API src

Found 363 results.

Related terms

Reinigung von Grauwasser mit Hilfe von vier vertikal durchstroemten Bodenfiltern mit verschiedenen Substraten und Sumpfpflanzen (L1 48 99)

Die Eignung von Regenwasser in Zisternen (bei sachgemaesser techn. Ausfuehrung) ist fuer die Nutzungsarten WC-Spuelung, Gartenberegnung und Waeschewaschen nicht mehr umstritten. Aus diesem Grunde ist es sinnvoll die Dachablaufwaesser in Regenwassernutzungsanlagen (RWNA) zu sammeln und fuer o.g. Nutzungsarten zu verwenden. Auf diese Art kann teures Trinkwasser eingespart, das Kanalisationsnetz und die techn. Klaerwerke entlastet werden. In vielen Regionen der BRD reicht jedoch der Niederschlag fuer o.g. Nutzungsarten nicht aus, so dass eine Nachspeisung der Zisterne zwingend notwendig wird. Anstelle der Nachspeisung mit Trinkwasser koennte auch gereinigtes Grauwasser zum Einsatz kommen; Voraussetzung: es ist in seiner Beschaffenheit vergleichbar mit Regenwasser. Hauptproblem sind hierbei die hohen Konzentrationen von Tensiden, die ueber die Waschmittel in das Grauwasser gelangen. Ziel des Versuches ist es das Grauwasser mittels bepflanzten Bodenfiltern so gut zu Reinigen, dass die Grenzwerte der EU-RL ueber die Qualitaet der Badegewaesser eingehalten bzw. unterschritten werden koennen.

Komplexe Prozessoptimierung

Fuer chemische Prozesstechnologien wird durch mathematische Optimierungsmethoden der Verbrauch an Waschmitteln und Endenergie simultan minimiert.

Waschmaschine und Waschtrockner

<p>Waschmaschine: Bei Kauf und Nutzung auf Energieeffizienz achten</p><p>Wie Sie Ihre Waschmaschine umweltfreundlich bedienen</p><p><ul><li>In Mehrfamilienhäusern bietet sich die gemeinschaftliche Nutzung einer Waschmaschine an.</li><li>Bevorzugen Sie möglichst eine Waschmaschine statt Waschtrockner, da Waschtrockner deutlich mehr Energie verbrauchen.</li><li>Kaufen Sie eine Waschmaschine mit der möglichst hoher Energieeffizienzklasse – idealerweise Klasse A.</li><li>Achten Sie auf eine zur eigenen Haushaltsgröße passenden Trommelgröße.</li><li>Trugschluss: Tatsächlich sind Kurzprogramme nicht energiesparend, sondern nur zeitsparend. Lange Laufzeiten sind energiesparender.</li><li>Nutzen Sie das "Eco-40-60" Waschprogramm für normale Wäsche.</li><li>Nutzen Sie niedrige Temperaturen (20-30°C) für leicht bis normal verschmutzte Wäsche.</li><li>Bevorzugen Sie ein Gerät mit hoher Schleuderzahl.</li><li>Sofern möglich, reparieren Sie statt neu zu kaufen – die Geräte sind dafür gemacht.</li><li>Entsorgen Sie Ihr Altgerät sachgerecht bei der kommunalen Sammelstelle oder beim Neukauf über den Händler.</li></ul></p><p>Gewusst wie</p><p>Wäsche waschen verbraucht einerseits Energie zum Antrieb der Trommel sowie zum Erhitzen des Wassers, und belastet andererseits die Gewässer durch Faserabrieb, Mikroplastik aus den gewaschenen Textilien und verwendetes Waschmittel. Die Umweltbelastungen können schon beim Kauf durch die Wahl einer geeigneten Waschmaschine reduziert werden. Dabei ist die Länge des Waschgangs weit weniger relevant als die zum Waschen gewählte Temperatur.</p><p><strong>Sparsame Waschmaschine:</strong>&nbsp;Kaufen Sie eine für Ihre Haushaltsgröße möglichst klein dimensionierte und &nbsp;sparsame Waschmaschine mit geringem Strom- und Wasserverbrauch und hoher Schleuderwirkungsklasse. Diese und weitere Angaben finden Sie auf dem EU-Energielabel, mit dem Waschmaschinen europaweit im Handel gekennzeichnet werden müssen. Achten Sie außerdem darauf, dass die Maschine ein Kaltwaschprogramm besitzt (20°C-Programm).</p><p><strong>Energielabel:</strong> Mit Einführung des EU-Energielabels im Jahr 2021 erfolgt die Einordnung auf Basis des Energieverbrauches bzw. der Energieeffizienz in die Klassen A (geringster Verbrauch) bis G (höchster Verbrauch). Besonders energieeffiziente Geräte befinden sich in Klasse A. Das Label bezieht sich zur Bewertung direkt auf einen ECO 40-60 Programmdurchlauf. Es zeigt Angaben zum gewichteten Energieverbrauch (pro 100 Waschzyklen), der Nennkapazität bzw. der Beladungskapazität der Waschmaschine, der Effizienzklasse für Schleudern/Trocknen (Klasse A (gut) bis G (schlecht), den Wasserverbrauch, die und die Geräuschentwicklung (Klasse A (gut) bis D (schlecht) beim Schleudern. Ein QR-Code verlinkt direkt auf die EU-Produktdatenbank (EPREL), wo weitere Informationen über das betreffende Modell verfügbar sind.</p><p><strong>Richtige Trommelgröße:</strong> Paradoxerweise werden die Haushalte kleiner und die Wäschetrommeln größer. Große Wäschetrommeln sind beim Kauf nicht nur teurer, sondern führen auch dazu, dass die Waschmaschine häufig nur teilbeladen wird. Dies macht Einsparungen wieder hinfällig. Große Wäschetrommeln mit 7 kg und mehr Beladung sind deshalb meistens nur für große Haushalte sinnvoll.</p><p><strong>Hohe Schleuderzahl: </strong>Je trockener die Wäsche aus der Waschmaschine kommt, desto weniger Energie braucht sie zum Trocknen. Dadurch sparen Sie im Winter Heizenergie (beim Trocknen auf der Wäscheleine in der Wohnung) oder Strom beim Wäschetrockner. Denn es braucht hundert Mal mehr Energie, Wasser durch Wärme aus der Wäsche zu entfernen als durch Schleudern. Deshalb sollte eine Waschmaschine bestenfalls eine Schleuderdrehzahl von über 1.400 Umdrehungen pro Minute aufweisen.</p><p><p><strong>Umweltschonend Waschen:</strong></p><ol><li>Waschen Sie möglichst nur mit voll beladener Maschine.</li><li>Wählen Sie eine möglichst niedrige Waschtemperatur.</li><li>Dosieren Sie das <a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/haushalt-wohnen/waesche-waschen-waschmittel">Waschmittel</a> nach Empfehlung auf der Waschmittelpackung. So verringern Sie die Umweltbelastung weiter und sparen Geld.</li></ol></p><p><strong>Umweltschonend Waschen:</strong></p><p><strong>Reparierbarkeit:</strong> Mit Aktualisierung der im Internet frei zugänglichen Ökodesign-Produktverordnung für Haushaltswaschmaschinen und -waschtrockner (EU 2019/2023) wurden weitere Aspekte zur Verbesserung der Reparierbarkeit definiert. So müssen leicht kaputt gehende Teile einer Waschmaschine Verbraucherinnen und Verbrauchern und/oder Reparaturbetrieben als Ersatzteil zur Verfügung gestellt werden, und zwar mindestens sieben bis zehn Jahre (abhängig des Bauteils) nachdem die Produktion des jeweiligen Modells eingestellt wurde. Achten Sie zudem auf eine möglichst lange Herstellergarantie.</p><p><strong>Richtig entsorgen:</strong> Weitere Informationen zur richtigen Entsorgung Ihrer Waschmaschine und anderer Elektroaltgeräte finden Sie in unserem ⁠UBA⁠-Umwelttipp&nbsp;<a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/elektrogeraete/alte-elektrogeraete-richtig-entsorgen">"Alte Elektrogeräte richtig entsorgen"</a>.</p><p><strong>Was Sie noch tun können:</strong></p>

Indikator: Eutrophierung von Flüssen durch Phosphor

<p>Die wichtigsten Fakten</p><p><ul><li>An mehr als der Hälfte aller Messstellen an deutschen Flüssen werden zu hohe Phosphor-Konzentrationen gemessen und die ⁠<a href="https://www.umweltbundesamt.de/service/glossar/g?tag=Gewssergte#alphabar">Gewässergüte</a>⁠ muss herabgestuft werden.</li><li>Messstellen mit hohen Konzentrationen sind seit Beginn der 1980er Jahre um rund ein Drittel zurückgegangen. Extreme Belastungen treten nur noch selten auf.</li><li>Ziel der Nachhaltigkeitsstrategie ist es, die Phosphor-Orientierungswerte spätestens 2030 in allen Gewässern einzuhalten.</li><li>Dafür muss die Landwirtschaft ihre Düngepraxis verändern und besonders kleine Kläranlagen die Phosphorelimination an den Stand der Technik anpassen.<br><br></li></ul></p><p>Welche Bedeutung hat der Indikator?</p><p>Die Gewässer Deutschlands sind mehrheitlich in keinem guten Zustand (siehe Indikatoren zum ökologischen Zustand der <a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-oekologischer-zustand-der-fluesse">Flüsse</a>, <a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-oekologischer-zustand-der-seen">Seen</a> und <a href="https://www.umweltbundesamt.de/daten/umweltindikatoren/indikator-oekologischer-zustand-der-uebergangs">Meere</a>). Die Überdüngung der Gewässer (⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>⁠) mit Phosphor ist eines der größten Probleme, weil es ein übermäßiges Wachstum von Algen und Wasserpflanzen auslöst. Sterben diese ab, werden sie von Mikroorganismen zersetzt. Dabei wird viel Sauerstoff verbraucht. Sauerstoffdefizite im Gewässer wirken sich auf Fische und andere aquatische Organismen negativ aus; in Extremsituationen kann es zu Fischsterben führen. Um die Überdüngung zu vermeiden, muss vor allem die Belastung durch Phosphor verringert werden. Der Kartendienst <a href="https://gis.uba.de/maps/resources/apps/acp/index.html?lang=de">„Nährstoffe und Salze“</a> zeigt Auswertungen für ca. 250 Messstellen in deutschen Flüssen.&nbsp;</p><p>Wie ist die Entwicklung zu bewerten?</p><p>Anfang der 1980er Jahre wurden an fast 90 % aller Messstellen überhöhte Phosphorgehalte gemessen. Seit 2018 liegt der Anteil bei knapp 60 %. Betrachtet man die unterschiedlichen Güteklassen, sieht man eine weitere Verbesserung: Insgesamt ist der Anteil der stärker belasteten Gewässer zurückgegangen. Zu dieser Verbesserung haben vor allem die Einführung phosphatfreier Waschmittel und die Phosphatfällung in den größeren Kläranlagen beigetragen.</p><p>Derzeit bestehen Engpässe bei der Lieferung von Fällmitteln (z.B. Aluminiumsalze), mit denen der Phosphor in Kläranlagen aus dem Abwasser entfernt wird. Stehen diese Chemikalien zur Abwasserreinigung nicht in ausreichender Menge zur Verfügung, hat dies eine Erhöhung der Phosphorkonzentrationen im Gewässer zur Folge.</p><p>Nach der europäischen <a href="http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:32000L0060">Wasserrahmenrichtlinie</a> (EU-RL 2000/60/EG) müssen alle Gewässer bis 2027 einen guten ökologischen Zustand erreichen. In Deutschland haben fast zwei Drittel der Gewässer hierfür zu hohe Phosphorgehalte. Um die Einträge in Gewässer zu reduzieren, schreibt die neue <a href="https://www.bmel.de/DE/Landwirtschaft/Pflanzenbau/Ackerbau/_Texte/Duengung.html">Düngeverordnung</a> vor, auf Böden mit hohen Phosphorgehalten wenig Gülle oder phosphorhaltige Mineraldünger auszubringen. In eutrophierten Gebieten können die Anforderungen verschärft werden. Ob dies ausreicht, wird ein Wirkungsmonitoring zeigen. Daneben soll die Abwasserverordnung nach einer Anpassung regeln, dass auch kleine Kläranlagen Phosphor nach dem Stand der Technik entfernen. In größeren Anlagen erfolgt dies bereits. Gemäß Ziel 6.1.a der <a href="https://www.bundesregierung.de/breg-de/themen/nachhaltigkeitspolitik/die-deutsche-nachhaltigkeitsstrategie-318846">Nachhaltigkeitsstrategie</a> der Bundesregierung sind die Orientierungswerte für Phosphor spätestens im Jahr 2030 einzuhalten.</p><p>Wie wird der Indikator berechnet?</p><p>Die Bundesländer übermitteln dem Umweltbundesamt Messwerte von etwa 250 repräsentativen Messstellen. Für die <a href="https://www.umweltbundesamt.de/themen/wasser/gewaesser/fluesse/ueberwachung-bewertung">Einordnung in eine Gewässergüteklasse</a> wird der Mittelwert der Phosphor-Konzentration mit der Konzentration verglichen, die für den guten ökologischen Zustand in dem jeweiligen Gewässertyp nicht überschritten werden sollte <a href="http://www.gesetze-im-internet.de/ogewv_2016/BJNR137310016.html">(OGewV 2016)</a>. Sie liegen je nach ⁠<a href="https://www.umweltbundesamt.de/service/glossar/f?tag=Fliegewssertyp#alphabar">Fließgewässertyp</a>⁠ zwischen 0,1 und 0,15 mg/l Phosphor (bei einem Typ 0,3 mg/l) sowie in Übergangsgewässern bei 0,045 mg/l. Der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/i?tag=Indikator#alphabar">Indikator</a>⁠ entspricht dem Anteil der Messstellen, die diese Orientierungswerte nicht einhalten.</p>

Verfahrenstechnik der Entschwefelung: Untersuchungen zur reduzierenden Rauchgasentschwefelung

Zusatz reduzierender Gase zum Rauchgas mit dem Ziel der Umsetzung zu elementarem Schwefel am Kontakt im Festbett oder in der Wirbelschicht bei 150-350 Grad C. unter Normaldruck: Entfernung des Schwefels in trockenen Abscheidern oder durch ein wasserfreies Waschmittel mit niedrigem Dampfdruck. Vorteile: Anstelle von Gips faellt nur 1/10 bis 1/5 der Masse an verwendbarem Schwefel an: Das Rauchgas muss nicht wiederaufgeheizt werden. Problem: Vermeidung der Emission anderer Bestandteile wie Carbonyl-Sulfid oder Schwefelwasserstoff.

Erstmalige Demonstration einer Mikro- und Nanofiltrationsanlage zur Aufbereitung und Nutzung von Brauch- und Regenwasser in einer Wäscherei mit wissenschaftlicher Begleitung

Zielsetzung und Anlass des Vorhabens: Die ITEX Gaebler-Industrie-Textilflege GmbH & Co. KG ist ein Unternehmen, das sich auf Berufskleidungs- und Textilleasing spezialisiert hat. Vor Projektbeginn fand keine Wasserbehandlung statt. Die Abwasserteilströme wurden gesammelt, zum Hauptkontrollschacht gepumpt und flossen von dort im Überlauf in den Kanal, wobei keine Angaben über die Wassermengen existierten. Ziel des Projektes lag darin, die bestehenden Verbräuche an Wasser, Waschmittel und Energie im Unternehmen mit Hilfe einer optimalen Nutzung der anfallenden Regenwassermengen und der Wiederaufbereitung des Brauchwassers mit Hilfe von Mikro - und Nanofiltration zu minimieren. Der jährliche Verbrauch von ca. 37.000 m3 Frischwasser sollte dabei um ca. 80 % verringert werden. Zusätzlich sollten ca. 15 % der verwendeten Waschmittel eingespart werden. Fazit: Die Vorreinigung von Schmutzwässern vor dem Passieren von Membrantrennanlagen wird von vielen Anlagenherstellern bei Angebotserstellung vernachlässigt; Nachrüstungen wie im vorliegenden Fall sind die mit zusätzlichem Zeit- und Kostenaufwand verbundenen Folgen. Ebenso wird von Anlagenherstellern häufig der Vorversuchsphase zu wenig Bedeutung zugemessen; es sollte bei neuen Anlagenkonzepten darauf geachtet werden, dass ausführliche Versuche an Versuchsanlagen mit Prozesswässern über mehrere Wochen im Betrieb durchgeführt werden. Nur dann kann die Eignung der einzusetzenden Module in Bezug auf die Prozesswasserinhaltsstoffe sicher festgestellt werden. Die Einsparpotentiale im Bereich des Wasserverbrauchs und der Wärmeenergie müssen vor dem Hintergrund der hohen Betriebskosten einer solchen Anlage (Stromverbrauch, Wartung und Reparatur) kritisch betrachtet werden. Für die weitere Optimierung der Anlage wurde in 2004 ein Klärdekanter in den Prozesskreislauf integriert. Zudem wurde die Nanofiltration in eine Umkehrosmose umgewandelt und damit die Reinigungsleistung des Systems stabilisiert.

Entfernung von gelöstem Sauerstoff aus Aminlösungen für die CO2-Abtrennung

MeDORA zielt entsprechend der Vorrangigen Forschungsrichtungen von Mission Innovation auf die beschleunigte Umsetzung umweltfreundlicher Prozesse zur CO2-Abscheidung ab und setzt die im 7. Energieforschungsprogramm 'Innovationen für die Energiewende' des Bundes in Abschnitt 3.15 'Technologien für die CO2-Kreislaufwirtschaft' genannte Zielsetzung der Weiterentwicklung von Komponenten und Werkstoffen für die CO2-Abtrennung konsequent um. In MeDORA soll mittels eines innovativen Membranverfahrens der in Amin-Waschmitteln von CO2-Abtrennungsanlagen gelöste Sauerstoff entfernt werden, um die oxidative Waschmittelzersetzung um 50% zu reduzieren und darüber hinaus den O2-Gehalt im abgetrennten CO2 auf kleiner als 10 ppmv zu begrenzen. Die angestrebte Erhöhung der Waschmittellebensdauer lässt eine Senkung der Betriebskosten für das Waschmittelmanagement um bis zu 70 % erwarten und kann damit die Umweltauswirkungen einer Abscheidungsanlage durch geringe Abfallmengen beim Waschmittelmanagement (Reclaiming) und reduzierte Emissionen (insbesondere des flüchtigen Zersetzungsprodukts NH3) deutlich senken. Die höhere Reinheit des CO2-Produkts erlaubt es die strengen Spezifikationen geologischer Speicherprojekte (z.B. Northern Lights in Norwegen) ohne aufwändige Nachbehandlung zu erfüllen und senkt entsprechend auch die Kosten für CCU-Anwendungen, bei denen O2-Spuren Katalysatoren schädigen. MeDORA, mit 6 Partnern aus 3 europäischen Ländern, wird von einem starken industriebasierten Konsortium geleitet, das die gesamte Wertschöpfungskette abdeckt. Die Langzeittests von MeDORA (TRL 7-8) in Niederaußem, hier erstmalig auch mit innovativen asymmetrischen Membranen, und bei HVC in den Niederlanden stellen die industrielle Anwendbarkeit sicher und werden begleitet von technisch-wirtschaftlichen Analysen, LCA, Vergleich mit anderen Techniken zur O2-Reduzierung im Waschmittel und im Produkt-CO2, werkstoffwissenschaftlichen Untersuchungen sowie der Entwicklung eines Verwertungsplanes.

Erzielung geschlossener Stoffkreislaeufe bei der Herstellung von Grundseife

Einsparpotenziale durch automatische Dosierung bei Waschmaschinen

Die Umweltauswirkungen durch das Wäschewaschen in privaten Haushalten werden zum größten Teil durch den Energie- und den Waschmittelverbrauch während der Nutzungsphase von Waschmaschinen verursacht.Innerhalb der letzten Jahrzehnte konnten die Umweltauswirkungen, die durch den Energie-, Wasser- und Waschmittelverbrauch für das Wäschewaschen in privaten Haushalten verursacht werden, durch verschiedene Entwicklungen kontinuierlich gesenkt werden (z.B. Verringerung des Wasser- und Stromverbrauchs pro Waschgang, Entwicklung kompakter und superkompakter Waschmittel). Allerdings werden Waschmaschinen häufig zu gering beladen: die durchschnittliche Beladung von Waschmaschinen liegt zwischen 3 und 4 kg Wäsche pro Waschgang, teilweise sogar erheblich darunter. Moderne Waschmaschinen reduzieren zwar den Wasser- und Stromverbrauch bei Minderbeladung, allerdings liegt der Verbrauch pro Kilogramm Wäsche trotzdem höher. Auch bei der Waschmitteldosierung berücksichtigen die Verbraucher die tatsächliche Beladung nicht genügend und dosieren dadurch meist zu viel Waschmittel. Darüber hinaus fällt es den Benutzern schwer, den Verschmutzungsgrad der Wäsche richtig zu beurteilen und bei der Waschmitteldosierung zu berücksichtigen. Vor diesem Hintergrund wurde von Miele ein automatisches Dosiersystem ('LiquidWash-Technologie') entwickelt, das die automatische Dosierung von Flüssigwaschmittel hinsichtlich der tatsächlichen Beladung der Waschmaschine und des durch den Nutzer vor jedem Waschgang einzugebenden Verschmutzungsgrads der Wäsche mit hoher Genauigkeit ermöglicht. In der vorliegenden Studie wurden die durch diese automatische Dosierung möglichen Einsparungen an Waschmittel sowie die damit verbundenen Umweltauswirkungen im Vergleich zu manueller Dosierung quantifiziert.

Neue Quellen zur Erstellung hochölsäurehaltiger Sonnenblumen

Im Gegensatz zu klassischen Sonnenblumen enthalten HO-Sonnenblumen ein Öl mit einem Anteil der Ölsäure (C18:1) von über 75 Prozent. Gleichzeitig ist der Gehalt an Linolsäure (C18:2) deutlich reduziert. HO-Öl kann sowohl im Nahrungsmittelbereich, als Brat-, Frittierfett oder Salatöl, als auch in technisch-chemischen Anwendungen, z.B. für Tenside in Waschmitteln, oder zur Erstellung von Kunststoffen, verwendet werden. Im Rahmen eines Kooperationsprojektes mit der LSA wurde am Institut für Molekulare Physiologie und Biotechnologie der Pflanzen (IMBIO) der Universität Bonn (Arbeitsgruppe Prof. H. Schnabl) eine partielle Protoplastenfusion zwischen H. maximiliani und H. annuus durchgeführt. Die aus der Fusion entstandenen Pflanzen (P0) wurden in Bonn getestet. Die P1-Generation wurde ab 2002 an der Landessaatzuchtanstalt (LSA) weitergeführt. An den P2-Samen wurden Fettsäureanalysen durchgeführt. Dadurch wurden zwei Pflanzen (HO-Max1, HO-Max2) gefunden, die erhöhte Ölsäuregehalte aufwiesen (größer 80 Prozent). Beide Pflanzen gehen auf unterschiedliche Fusionsprodukte zurück. Im Sommer 2003 wurden Samen weitergeführt, die zuvor mittels Halbkornanalytik auf hohen Ölsäuregehalt selektiert wurden. Um herauszufinden, ob sich diese Pflanzen von den beiden weiteren HO-Quellen der Sonnenblume (Pervenets, HA435) unterscheiden, wurden Kreuzungen zwischen Pflanzen mit unterschiedlichen HO-Quellen durchgeführt. Stand der Arbeiten: Die bisher vorliegenden Ergebnisse deuten auf unterschiedliche, aber eng gekoppelte Gene hin, die in den unterschiedlichen HO-Quellen verantwortlich sind für die Ausprägung des Merkmals hochölsäurehaltig.

1 2 3 4 535 36 37