API src

Found 368 results.

Related terms

Qualität von Früchten der Cucurbitaceen im Klimawandel, Qualität von Früchten der Cucurbitaceen im Klimawandel

In QCuK werden Zucchini-Sorten hinsichtlich ihrer Ertragsleistung, ihrer abiotischen Stresstoleranz, ihrer Produktqualität und Lebensmittelsicherheit unter Trockenstress charakterisiert. Es sollen dabei geeignete Verfahren zur nicht-invasiven Phänotypisierung von Wachstum, Morphologie und Physiologie im Jungpflanzenstadium entwickelt werden, so dass diese weiterführend unter praxis-nahen Anbaubedingungen in den Vergleich kontrastierender Sorten und Linien einfließen und evaluiert werden. In ökologischer Bewirtschaftung werden ausgewählte Sorten und Linien an fünf Standorten über die Projektlaufzeit verglichen, um Verfahren zur Selektion von Trockenstress toleranten Sorten sowie zur Bestimmung qualitätsbeeinflussenden Faktoren zu entwickeln, um sowohl den Erwerbsgemüsebau als auch den Züchtungsprozess samenfester Sorten zu unterstützen. Dabei sollen auch on-farm Züchtungsverfahren in biologisch-dynamischer Bewirtschaftung angewandt werden und mit weiteren Ergebnissen des Projektes verglichen werden. Ergänzend wird auch die stress- bzw. witterungsbedingte Qualitätsveränderung der Früchte erfasst, um Pflanzeninhaltsstoffe, wie wertgebende Vitamine, und Flavonoide oder bittere Cucurbitacine, zu bewerten. Zur Evaluierung der Erkenntnisse findet ein praxisrelevanter Austausch zum ökologischen Erwerbsgemüsebaus statt. In QCuK sollen die Züchtung von zukunftsfähigen samenfesten Sorten unterstützt, gute Erträge von Gemüsesorten sowie schmackhafte, gesunde, bekömmliche und bitterfreie Früchte auch in zukünftigen Klimaszenarien sichergestellt und Qualitätsveränderungen unter prognostizierten Witterungsbedingungen rechtzeitig abgeschätzt werden.

Klimaerlebnisbaum - Rottendorf - Tilia

Im Rahmen des Forschungsprojekts "Klimaerlebnis Würzburg" am Zentrum Stadtnatur und Klimaanpassung (ZSK) wurden im Jahr 2018 acht Messstationen in Würzburg und Gerbrunn eingerichtet. Diese zeichnen seitdem an jedem Standort das Wetter und/oder die Leistungen der dortigen Bäume auf. Das Forschungsprojekt endete im Jahr 2022. Die Messstationen, durch orangefarbene Baumfässer erkennbar, werden seitdem aber weitergeführt.Das Projekt sollte aufzeigen,inwieweit sich das Klima und die Leistung der Bäume an verschiedenen Standorten in der Stadt unterscheiden undinwieweit sich Stadtbäume und Klima an einem Standort gegenseitig beeinflussen.Die bis heute weiter aufgezeichneten Messergebnisse sollen verdeutlichen, wie mit Hilfe von Bäumen und ihrer Ökosystemdienstleistungen die nachhaltige Stadt der Zukunft an die Folgen des Klimawandels angepasst werden kann. Zudem kann die Öffentlichkeit mit diesen Datenreihen für das Thema Stadtklima und Stadtgrün sensibilisiert werden. Um dies voranzutreiben, werden davon ausgewählte Datenspalten seit November 2024, unbereinigt und zu stündlichen Daten automatisiert zusammengefasst, hier auf dem Open Data Portal Würzburg veröffentlicht.An der Station in Rottendorf sind mehrere Bäume der Art Robinia und Linde Tilia mit Sensoren versehen. Die Daten einer der Linden stehen in diesem Datensatz in der oben beschriebenen, verarbeiteten Form zur Verfügung.Allgemeines zu den Standorten wie der grobe Messaufbau, Hinweise zur Datennutzung und Verlinkungen zu weiterführenden Papern finden Sie im Folgenden.Messaufbau des Baumlabors und der WetterstationMithilfe des Saftflusssensors (1) kann der Wasserverbrauch des Baums bestimmt werden. Davon lässt sich die Kühlleistung durch Verdunstung ableiten und der Trockenstress abschätzen. Im Kronenraum wird die Temperatur für den Vergleich mit der Klimastation gemessen (2), um die Abkühlwirkung des Baumes zu bestimmen. Das Dendrometer (3) misst das Dickenwachstum des Stammes. Dadurch kann man berechnen, wieviel der gesamte Baum an Biomasse zunimmt und an CO2speichert. Der Bodenfeuchtesensor (4) misst den Wassergehalt im Wurzelraum. Damit kann auf die Wasserversorgung des Baumes geschlossen werden.Der Temperatur- und Feuchtesensor (6) misst die Lufttemperatur und die relative Luftfeuchtigkeit. Der Windsensor (7) erfasst Windrichtung und Windgeschwindigkeit. Mit diesen beiden Messgrößen kann der Frischlufteintrag, aber auch die Anströmungsrichtung festgestellt werden. Der Strahlungssensor (8) misst, wieviel Energie die Sonne am Erdboden freisetzt. Mit diesem Wert lässt sich feststellen, wie stark sich Flächen aufheizen. Ebenso lässt sich hiermit die photosynthetische Leistung des Baumes bestimmen. Aus Temperatur, Luftfeuchte, Windgeschwindigkeit und Solarstrahlung lässt sich die gefühlte Temperatur berechnen. Der Niederschlagssensor (9) erfasst Regen und Schnee.In den Datenloggern (10) werden die Messwerte gesammelt, gespeichert und alle 10 Minuten online versendet, um sie auf dem Smart City Hub Würzburg zu speichern und hier auf dem Open Data Portal stündlich aggregiert darzustellen. Bei einigen der Wetterstationen ist zudem ein Luftdruck-Barometer verbaut.Hinweis:Bei den zur Verfügung gestellten Daten handelt es sich um eine automatisiert abgeänderte Version der Rohdaten der einzelnen Stationen. Eine Qualitätskontrolle durch den Plattformbetreiber findet vorab nicht statt. Es ist daher punktuell mit Messfehlern und Messlücken zu rechnen. Für die Korrektheit der Daten wird keine Haftung übernommen. Quellenangabe:Quelle im Rohdatenformat: [Bis 01.12.2024 12 Uhr](https://opendata.smartandpublic.eu/datasets/a00d7121-fc5b-4b4d-ad19-5b0e3689b5dd?locale=en#state=011dcbe3-d7f2-4512-ac48-b8d08b563e01&session_state=45ffef6b-701d-4846-ac6d-9af6d7c6ff80&iss=https%3A%2F%2Fidp.smartcityhub.smartandpublic.eu%2Frealms%2Fsmartcityhub&code=a85c0ca8-b9b3-4785-bd45-11b0d3201e34.45ffef6b-701d-4846-ac6d-9af6d7c6ff80.cc28098c-2fc1-472b-a4ca-77a8ebde7f28)Autor(en): Projekt Klimaerlebnis Würzburg (2018-2022), Stadt Würzburg (2023-jetzt)Hinweis: Es gelten keine zusätzlichen Bedingungen.Für weiterführende Informationen, lesen Sie die aus dem Projekt "Klimaerlebnis Würzburg" hervorgegangenen Paper:Hartmann, Christian, et al. "The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020; The footprint of heat waves and dry spells in the urban climate of Würzburg, Germany, deduced from a continuous measurement campaign during the anomalously warm years 2018–2020." Meteorologische Zeitschrift 32.1 (2023): 49-65.Rahman, M.A., Franceschi, E., Pattnaik, N. et al. Spatial and temporal changes of outdoor thermal stress: influence of urban land cover types. Sci Rep 12, 671 (2022). [https://doi.org/10.1038/s41598-021-04669-8](https://doi.org/10.1038/s41598-021-04669-8)Rahman, Mohammad A., et al. "Tree cooling effects and human thermal comfort under contrasting species and sites." Agricultural and Forest Meteorology 287 (2020): 107947.Rötzer, T., et al. "Urban tree growth and ecosystem services under extreme drought." Agricultural and Forest Meteorology 308 (2021): 108532.Bildquelle und mehr Informationen zu den Messstationen: [Webarchiv: Klimaerlebnis Würzburg](https://webarchiv.it.ls.tum.de/klimaerlebnis.wzw.tum.de/das-projekt/index.html)

Züchtung von Apfelsorten mit Resistenz gegenüber Klima-bedingtem Stress, Teilprojekt D

Die deutsche Apfelproduktion steht vor einer Vielzahl an Herausforderungen. Nachhaltige Produktion oder auch Ökologisierung der Landwirtschaft und Resilienz gegenüber Auswirkungen des Klimawandels sind nur einige der Forderungen, denen sich die Produzenten neben der wachsenden internationalen Konkurrenz am Markt stellen müssen. Um diesen Forderungen gerecht zu werden und in Deutschland alle Kräfte zu fördern, die sich mit Apfelzüchtung befassen, wird ein Verbund aus institutionellen Züchtern und vielen der derzeit existierenden privaten Züchtungsinitiativen, der Fachgruppe Obstbau im Bundesausschuss Obst und Gemüse und der Fördergemeinschaft Ökologischer Obstbau e.V. (FOEKO) angestrebt, der sich den Herausforderungen gemeinsam stellen will. Dieser Verbund setzt sich als erstes Ziel die Realisierung des Projektes ApRésKlimaStress. In ApRésKlimaStress sollen durch phänotypische Evaluierungen und die Genotypisierung genetischer Ressourcen bei Apfel neue Quellen für Mehltau- und Schorfresistenz identifiziert werden, da nur wenig Resistenzen zur Verfügung stehen, die noch nicht gebrochen sind. Für die Bekämpfung dieser klimarelevanten Schaderreger sind im Erwerbsobstbau bis zu 20 Pflanzenschutzmittelbehandlungen pro Saison notwendig, was den ökologischen Fußabdruck der Produktion deutlich erhöht. Die Züchtung von Sorten mit pyramidisierten Resistenzen gegenüber beiden Schaderregern auch unter Nutzung kolumnarer Apfelsorten, die eine erhöhte Resilienz gegenüber Trockenstress ermöglichen, wird als Möglichkeit gesehen den oben genannten Herausforderungen zu begegnen. Als weitere Resistenzquelle wird auch die Nichtwirtsresistenz von Apfel/Birnenhybriden evaluiert. Ziel ist die Entwicklung von kostengünstigen und einfach umsetzbaren molekularen Markers: KASP-Assays, die von allen Partnern unabhängig, je nach der eigenen Züchtungsstrategie kombiniert und genutzt werden können. Die Umsetzung der Analysen kann dann bei unabhängigen Anbietern beauftragt werden.

Züchtung von Apfelsorten mit Resistenz gegenüber Klima-bedingtem Stress

Die deutsche Apfelproduktion steht vor einer Vielzahl an Herausforderungen. Nachhaltige Produktion oder auch Ökologisierung der Landwirtschaft und Resilienz gegenüber Auswirkungen des Klimawandels sind nur einige der Forderungen, denen sich die Produzenten neben der wachsenden internationalen Konkurrenz am Markt stellen müssen. Um diesen Forderungen gerecht zu werden und in Deutschland alle Kräfte zu fördern, die sich mit Apfelzüchtung befassen, wird ein Verbund aus institutionellen Züchtern und vielen der derzeit existierenden privaten Züchtungsinitiativen, der Fachgruppe Obstbau im Bundesausschuss Obst und Gemüse und der Fördergemeinschaft Ökologischer Obstbau e.V. (FOEKO) angestrebt, der sich den Herausforderungen gemeinsam stellen will. Dieser Verbund setzt sich als erstes Ziel die Realisierung des Projektes ApRésKlimaStress. In ApRésKlimaStress sollen durch phänotypische Evaluierungen und die Genotypisierung genetischer Ressourcen bei Apfel neue Quellen für Mehltau- und Schorfresistenz identifiziert werden, da nur wenig Resistenzen zur Verfügung stehen, die noch nicht gebrochen sind. Für die Bekämpfung dieser klimarelevanten Schaderreger sind im Erwerbsobstbau bis zu 20 Pflanzenschutzmittelbehandlungen pro Saison notwendig, was den ökologischen Fußabdruck der Produktion deutlich erhöht. Die Züchtung von Sorten mit pyramidisierten Resistenzen gegenüber beiden Schaderregern auch unter Nutzung kolumnarer Apfelsorten, die eine erhöhte Resilienz gegenüber Trockenstress ermöglichen, wird als Möglichkeit gesehen den oben genannten Herausforderungen zu begegnen. Als weitere Resistenzquelle wird auch die Nichtwirtsresistenz von Apfel/Birnenhybriden evaluiert. Ziel ist die Entwicklung von kostengünstigen und einfach umsetzbaren molekularen Markers: KASP-Assays, die von allen Partnern unabhängig, je nach der eigenen Züchtungsstrategie kombiniert und genutzt werden können. Die Umsetzung der Analysen kann dann bei unabhängigen Anbietern beauftragt werden.

Züchtung von Apfelsorten mit Resistenz gegenüber Klima-bedingtem Stress, Teilprojekt B

Die deutsche Apfelproduktion steht vor einer Vielzahl an Herausforderungen. Nachhaltige Produktion oder auch Ökologisierung der Landwirtschaft und Resilienz gegenüber Auswirkungen des Klimawandels sind nur einige der Forderungen, denen sich die Produzenten neben der wachsenden internationalen Konkurrenz am Markt stellen müssen. Um diesen Forderungen gerecht zu werden und in Deutschland alle Kräfte zu fördern, die sich mit Apfelzüchtung befassen, wird ein Verbund aus institutionellen Züchtern und vielen der derzeit existierenden privaten Züchtungsinitiativen, der Fachgruppe Obstbau im Bundesausschuss Obst und Gemüse und der Fördergemeinschaft Ökologischer Obstbau e.V. (FOEKO) angestrebt, der sich den Herausforderungen gemeinsam stellen will. Dieser Verbund setzt sich als erstes Ziel die Realisierung des Projektes ApRésKlimaStress. In ApRésKlimaStress sollen durch phänotypische Evaluierungen und die Genotypisierung genetischer Ressourcen bei Apfel neue Quellen für Mehltau- und Schorfresistenz identifiziert werden, da nur wenig Resistenzen zur Verfügung stehen, die noch nicht gebrochen sind. Für die Bekämpfung dieser klimarelevanten Schaderreger sind im Erwerbsobstbau bis zu 20 Pflanzenschutzmittelbehandlungen pro Saison notwendig, was den ökologischen Fußabdruck der Produktion deutlich erhöht. Die Züchtung von Sorten mit pyramidisierten Resistenzen gegenüber beiden Schaderregern auch unter Nutzung kolumnarer Apfelsorten, die eine erhöhte Resilienz gegenüber Trockenstress ermöglichen, wird als Möglichkeit gesehen den oben genannten Herausforderungen zu begegnen. Als weitere Resistenzquelle wird auch die Nichtwirtsresistenz von Apfel/Birnenhybriden evaluiert. Ziel ist die Entwicklung von kostengünstigen und einfach umsetzbaren molekularen Markers: KASP-Assays, die von allen Partnern unabhängig, je nach der eigenen Züchtungsstrategie kombiniert und genutzt werden können. Die Umsetzung der Analysen kann dann bei unabhängigen Anbietern beauftragt werden.

Untersuchung der Auswirkungen unterirdischer hydrologischer Prozesse und interindividueller Interaktionen auf den Wasserstress von Bäumen durch gekoppelte ökohydrologische-pflanzenhydraulische Modellierung

Wie das jüngste dürrebedingte Waldsterben und der Waldwachstumsrückgang in Europa und auf der ganzen Welt zeigen, hat der Klimawandel verheerende Auswirkungen auf die Waldökosysteme. Daher werden dringend neue Strategien zur Stabilisierung bestehender Wälder benötigt. Eine zentrale Herausforderung für die Waldbewirtschaftung besteht darin, dass die meisten Vorhersagen zur Abschätzung des Trockenstresses in Wäldern auf vereinfachten Ansätzen auf der Bestandsebene beruhen, wodurch verschiedene potenziell wichtige unterirdische Prozesse vernachlässigt werden. In diesem Projekt werden die Auswirkungen zweier solcher unterirdischer Prozesse—(i) die Dynamik des tiefen Wassers und (ii) die Artenmischung—auf die Widerstandsfähigkeit von Waldökosystemen gegenüber Wasserstress mit Hilfe eines gekoppelten ökohydrologisch-pflanzenhydraulischen Modells untersucht, das durch Felddaten zu stabilen Wasserisotopen, Wasserstress der Bäume und Saftfluss, die in diesem Projekt gesammelt wurden, sowie durch Synergien mit laufenden Projekten aus Deutschland und Frankreich ergänzt wird. Die Innovation dieses gekoppelten Modells besteht darin, dass der Schwerpunkt auf trockenheitsbedingten Prozessen in den Pflanzen und im Boden liegt. Das Projekt besteht aus vier Arbeitspaketen (APs), die von vier Arbeitsgruppen (zwei in Deutschland und zwei in Frankreich) geleitet werden. Das erste AP wird stabile Wasserisotopenmessungen nutzen, um unterirdische Prozesse im Feld zu untersuchen. Diese Messungen werden zur Information und Validierung der Berechnungsmodelle verwendet, die im zweiten und dritten Arbeitspaket entwickelt werden. Darüber hinaus werden Daten, die im Rahmen laufender Forschungsprojekte gesammelt wurden, für die Modellierung herangezogen. Das zweite AP wird ein ökohydrologisches und ein pflanzenhydraulisches Modell miteinander koppeln, um die topographischen Einflüsse auf das tiefe Wasser in einer räumlich verteilten Weise zu untersuchen. Das dritte AP wird ein pflanzenhydraulisches Multispeziesmodell entwickeln, um die Auswirkungen der Artenmischung auf die Widerstandsfähigkeit der Wälder gegen Trockenheit zu untersuchen. Schließlich wird das vierte AP eine detaillierte modellgestützte Fallstudie in den Vogesen, Frankreich, durchführen, wo sowohl topografische Einflüsse als auch interindividueller Wettbewerb eine wichtige Rolle für die Muster der Baumsterblichkeit spielen dürften. Das Projekt wird wertvolle Einblicke in zwei bisher wenig erforschte Komponenten der Widerstandsfähigkeit von Wäldern gegen Trockenheit liefern und mit dem gekoppelten ökohydrologisch-pflanzenhydraulischen Modell ein neuartiges Instrument für zukünftige Trockenheitsstudien bereitstellen. Außerdem erwarten wir, dass dieses Projekt die Zusammenarbeit zwischen den französischen und deutschen Gruppen stärkt, was zu künftigen gemeinsamen Forschungsanstrengungen führen soll.

Analyse der geoökologischen Steuerungsfaktoren für die Verbreitung von Waldstandorten und diskontinuierlichem Permafrost unter den Einflüssen von Waldbränden, Waldnutzung und Klimaentwicklung in den Waldsteppen der zentralen Mongolei

Trockenphasen, Waldbrände und nicht-nachhaltige Nutzung haben in den letzten Jahrzehnten zu einem erheblichen Verlust an Waldfläche in der Mongolei geführt. Dieser weiterhin fortschreitende Verlust verläuft nicht gleichförmig. Es ist eine deutliche Differenzierung durch verschiedene Faktoren erkennbar, insbesondere durch Topographie, Hydrologie, Permafrost, Bodeneigenschaften und anthropogene Einflüsse. Dieses Projekt zielt auf die Identifikation der Kausalzusammenhänge zwischen der Konstellation der an einem Standort wirksamen geoökologischen und anthropogenen Faktoren einerseits und den Mustern des diskontinuierlichen Permafrosts, der Waldverbreitung, des Auftretens von Waldbränden und der Sukzession der Vegetation nach einem Brand (zurück zu Wald oder aber zu Steppe) andererseits ab. Dabei werden auch gegenseitige Wechselwirkungen (z. B. Permafrost - Wald / Wald - Permafrost) berücksichtigt. Anhand von sechs Hypothesen werden die zugrundeliegenden Kausalketten mittels einer Kombination verschiedener methodischer Ansätze analysiert. Die aktuelle Faktorenkonstellation wird über geomorphologische und bodenkundliche Kartierungen, Vermessung der Verbreitung und Tiefenlage des Permafrosts mittels Georadar, Vegetationsaufnahmen, Analyse von Fernerkundungsdaten, Reliefparametrisierung und Biomassebestimmung erfasst. Im gewählten Untersuchungsgebiet im nördlichen Khangai-Gebirge, zwischen der Ortschaft Tosontsengel im Norden und dem Khangai-Hauptkamm im Süden, treten regelmäßig Waldbrände auf. Seit Mitte des letzten Jahrhunderts erfolgt intensiver Holzeinschlag. In natürlichen und anthropogen genutzten Wäldern sowie auf Waldbrandflächen werden die Nutzungs- und Waldbrandgeschichte, Bodeneigenschaften, Tiefenlage des Permafrostes, Hydrologie und Vegetation analysiert. Holzkohle, fossile Böden und äolische Decksedimente dienen in Kombination mit Lumineszenz- und Radiokarbondatierungen zur Rekonstruktion der Wald- und Landschaftsgeschichte in der Zeit vor den intensiven anthropogenen Eingriffen. Diese Rekonstruktion wird zur Ermittlung des Ausmaßes des menschlichen Einflusses innerhalb des Wirkungsgefüges der verschiedenen wirksamen Faktoren auf die Vegetationsmuster herangezogen. Im nächsten Schritt werden die erfassten geoökologischen Parameter geostatistisch ausgewertet. Dabei werden Klima-, Gesteins-, Boden- und Reliefeinflüsse (Exposition, Hangposition, Reliefform etc.) auf Vegetationsmuster herausgearbeitet und auf der Basis von Digitalen Geländemodellen und multispektralen Satellitenszenen flächenhaft modelliert. Anschließend wird geprüft, wie sich diese Ergebnisse mit Satellitendaten mittlerer Auflösung in einen größeren räumlichen Kontext übertragen lassen. Auf Basis der identifizierten Kausalzusammenhänge werden Gebiete mit entsprechenden Gefährdungspotentialen in Bezug auf Trockenstress, Brandgefahr und Sukzessionsbarrieren für fragmentierte Waldstandorte ausgewiesen und Prognosen für die weitere Vegetations- und Permafrostentwicklung erstellt.

Wachstum und Trockenstress: Was verrät die Zellstruktur der Jahrringe über die Wasserversorgung der Bäume?

Der Prozess der Jahrringbildung wird durch innere und äußere Faktoren gesteuert. In diesem Kooperations-Forschungsvorhaben zwischen dem Institut für Waldwachstum und der Forstlichen Versuchs- und Forschungsanstalt Baden-Württemberg (FVA), Freiburg untersuchen wir die Zellstruktur der Jahrringe von Fichten (Picea abies) und Buchen (Fagus sylvatica) mit besonderem Augenmerk auf Trockenstressreaktionen in den Jahren 1976 und 2003 sowie deren Nachwirkungseffekte. Die Untersuchungsbäume wurden an verschiedenen Standorten der Bodenzustandserfassung (BZE) sowie des intensiven Waldmonitorings (Level II) in Baden-Württemberg ausgewählt. Damit ist es möglich, standortangepasste Bodenwasserhaushaltsmodelle für die Untersuchungsstandorte zu parametrisieren und damit die Wasserverfügbarkeit der Bäume zu rekonstruieren. Das Ziel dieser jahrringbasierten Forschungsarbeit besteht darin, Zellparameter zu identifizieren, anhand derer Trockenstress-Intensitäten quantifiziert werden können. Zudem liefern die Auswertungen Daten und Informationen für die Validierung von Geländewasserhaushaltsmodellen.

Regulationsmechanismen der ABA-regulierten Genexpression bei Trockenstress

Das Pflanzenhormon Abszisinsäure (ABA) hat eine wichtige Rolle bei der Samenreifung und -keimung sowie bei der Anpassung an abiotische Streßfaktoren. Im Mittelpunkt des beantragten Forschungsprojekts steht die Identifizierung von Intermediärprodukten, die die Genexpression so steuern, daß Pflanzen eine besondere Anpassung an Trockenstreß zeigen. Diese Untersuchungen sollen von der extrem trockentoleranten Pflanze Craterostigma plantagineum ausgehen, die schon eingehend untersucht worden ist im Hinblick auf ABA induzierte Genexpression, die relevant ist für Trockentoleranz. In dem vorgeschlagenen Projekt sollen zwei wesentliche experimentelle Ansätze verfolgt werden: 1. Mit Hilfe des Hefe-Ein-Hybrid Systems sollen neue Faktoren gefunden werden, die mit Promotorelementen interagieren, die für die ABA Induktion relevant sind. 2. Eine mutagenisierte transgene Arabidopsislinie, die einen ABA induzierbaren C. plantagineum Promotor, gekoppelt an Reportergen, enthält, soll zur Suche von regulatorischen Mutanten in der ABA induzierten Genexpressionskaskade benutzt werden. Bei einer Mutation zeigt das Reportergen ein verändertes Expressionsmuster

Schwerpunktprogramm (SPP) 1158: Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas; Bereich Infrastruktur - Antarktisforschung mit vergleichenden Untersuchungen in arktischen Eisgebieten, Funktionelle Metatranskriptomik antarktischer Bodenkrustenalgen: Identifizierung von Schlüsselgenen für das Überleben der Algen unter den extremen Bedingungen der Antarktis

Terrestrische Grünalgen sind typische und häufige Komponenten biologischer Bodenkrusten der Polarregionen. Biologische Bodenkrusten bilden wasserstabile Aggregate und üben ökologisch wichtige Funktionen hinsichtlich Primärproduktion, Stickstofffixierung, Nährstoffkreislauf, Wasserretention und Bodenstabilisierung aus. Obwohl kaum Daten über Grünalgen in der Arktis und Antarktis vorliegen, wird ihre funktionelle Bedeutung als Ökosystem-Entwickler nährstoffarmer Gebiete als sehr hoch eingeschätzt. Die Biodiversität der Algen und Cyanobakterien polarer Bodenkrusten ist in den letzten Jahren zum ersten Mal von uns mit klassischen und molekularen Methoden (Metatranskriptomik und Metabarcoding) untersucht worden. In dem neuen Projekt wollen wir nun den physiologischen Zustand von Bodenkrusten der Antarktis aus Metatranskriptomen ermitteln. Dazu wollen wir die Sequenzen der Metatranskriptome einzelnen Arten (Gattungen, Familien oder anderen systematischen Kategorien) zuordnen und funktionell qualitativ und quantitativ untersuchen. Neben Datenbankvergleichen (KOG, KEGG, GO) können die spezifischen Submetatranskriptome auch mit den unter unterschiedlichen Laborbedingungen (Flüssigkultur/Agarplatten Kultur, Trockenstress, Temperaturstress, Lichtstress) gewonnenen Transkriptomen von Klebsormidium und sowie den in diesem Projekt geplanten neuen Transkriptomen je zweier antarktischer Klebsormidium und Coccomyxa Arten verglichen werden. Diese Daten werden erstmals einen molekularen Einblick in die Physiologie arktischen Arten in-situ im natürlichen Habitat zum Zeitpunkt der Probennahme und die Identifizierung von Schlüsselgenen für das Überleben in der Antarktis ermöglichen.

1 2 3 4 535 36 37