Das Verbundprojekt Reallabor Referenzkraftwerk Lausitz 'RefLau' besteht aus einem kommerziellen und einem Forschungs- und Entwicklungsteil. Im F&E-Teil forschen das Fraunhofer IEG, die TU Dresden und die BTU Cottbus-Senftenberg an einem innovativen Kraftwerkskonzept, das in der Lage ist, alle Produkte und Dienstleistungen eines heutigen konventionellen, thermischen Kraftwerks zur Verfügung zu stellen. Die Kernkomponenten bestehen aus einer Batterie, einer Brennstoffzelle, einem Superkondensator und einem Elektrolyseur. Neben der Rückverstromung von Wasserstoff werden Systemdienstleistungen wie die Bereitstellung von Blindleistung, Regel- und Momentanreserve sowie von Fehlerstrom demonstriert. Es werden die benötigten Regel- und Steueralgorithmen entwickelt und das Zusammenwirken der Komponenten getestet. Weiterhin werden Möglichkeiten der Wärmerückgewinnung und -aufwertung untersucht und eine technische Lösung konzipiert. Zur Simulation kritischer Anlagenfahrweisen wird ein Digitaler Zwilling erstellt, der ebenfalls zur Übertragung und Skalierung der Ergebnisse dient. Die Errichtung der Demonstrationsanlage erfolgt am Standort Spremberg im Industriepark Schwarze Pumpe.
Im Projekt lnnoFlaG sollen neuartige oberflächennahe Wärmetauscherelemente in Kombination mit Latentwärmespeichern, Energiespeichern und Hydraulikmodulen als funktionsfähige Einheit vom Firmenkonsortium entwickelt, getestet und in Wechselwirkung mit dem oberflächennahen Erdreich (inkl. Feuchtetransport und Gefrierprozessen) sowie multimodaler Regenerierung modelliert werden. Hierbei geht es um erhöhte Planungssicherheit bezüglich der Erträge, aber auch um Schadensvermeidung, denn gerade bei flachen Geo-Kollektoren sind in der Vergangenheit durch Gefrieren des Bodens Schäden entstanden. In diesem Teilvorhaben wird von der GeoCollect GmbH untersucht, wie der Einsatz von 100 % Recyclingmaterialien für die kunststoffbasierten Absorber und verbindenden Rohrleitungen ermöglicht werden kann. Neben einer Materialoptimierung von gängigem Polypropylen in Richtung Polyethylen wird die GeoCollect GmbH insbesondere die Eignung und Zertifizierbarkeit von Recycling-Granulaten und daraus hergestellten Komponenten für die Anwendung im Rahmen der oberflächennahen Geothermie untersuchen. Desweiteren werden von der GeoCollect GmbH die Absorberform und die Gesamtgeometrie bezüglich der thermischen Performance und der Langzeitbeständigkeit optimiert. Dabei wird ein besonderes Augenmerk auf die Gesamt-Ökobilanz des Systems gelegt. Entsprechende Optimierungsrechnungen werden in Zusammenarbeit mit dem SIJ der FH Aachen durchgeführt, wobei die C02- Emissionen als Leitparameter der Ökobilanzierung gewählt werden. Zudem führt die GeoCollect GmbH in enger Zusammenarbeit mit dem SIJ und der WKG Energietechnik GmbH die Neuentwicklung eines zwangsdurchströmten Trennwärmetauschers zur Wärmerückgewinnung aus Oberflächen-, Ab- und Grundwasser bis zu einem Funktionsmuster durch. Basis der Neuentwicklung ist der Plattenabsorber der GeoCollect GmbH. Die für die Versuche an der FH Aachen benötigten Kollektor-Elemente und Anschlussmaterialien werden von der GeoCollect GmbH bereitgestellt.
Im Projekt lnnoFlaG sollen neuartige oberflächennahe Wärmetauscherelemente in Kombination mit Latentwärmespeichern, Energiespeichern und Hydraulikmodulen als funktionsfähige Einheit vom Firmenkonsortium entwickelt, getestet und in Wechselwirkung mit dem oberflächennahen Erdreich modelliert werden. Hierbei geht es um erhöhte Planungssicherheit bezüglich der Erträge, aber auch um Schadensvermeidung, denn gerade bei flachen Geo-Kollektoren sind in der Vergangenheit durch Gefrieren des Bodens Schäden entstanden. Ein Herzstück der Neuentwicklung der WKG Energietechnik GmbH ist ein zertifizierter, erdeinbaufähiger, doppelwandiger, wärmegedämmter, skalierbarer und in der Handhabung unkomplizierter Latentwärmespeicher, der gegenüber handelsüblichen Fabrikaten 30 % mehr Leistungskapazität aufweist. Als zusätzliche Komponente wird hierzu auch ein neuartiger Erdwärmemanteltauscher konzipiert, der um die erdeinbaufähige Außenwand des Latentwärmespeichers angebracht wird. Als weitere Komponente zur Optimierung des Gesamtsystems wird von der WKG Energietechnik GmbH zur Leistungsoptimierung über verbesserte Wärmeleiteigenschaften des Bodens und zur Verhinderung starker Geländeveränderungen im Zuge einer möglichen Eisbildung bei zu hohem Wärmeentzug aus dem Boden ein kostengünstiges Be- und Entwässerungssystem entwickelt werden. Zudem übernimmt die WKG Energietechnik GmbH in enger Zusammenarbeit mit dem SIJ und der GeoCollect GmbH die Neuentwicklung eines zwangsdurchströmten Trennwärmetauschers zur Wärmerückgewinnung aus Oberflächen-, Ab- und Grundwasser bis zu einem Funktionsmuster. Eine weitere Neuentwicklung stellt der vertikale WKG-Rohrschlangenabsorber dar, der als Rollenware mäanderförmig im Erdreich ohne Schweißverbindungen verlegt werden kann. Dieses System wird von der WKG Energietechnik GmbH an einem noch festzulegenden Standort eingebaut und getestet.
Im Projekt LuftBlock soll die Hochtemperatur-Wärmespeicherlösung der Firma Kraftblock weiterentwickelt und bei hohen Temperaturen mit gasförmigem Wärmeträger bei der Firma Comet in industriellem Maßstab demonstriert werden. Damit wird einerseits die Rückgewinnung einer großen Menge gespeicherter Wärme für einen Batch-Prozess, und andererseits gleichzeitig die damit verbundene Möglichkeit der kosteneffizienten Teilelektrifizierung eines Gasheizprozesses in der Anwendung realisiert. Herausforderungen, die dabei im Projekt adressiert werden, sind: - Direkte Nutzung der Abluft aus industriellen Prozessen, die u.U. mit Stäuben oder Kondensaten beaufschlagt ist - Verständnis der plastischen Verformung der Speicherwände in Schüttgutspeichern durch zyklische thermische Belastung. Ableitung von Auslegungsregeln zur Vermeidung von Materialversagen bei gleichzeitigen Materialeinsparungen - Optimale Integration in den bestehenden Prozess im Bezug auf Auslegung/Dimensionierung der einzelnen Komponenten und Betriebsführung des Speichers Ziel des geplanten Vorhabens ist es daher, Hindernisse zu überwinden, die bisher eine breite kommerzielle Einführung von Schüttgutspeichern verhindert haben oder kostentreibende Konstruktionslösungen und Überdimensionierungen erforderlich machten.
Im Projekt LuftBlock soll die Hochtemperatur-Wärmespeicherlösung der Firma Kraftblock weiterentwickelt und bei hohen Temperaturen mit gasförmigem Wärmeträger bei der Firma Comet in industriellem Maßstab demonstriert werden. Damit wird einerseits die Rückgewinnung einer großen Menge gespeicherter Wärme für einen Batch-Prozess, und andererseits gleichzeitig die damit verbundene Möglichkeit der kosteneffizienten Teilelektrifizierung eines Gasheizprozesses in der Anwendung realisiert. Herausforderungen, die dabei im Projekt adressiert werden, sind: - Direkte Nutzung der Abluft aus industriellen Prozessen, die u.U. mit Stäuben oder Kondensaten beaufschlagt ist - Verständnis der plastischen Verformung der Speicherwände in Schüttgutspeichern durch zyklische thermische Belastung. Ableitung von Auslegungsregeln zur Vermeidung von Materialversagen bei gleichzeitigen Materialeinsparungen - Optimale Integration in den bestehenden Prozess im Bezug auf Auslegung/Dimensionierung der einzelnen Komponenten und Betriebsführung des Speichers Ziel des geplanten Vorhabens ist es daher, Hindernisse zu überwinden, die bisher eine breite kommerzielle Einführung von Schüttgutspeichern verhindert haben oder kostentreibende Konstruktionslösungen und Überdimensionierungen erforderlich machten.
Im Projekt LuftBlock soll die Hochtemperatur-Wärmespeicherlösung der Firma Kraftblock weiterentwickelt und bei hohen Temperaturen mit gasförmigem Wärmeträger bei der Firma Comet in industriellem Maßstab demonstriert werden. Damit wird einerseits die Rückgewinnung einer großen Menge gespeicherter Wärme für einen Batch-Prozess, und andererseits gleichzeitig die damit verbundene Möglichkeit der kosteneffizienten Teilelektrifizierung eines Gasheizprozesses in der Anwendung realisiert. Herausforderungen, die dabei im Projekt adressiert werden, sind: - Direkte Nutzung der Abluft aus industriellen Prozessen, die u.U. mit Stäuben oder Kondensaten beaufschlagt ist - Verständnis der plastischen Verformung der Speicherwände in Schüttgutspeichern durch zyklische thermische Belastung. Ableitung von Auslegungsregeln zur Vermeidung von Materialversagen bei gleichzeitigen Materialeinsparungen - Optimale Integration in den bestehenden Prozess im Bezug auf Auslegung/Dimensionierung der einzelnen Komponenten und Betriebsführung des Speichers Ziel des geplanten Vorhabens ist es daher, Hindernisse zu überwinden, die bisher eine breite kommerzielle Einführung von Schüttgutspeichern verhindert haben oder kostentreibende Konstruktionslösungen und Überdimensionierungen erforderlich machten.
| Origin | Count |
|---|---|
| Bund | 413 |
| Land | 28 |
| Type | Count |
|---|---|
| Förderprogramm | 381 |
| Text | 43 |
| Umweltprüfung | 11 |
| unbekannt | 6 |
| License | Count |
|---|---|
| geschlossen | 65 |
| offen | 369 |
| unbekannt | 7 |
| Language | Count |
|---|---|
| Deutsch | 404 |
| Englisch | 64 |
| Resource type | Count |
|---|---|
| Archiv | 7 |
| Datei | 7 |
| Dokument | 39 |
| Keine | 254 |
| Webseite | 151 |
| Topic | Count |
|---|---|
| Boden | 315 |
| Lebewesen und Lebensräume | 279 |
| Luft | 262 |
| Mensch und Umwelt | 441 |
| Wasser | 254 |
| Weitere | 424 |