt, der ebenfalls zur Übertragung und Skalierung der Ergebnisse dient. Die Errichtung der Demonstrationsanlage erfolgt am Standort Spremberg im Industriepark Schwarze Pumpe.

Entwicklung und Validierung von geothermischen Modellen und Anlagenkonzepten mit innovativen oberflächennahen Elementen für dynamisch geregelte Wärmepumpensysteme, Teilvorhaben: Vertikalabsorber und Materialoptimierung

Im Projekt lnnoFlaG sollen neuartige oberflächennahe Wärmetauscherelemente in Kombination mit Latentwärmespeichern, Energiespeichern und Hydraulikmodulen als funktionsfähige Einheit vom Firmenkonsortium entwickelt, getestet und in Wechselwirkung mit dem oberflächennahen Erdreich (inkl. Feuchtetransport und Gefrierprozessen) sowie multimodaler Regenerierung modelliert werden. Hierbei geht es um erhöhte Planungssicherheit bezüglich der Erträge, aber auch um Schadensvermeidung, denn gerade bei flachen Geo-Kollektoren sind in der Vergangenheit durch Gefrieren des Bodens Schäden entstanden. In diesem Teilvorhaben wird von der GeoCollect GmbH untersucht, wie der Einsatz von 100 % Recyclingmaterialien für die kunststoffbasierten Absorber und verbindenden Rohrleitungen ermöglicht werden kann. Neben einer Materialoptimierung von gängigem Polypropylen in Richtung Polyethylen wird die GeoCollect GmbH insbesondere die Eignung und Zertifizierbarkeit von Recycling-Granulaten und daraus hergestellten Komponenten für die Anwendung im Rahmen der oberflächennahen Geothermie untersuchen. Desweiteren werden von der GeoCollect GmbH die Absorberform und die Gesamtgeometrie bezüglich der thermischen Performance und der Langzeitbeständigkeit optimiert. Dabei wird ein besonderes Augenmerk auf die Gesamt-Ökobilanz des Systems gelegt. Entsprechende Optimierungsrechnungen werden in Zusammenarbeit mit dem SIJ der FH Aachen durchgeführt, wobei die C02- Emissionen als Leitparameter der Ökobilanzierung gewählt werden. Zudem führt die GeoCollect GmbH in enger Zusammenarbeit mit dem SIJ und der WKG Energietechnik GmbH die Neuentwicklung eines zwangsdurchströmten Trennwärmetauschers zur Wärmerückgewinnung aus Oberflächen-, Ab- und Grundwasser bis zu einem Funktionsmuster durch. Basis der Neuentwicklung ist der Plattenabsorber der GeoCollect GmbH. Die für die Versuche an der FH Aachen benötigten Kollektor-Elemente und Anschlussmaterialien werden von der GeoCollect GmbH bereitgestellt.

Geologische und verfahrenstechnische Möglichkeiten der Erdwärmenutzung am Standort der Medizinischen Hochschule Hannover (MHH)

Für die Medizinische Hochschule Hannover hat das GeothermieZentrum Bochum gemeinsam mit der GeoDienste GmbH (Garbsen) im Zeitraum von August 2007 bis März 2008 eine Vorstudie zur Einbindung der Geothermie in das Energiekonzept des Klinikums erstellt. Im Anschluss an diese Vorstudie wurde eine Wirtschaftlichkeitsanalyse erstellt, welche die petrothermale und hydrothermale Versorgung betrachtete. Vorstudie: Die Medizinische Hochschule Hannover (MHH) wird derzeit von den Stadtwerken Hannover mit den Medien Gas, Strom und Fernwärme zur Erzeugung ihrer dreigliedrigen Energieversorgung, bestehend aus Dampf, Raumwärme und Klimakälte, versorgt. Aufgrund der hydrogeologischen Situation am Standort der MHH in Hannover wird eine Einbindung der Geothermie sowohl in den Heizkreislauf (direkte Integration über Wärmetauscher) als auch in den Kälteklimakreislauf (modular betriebene Absorptionskältemaschinen) vorgeschlagen. Ziel der Einbindung ist es konventionelle, preislich fluktuierende und primärenergetisch nachteilige Energieträger, wie in erster Linie elektrischen Strom und nachrangig Fernwärme oder Gas, durch den Einsatz der Geothermie vollständig, oder im Rahmen der Leistungsfähigkeit des geothermischen Reservoirs teilweise, zu ersetzen. Wirtschaftlichkeit, CO2-Bilanz und Versorgungssicherheit stehend dabei im Vordergrund. Die Grundlastfähigkeit der Geothermie wird in der vorgeschlagenen Anlagenkonfiguration vollständig ausgenutzt. Im Bereich der Spitzenlastdeckung spielt die Geothermie daher keine Rolle. Die geothermisch unterstützte Dampferzeugung findet im betrachteten Szenario keinen Eingang. Dies liegt in der internen Wärmerückgewinnung im Dampferzeuger durch den Economizer zur Vorwärmung des Speise- und Verbrauchswassers begründet. Da die Geothermie bei der Dampfherstellung nur einen geringen energetischen Beitrag leisten kann und Investitionen für ihre Anbindung an das Dampferzeugersystem entstehen, wird von der Betrachtung dieser Systeme abgesehen. Übersteigt die Bereitstellung von geothermischer Energie im Heiz- oder Kühlfall die Energienachfrage, lassen sich Pufferspeicher integrieren um diese überschüssig Energie effizient zu speichern. Bei Lastspitzen kann die Energie zurückgewonnen werden. Somit erhöht sich der geothermische Anteil an der Gesamtenergiebereitstellung. Wirtschaftlichkeitsanalyse: Hier wurden 9 verschiedene Szenarien untersucht, welche sich aufgrund ihrer Art (petrothermal / hydrothermal), der Bohrtiefe (4500 / 3000 m), ihrer Schüttung (15-50 l/s), Temperatur (115 / 160 Grad C) oder Bereitstellung (Wärme / Strom+Wärme) unterscheiden. Die höheren Investitionskosten für die petrothermalen Systeme werden durch die höhere Energieausbeute (Schüttung und Temperatur) abgefangen und diese somit wirtschaftlicher als die hydrothermalen Systeme, welche sich in der Amortisationsrechnung nur aufgrund der steigenden Energiepreise nach einigen Jahren rechnen.

CO2-neutrale Herstellung von Leichtbaukomponenten aus Magnesium, Teilvorhaben: Entwicklung und Herstellung von Türen inkl. Rahmenkonstruktion für den Einsatz in City E-Mobiltransportern

Digitale Vernetzungsplattform für Energie- und Ressourceneffizienz zum optimierten Anlagenbetrieb, Teilvorhaben Daimler Truck Mannheim: Regelungstechnische Beherrschung der Wärmerückgewinnung der Gießerei; sowie Optimierung des Fertigungsbetriebs am Beispiel des Geb. 6

Vorhandene Effizienz-Controlling-Lösungen stoßen bei steigender Anzahl der Anlagen und steigender Komplexität der Applikationen schnell an ihre Grenzen, denn mit der Anbindung und Einrichtung ist ein hoher Arbeitsaufwand verbunden. Der Arbeitsaufwand profitiert kaum von Skaleneffekten, denn die Anlagen- und Systembeschreibungen müssen bisher immer wieder aufs Neue angelegt werden. Aufgrund des hohen Aufwands ist bei einigen Anlagen eine Energieeffizienzüberwachung bzw. -regelung bisher nicht wirtschaftlich abbildbar. In EnEffNet möchten wir diesen Aufwand entscheidend senken. Wir entwickeln einen Demonstrator für eine Vernetzungsplattform, in der wir wiederkehrend benötigte Strukturinformationen für die Einbindung neuer Anlagen hinterlegen, semantisieren und - für unterschiedlichste Applikationen - mit Historiendaten flexibel in Beziehung setzen. Strukturinformationen können z.B.eine Anlagenklasse mit festem Set an Eigenschaften (z.B.Anlagenklasse 'Pumpe' hat Eigenschaften 'Einbauort', 'Förderhöhe', 'Drehzahl' usw.) oder auch analytische Modelle sein (z.B.thermodynamische Zusammenhänge, Pumpenkennlinien). Den Nutzen des zu entwickelnden Demonstrators der Vernetzungsplattform demonstrieren wir anhand verschiedener Applikationsmuster, die wir mit ausgewählten Praxispartnern entwickeln und im laufenden Betrieb erproben. Der Schwerpunkt wird dabei auf dem effizienzoptimierten Anlagenbetrieb mit direkten Einspareffekten liegen. Im Teilprojekt Daimler Truck werden eine regelungstechnisch anspruchsvolle Wärmerückgewinnung aus der Gießerei sowie die dynamische Optimierung einer zusammenhängenden Fertigungsanlage, am Beispiel einer komplette Halle, umgesetzt.

Entwicklung und Validierung von geothermischen Modellen und Anlagenkonzepten mit innovativen oberflächennahen Elementen für dynamisch geregelte Wärmepumpensysteme, Teilvorhaben: Verbesserung des Wärmetransfers aus dem Erdreich

Im Projekt lnnoFlaG sollen neuartige oberflächennahe Wärmetauscherelemente in Kombination mit Latentwärmespeichern, Energiespeichern und Hydraulikmodulen als funktionsfähige Einheit vom Firmenkonsortium entwickelt, getestet und in Wechselwirkung mit dem oberflächennahen Erdreich modelliert werden. Hierbei geht es um erhöhte Planungssicherheit bezüglich der Erträge, aber auch um Schadensvermeidung, denn gerade bei flachen Geo-Kollektoren sind in der Vergangenheit durch Gefrieren des Bodens Schäden entstanden. Ein Herzstück der Neuentwicklung der WKG Energietechnik GmbH ist ein zertifizierter, erdeinbaufähiger, doppelwandiger, wärmegedämmter, skalierbarer und in der Handhabung unkomplizierter Latentwärmespeicher, der gegenüber handelsüblichen Fabrikaten 30 % mehr Leistungskapazität aufweist. Als zusätzliche Komponente wird hierzu auch ein neuartiger Erdwärmemanteltauscher konzipiert, der um die erdeinbaufähige Außenwand des Latentwärmespeichers angebracht wird. Als weitere Komponente zur Optimierung des Gesamtsystems wird von der WKG Energietechnik GmbH zur Leistungsoptimierung über verbesserte Wärmeleiteigenschaften des Bodens und zur Verhinderung starker Geländeveränderungen im Zuge einer möglichen Eisbildung bei zu hohem Wärmeentzug aus dem Boden ein kostengünstiges Be- und Entwässerungssystem entwickelt werden. Zudem übernimmt die WKG Energietechnik GmbH in enger Zusammenarbeit mit dem SIJ und der GeoCollect GmbH die Neuentwicklung eines zwangsdurchströmten Trennwärmetauschers zur Wärmerückgewinnung aus Oberflächen-, Ab- und Grundwasser bis zu einem Funktionsmuster. Eine weitere Neuentwicklung stellt der vertikale WKG-Rohrschlangenabsorber dar, der als Rollenware mäanderförmig im Erdreich ohne Schweißverbindungen verlegt werden kann. Dieses System wird von der WKG Energietechnik GmbH an einem noch festzulegenden Standort eingebaut und getestet.

Weiterentwicklung und Erprobung eines Hochtemperaturwärmespeichers mit innovativer Füllkörpertechnologie und Luft als Wärmeträger in der Keramikindustrie, Teilvorhaben: Entwicklung des Filterspeichermaterials, Implementierung und Analyse der Eigenschaften in einem Demonstrator

Im Projekt LuftBlock soll die Hochtemperatur-Wärmespeicherlösung der Firma Kraftblock weiterentwickelt und bei hohen Temperaturen mit gasförmigem Wärmeträger bei der Firma Comet in industriellem Maßstab demonstriert werden. Damit wird einerseits die Rückgewinnung einer großen Menge gespeicherter Wärme für einen Batch-Prozess, und andererseits gleichzeitig die damit verbundene Möglichkeit der kosteneffizienten Teilelektrifizierung eines Gasheizprozesses in der Anwendung realisiert. Herausforderungen, die dabei im Projekt adressiert werden, sind: - Direkte Nutzung der Abluft aus industriellen Prozessen, die u.U. mit Stäuben oder Kondensaten beaufschlagt ist - Verständnis der plastischen Verformung der Speicherwände in Schüttgutspeichern durch zyklische thermische Belastung. Ableitung von Auslegungsregeln zur Vermeidung von Materialversagen bei gleichzeitigen Materialeinsparungen - Optimale Integration in den bestehenden Prozess im Bezug auf Auslegung/Dimensionierung der einzelnen Komponenten und Betriebsführung des Speichers Ziel des geplanten Vorhabens ist es daher, Hindernisse zu überwinden, die bisher eine breite kommerzielle Einführung von Schüttgutspeichern verhindert haben oder kostentreibende Konstruktionslösungen und Überdimensionierungen erforderlich machten.

Weiterentwicklung und Erprobung eines Hochtemperaturwärmespeichers mit innovativer Füllkörpertechnologie und Luft als Wärmeträger in der Keramikindustrie, Teilvorhaben: Vorversuche im Technikums-Maßstab und Begleitung der Demonstration

Im Projekt LuftBlock soll die Hochtemperatur-Wärmespeicherlösung der Firma Kraftblock weiterentwickelt und bei hohen Temperaturen mit gasförmigem Wärmeträger bei der Firma Comet in industriellem Maßstab demonstriert werden. Damit wird einerseits die Rückgewinnung einer großen Menge gespeicherter Wärme für einen Batch-Prozess, und andererseits gleichzeitig die damit verbundene Möglichkeit der kosteneffizienten Teilelektrifizierung eines Gasheizprozesses in der Anwendung realisiert. Herausforderungen, die dabei im Projekt adressiert werden, sind: - Direkte Nutzung der Abluft aus industriellen Prozessen, die u.U. mit Stäuben oder Kondensaten beaufschlagt ist - Verständnis der plastischen Verformung der Speicherwände in Schüttgutspeichern durch zyklische thermische Belastung. Ableitung von Auslegungsregeln zur Vermeidung von Materialversagen bei gleichzeitigen Materialeinsparungen - Optimale Integration in den bestehenden Prozess im Bezug auf Auslegung/Dimensionierung der einzelnen Komponenten und Betriebsführung des Speichers Ziel des geplanten Vorhabens ist es daher, Hindernisse zu überwinden, die bisher eine breite kommerzielle Einführung von Schüttgutspeichern verhindert haben oder kostentreibende Konstruktionslösungen und Überdimensionierungen erforderlich machten.

1 2 3 4 542 43 44