s/nichtionisierende-strahlen/Nichtionisierende Strahlen/gi
Das Bundes-Amt für Strahlen-Schutz stellt sich vor - Informationen in Leichter Sprache - Dieses Zeichen ist ein Gütesiegel. Texte mit diesem Gütesiegel sind leicht verständlich. Leicht Lesen gibt es in drei Stufen. B1: leicht verständlich - A2: noch leichter verständlich - A1: am leichtesten verständlich Das BfS arbeitet für die Sicherheit und den Schutz vor verschiedenen Strahlungen. Strahlung ist eine Art von Energie. Sie breitet sich überall aus und man kann sie meistens nicht sehen. Bei der Sonnen-Strahlung kann man zum Beispiel nur das Licht sehen. Sie kann auch durch manche Dinge hindurch gehen. Zum Beispiel Röntgen-Strahlung. Röntgen-Strahlung geht durch die Haut und die Muskeln. Auf Bildern kann man dann die Knochen sehen. So kann ein Arzt oder eine Ärztin erkennen, ob jemand sich zum Beispiel einen Arm oder ein Bein gebrochen hat. Wenn Strahlung sehr hoch ist, kann das für die Gesundheit von allen Lebewesen gefährlich sein. Man kann zum Beispiel Krebs davon bekommen. Die Aufgabe vom BfS ist es die Menschen und die Umwelt vor Schäden zu schützen, die durch Strahlungen entstehen können. In Kern-Kraft-Werken wird Strom gemacht. In bestimmten Teilen von einem Kern-Kraft-Werk ist die Strahlung sehr hoch. Bei einem Unfall kann es passieren, dass Strahlung in die Umgebung kommt. Das BfS hat Pläne gemacht, was man bei so einem Unfall machen muss. Das BfS kümmert sich auch darum, dass Gefahren verhindert werden. Es gibt Geräte und Einrichtungen, die mit Strahlung arbeiten. Diese müssen sicher sein. Dabei hilft das BfS . Solche Geräte können zum Beispiel Röntgen-Geräte in der Medizin oder bei Gepäck-Kontrollen am Flughafen sein. Es ist dem BfS wichtig, dass die Bevölkerung vor Strahlen-Belastungen geschützt ist. Es sollen auch alle Personen sicher sein, die am Arbeitsplatz mit Strahlung zu tun haben. Das sind zum Beispiel die Mitarbeiterinnen und Mitarbeiter von der Gepäck-Kontrolle, Mitarbeiterinnen und Mitarbeiter in Kern-Kraft-Werken. Außerdem sollen alle Patientinnen und Patienten in der Medizin vor hohen Strahlen-Belastungen geschützt sein. Welche Strahlung gibt es? Es gibt 2 unterschiedliche Arten von Strahlung: Die ionisierende Strahlung und die nicht-ionisierende Strahlung . Wenn Menschen mit Strahlung zu tun haben, sollen sie sicher und geschützt sein. Das ist die Aufgabe vom BfS . Was ist ionisierende Strahlung? Ionisierende Strahlung kann in der Natur vorkommen. Zum Beispiel in großen Höhen. Dort kommt die ionisierende Strahlung aus dem Weltall. Ionisierende Strahlung kann auch von Menschen künstlich gemacht werden. Zum Beispiel: Wenn man einen Atom-Kern in mehrere Teile zerlegt. Dabei entsteht ionisierende Strahlung. Wo wird ionisierende Strahlung verwendet? In der Medizin. Zum Beispiel in Röntgen-Geräten. In der Forschung In der Technik Im Kern-Kraft-Werk. Ionisierende Strahlung kann durch Körper hindurch gehen. Dann gibt sie Energie ab. Wenn die Energie hoch ist, kann sie Schäden im Körper verursachen. Das heißt, dass man davon krank werden kann. Ionisierende Strahlung ist zum Beispiel: Röntgen-Strahlung. Sie wird in der Medizin verwendet. Damit kann geschaut werden, wie die Knochen von Patienten aussehen. Natürliche Radioaktivität. Das ist Radioaktivität, die in der Natur vorkommt. Zum Beispiel durch Strahlung aus dem Weltall. Die Strahlung kann gefährlich sein. Deshalb müssen Menschen vor zu hoher natürlicher Radioaktivität geschützt werden. Radioaktive Stoffe in Kern-Kraft-Werken Die Arbeiterinnen und Arbeiter in den Kern-Kraft-Werken müssen vor diesen Stoffen geschützt werden. Auch die Bevölkerung muss davor geschützt werden. Was ist Radioaktivität? Wenn Stoffe ionisierende Strahlung abgeben, sind sie radioaktiv. Radioaktivität ist die Eigenschaft eines Stoffes, ionisierende Strahlung abzugeben. Was ist nicht-ionisierende Strahlung? Bei der nicht-ionisierenden Strahlung entsteht keine Radioaktivität. Nicht-ionisierende Strahlung ist zum Beispiel: UV -Strahlung: Das ist die Abkürzung für ultra-violette Strahlung. UV -Strahlung ist ein Teil vom Licht. Man kann sie aber nicht sehen. Sie kommt bei Sonnenschein vor. UV -Strahlung kann für die Haut schädlich sein. Davon bekommt man Sonnenbrand. Man kann davon auch krank werden. Deshalb soll man bei starkem Sonnenschein zum Schutz einen Sonnen-Hut aufsetzen. Oder man soll in den Schatten gehen. Die Haut soll man mit einer Sonnen-Schutz-Creme eincremen. Mobil-Funk-Strahlung: Mobil-Funk-Strahlung braucht man, um mit dem Handy zu telefonieren. Was ist das BfS ? Das BfS ist eine Einrichtung, die zum Bundes-Ministerium für Umwelt, Naturschutz und nukleare Sicherheit gehört. Bei der nuklearen Sicherheit geht es zum Beispiel um die Sicherheit in Kern-Kraft-Werken. Das BfS ist 1989 gegründet worden. Es ist eine selbständige Behörde, die wissenschaftlich und technisch arbeitet. Eine Behörde ist eine Einrichtung vom Staat. Behörden sind dafür zuständig, dass bestimmte Aufgaben vom Staat für die Bürgerinnen und Bürger erledigt werden. Hier arbeiten Personen mit viel Fach-Wissen zusammen. Welche Aufgaben hat das BfS ? Das BfS ist zuständig für folgende Bereiche: Das BfS soll die Gesundheit von der Bevölkerung vor Schäden durch Strahlung schützen. Das BfS soll die Umwelt vor Schäden durch Strahlungen schützen. Das BfS soll für die Sicherheit von technischen Geräten sorgen. Wenn bei technischen Geräten mit Strahlung gearbeitet wird, müssen sie sicher sein. Bei Röntgen-Geräten in der Medizin oder bei der Gepäck-Kontrolle am Flughafen dürfen Menschen nicht gefährdet sein. Das BfS ist zuständig für den radiologischen Notfall-Schutz. Das ist der Schutz vor Strahlung, wenn ein Notfall passiert. Das heißt: wenn zum Beispiel in einem Kern-Kraft-Werk ein Unfall passiert, kann Strahlung in die Umwelt kommen. Das BfS hat Pläne gemacht, was man bei so einem Unfall machen muss. Stand: 09.07.2024
Das Projekt "Einwirkung elektrischer und elektromagnetischer Felder auf Zellen und Organismen" wird/wurde ausgeführt durch: Universität Erlangen-Nürnberg, Institut für Medizinische Physik.Es handelt sich einmal um die Messung der passiven elektrischen Eigenschaften von Zellen und von Gewebe. Diese Daten werden benoetigt, um Aussagen ueber die Wechselwirkung elektromagnetischer Felder mit biologischen Zellen und Organismen zu machen. Bisher wurden Leitfaehigkeitsmessungen an Zellsuspensionen (Erythrocyten, Ascitestumorzellen) und an Zytoplasmafraktionen durchgefuehrt, sowie die elektrische Messungen mit Hilfe von intrazellulaeren Elektroden an Einzelzellen. Zum anderen werden biophysikalische Modellvorstellungen im Hinblick auf die biologischen Wirkungen nicht-ionisierender Strahlen auf den Menschen entwickelt. Insbesondere sind bisher Modellrechnungen ueber die feldbedingte Erzeugung von Aktionspotentialen an erregbaren Zellen, sowie ueber die Einwirkung elektrischer, magnetischer und elektromagnetischer Felder auf das Zentralnervensystem des Menschen durchgefuehrt worden.
Strahlung ist eine Energieform, die sich als elektromagnetische Welle- oder als Teilchenstrom durch Raum und Materie ausbreitet. Die Strahlungsarten werden in 2 große Gruppen unterteilt, die sich durch ihre Energie unterscheiden. Strahlung, die bei der Durchdringung von Stoffen an Atomen und Molekülen Ionisationsvorgänge auslöst, wird als ionisierende Strahlung bezeichnet. Dazu gehören z.B. die Röntgen- und die Gammastrahlung. Als nichtionisierende Strahlung wird die Strahlung bezeichnet, bei der die Energie der Strahlung nicht ausreicht, Atome und Moleküle zu ionisieren. Dazu gehören z.B. Radio- und Mikrowellen, elektromagnetische Felder und das Licht. Ionisierende Strahlung ist sowohl Teil der Natur (Natürliche Radioaktivität) und somit Bestandteil der menschlichen Umwelt als auch das Resultat menschlicher Tätigkeit (Künstliche Radioaktivität).
Das Projekt "Messung von nichtionisierender Strahlung (RADHAZ = Radiation Hazards)" wird/wurde ausgeführt durch: EMC-Baden, EMV-Prüfstelle.Erforschung und Entwicklung neuartiger Messmethoden (Sensoren) fuer elektromagnetische Felder (nichtionisierende Strahlung). In einem ersten Schritt wurde ein neuartiges Messgeraet entwickelt fuer die Frequenzen 75 kHz bis 30 MHz. In einem weiteren Schritt soll die 1. GHz-Grenze ueberschritten werden.
Organisationsstruktur des BfS Im BfS wird die Aufbauorganisation in einem Organisationsplan ( Organigramm ) dargestellt. Die Struktur der vom BfS betriebenen Labore wird durch einen ergänzenden Organisationsplan ( Labore im Strahlenschutz ) abgebildet. Die Struktur der Schriftgutverwaltung im BfS ist im Aktenplan festgelegt. Organigramm des BfS Die Organisationsstruktur (Aufbau) des BfS ist in einem Organigramm grafisch dargestellt. Dem Organigramm lassen sich die organisatorischen Einheiten des BfS sowie deren Bezeichnungen entnehmen. Die Struktur der im BfS betriebenen Labore wird durch einen ergänzenden Organisationsplan (Labore im Strahlenschutz ) abgebildet. Verantwortung für Personal- und Organisationsänderungen Das BfS ist nach dem Gesetz zur Errichtung eines Bundesamtes für Strahlenschutz eine selbständige Bundesoberbehörde. Die zentralen Aufgaben des Amtes im Bereich des Schutzes von Mensch und Umwelt vor Schäden durch ionisierende und nichtionisierende Strahlung sind in diesem Gesetz, dem Strahlenschutzgesetz , und der Strahlenschutzverordnung festgelegt. Innerhalb des durch das Bundesumweltministerium gesetzten Rahmens kann das BfS eigenständig über personelle Maßnahmen entscheiden. Entscheidungen zur Aufbau- und Ablauforganisation sowie die Besetzung von Leitungspositionen erfordern die Zustimmung des Bundesumweltministeriums. Aktenplan des BfS Aktenplan des BfS Das Verwaltungshandeln muss jederzeit nachprüfbar sein. Um dies zu gewährleisten, ist eine schriftliche Dokumentation , die den Stand und die Entwicklung eines Vorgangs jederzeit widergibt, unerlässlich. Für die geordnete Ablage der Dokumente und Unterlagen bildet der Aktenplan die Grundlage. Im Aktenplan sind alle Aktenplankennzeichen des BfS enthalten. Downloads Titel Kurztext Datum Organigramm des BfS (PDF, 208 KB, Datei ist barrierefrei⁄barrierearm) Informationen zum BfS 04.04.2025 Aktenplan des BfS (PDF, 536 KB, Datei ist nicht barrierefrei) Informationen zum BfS 30.10.2024 Labore und Leitstellen im Bundesamt für Strahlenschutz (PDF, 494 KB, Datei ist barrierefrei⁄barrierearm) Die Organisation der Labore und Leitstellen im Strahlenschutz dargestellt im Organigramm (Stand 04.12.2023). 04.12.2023 Stand: 10.01.2025
Elektromagnetische Felder und Licht sind Bestandteile des elektromagnetischen Spektrums. Das elektromagnetische Spektrum gliedert sich grob in zwei Bereiche – die nichtionisierenden Strahlung und die ionisierenden Strahlung. Zum Bereich der nichtionisierenden Strahlung gehören die niederfrequenten (elektrischen und magnetischen) Felder, die hochfrequenten (elektromagnetischen) Felder und die optische Strahlung mit der Infrarotstrahlung, dem sichtbaren Licht und der Ultraviolettstrahlung (weitere Informationen: Bundesamt für Strahlenschutz ). Der Bereich der ionisierenden Strahlung umfasst unter anderem die Röntgen- und Gammastrahlung. Technisch erzeugte elektrische, magnetische und elektromagnetische Felder (oder künstliches Licht) können ab einer bestimmten Größe oder Intensität auch schädliche Umwelteinwirkungen im Sinne des Bundes-Immissionsschutzgesetzes (BImSchG) darstellen. Bild: lumendigital/Depositphotos.com Elektromagnetische Felder Elektromagnetische Felder begleiten uns täglich im Arbeits- und Privatbereich. Technisch erzeugte elektrische, magnetische oder elektromagnetische Felder können ab einer bestimmten Größe oder Intensität auch schädliche Umwelteinwirkungen im Sinne des Bundes-Immissionsschutzgesetzes darstellen. Weitere Informationen Bild: SenMVKU Licht Erhebliche Lichtemissionen, die störende Blendwirkungen oder unzulässige Raumaufhellungen erzeugen, sind von Anlagen ausgehende Einwirkungen auf die Umwelt, für die im Landes-Immissionsschutzgesetz Berlin allgemeine Vermeidbarkeits- und Minderungskriterien formuliert sind. Weitere Informationen
Welche kosmetischen Behandlungen mit Lasern und anderen intensiven optischen Strahlungsquellen stehen unter Arztvorbehalt? Ablative Laseranwendungen oder Anwendungen, bei denen die Integrität der Epidermis als Schutzbarriere verletzt wird, die Behandlung von Gefäßveränderungen, die Behandlung von pigmentierten Hautveränderungen, die Entfernung von Tätowierungen oder Permanent-Make-up, Anwendungen mit optischer Strahlung, deren Auswirkungen nicht auf die Haut und ihre Anhangsgebilde beschränkt sind, wie die Fettgewebereduktion. Diese Anwendungen dürfen seit dem 31.12.2020 nur von approbierten Ärztinnen und Ärzten mit entsprechender Fort- oder Weiterbildung durchgeführt werden. Das ist in der Verordnung zum Schutz vor schädlichen Wirkungen nichtionisierender Strahlung bei der Anwendung am Menschen (NiSV) geregelt.
Der Bereich der optischen Strahlung fängt mit der Infrarot-Strahlung (Wärmestrahlung), die bei ca. 10 13 Hz beginnt und bis etwa 3,8 x 10 14 Hz reicht, an. Daran schließt sich das sichtbare Licht zwischen 3,8 x 10 14 und 7,9 x 10 14 Hz (entspricht Wellenlängen von ungefähr 780 bis 380 nm) an. Mit der ultravioletten Strahlung zwischen 7,9 x 10 14 und ca. 1,5 x 10 15 Hz (kurzwellige Ultraviolettstrahlung mit Wellenlängen < 200 nm) endet der Bereich der nichtionisierenden Strahlung. Die Übergänge zwischen den einzelnen Bereichen des elektromagnetischen Spektrums sind fließend. Im Sinne des Bundes-Immissionsschutzgesetz (BImSchG) ist sichtbares Licht, einschließlich der infraroten und ultravioletten Strahlung, das von einer Anlage ausgeht, eine Emission im Sinne dieses Gesetzes. Wenn diese Gefahren, erhebliche Nachteile oder erhebliche Belästigungen für die Allgemeinheit oder die Nachbarschaft herbeiführen können, sind das schädliche Umwelteinwirkungen, denen gemäß dem BImSchG entgegengewirkt werden muss. Künstliche Lichtquellen können zu Blendungen bzw. zu störenden Wohnraumaufhellungen führen. Da es keine allgemeine Verwaltungsvorschrift gemäß § 48 BImSchG gibt, die Licht-Immissionswerte, die nicht überschritten werden dürfen, Licht-Emissionswerte, deren Überschreiten nach dem Stand der Technik vermeidbar ist sowie Verfahren zur Ermittlung der Licht-Emissionen und -Immissionen festlegt, hat die Bund/Länder-Arbeitsgemeinschaft Immissionsschutz (LAI) den zuständigen Immissionsschutzbehörden Hinweise zur Messung, Beurteilung und Minderung von Lichtimmissionen zur Verfügung gestellt. Wesentliche Inhalte betreffen: Angaben zur Messung und Beurteilung der Lichtimmissionen künstlicher Lichtquellen sowie Hinweisen zur Vermeidung von Belästigungen Anhang 1 Hinweise über die schädliche Einwirkung von Beleuchtungsanlagen auf Tiere - insbesondere auf Vögel und Insekten - und Vorschläge zu deren Minderung Anhang 2 Empfehlungen zur Ermittlung, Beurteilung und Minderung der Blendwirkung von Photovoltaikanlagen Optische Immission von Windkraftanlagen Ein Spezialfall von Lichtimmissionen ist der bewegte periodische Schattenwurf von Windkraftanlagen. Da es auch hierzu keine allgemeine Verwaltungsvorschrift gibt, wird zur Beurteilung und Vermeidung dieser Einwirkung ebenfalls auf Hinweise der LAI, „Hinweise zur Ermittlung und Beurteilung der optischen Immissionen von Windkraftanlagen“ verwiesen. IR/UV-Strahlung Schädliche Einwirklungen durch Anlagen, die Infrarotstrahlung (IR-Strahlung) bzw. Ultraviolette Strahlung (UV-Strahlung) aussenden, kommen im öffentlichen Bereich in der Regel nicht vor. Im Arbeitsbereich gilt nicht das Immissionsschutzrecht sondern das Arbeitsschutzrecht. Bei der Nutzung von UV-Strahlung zur Hautbräunung in Solarien besteht eine vertragsrechtliche Beziehung, deswegen obliegt die Überwachung hier den Verbraucherschutzbehörden. Wichtige Informationen über mögliche Schädigungen durch natürliche IR- und UV-Strahlung durch Sonneneinwirkung oder Solarienbesuche sind der Internetseite des Bundesamtes für Strahlenschutz (BfS) zu entnehmen. Künstliche Beleuchtung Das Landesamtes für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen hat eine Publikation " Künstliche Außenbeleuchtung " mit Tipps zur Vermeidung und Verminderung störender Lichtimmissionen veröffentlicht.
Strahlenschutz bei der Elektromobilität Beim Betrieb von konventionellen Verbrennerfahrzeugen, Plug-in-Hybriden und Elektroautos entstehen Magnetfelder im Nieder- und Zwischenfrequenzbereich. Sie treten auch beim Laden von E-Autos auf. Wie stark Insass*innen diesen Feldern ausgesetzt sind, hängt von der eingesetzten Technologie, der Position von Bauteilen, aber auch der persönlichen Fahrweise ab. Die zum Schutz der Gesundheit empfohlenen Höchstwerte werden in allen untersuchten Szenarien unterschritten. Daher sind nach aktuellem wissenschaftlichem Kenntnisstand keine gesundheitsrelevanten Wirkungen zu erwarten. In Elektroautos sind Menschen nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder Hybridantrieb. Wie überall, wo elektrische Ströme fließen, treten auch bei elektrisch betriebenen Fahrzeugen Magnetfelder auf. Wie stark Insass*innen den Magnetfeldern im Auto ausgesetzt sind, kann sich von Fall zu Fall unterscheiden. Dies hängt von der eingesetzten Technologie, der Position von Bauteilen relativ zum Körper, aber auch der persönlichen Fahrweise ab. Bei Elektrofahrzeugen entstehen magnetische Felder vor allem im Betrieb und beim Laden der Fahrzeuge. In bisherigen Untersuchungen wurden die stärksten Felder vorwiegend im Fußraum vor den Vordersitzen festgestellt. Beim Einschalten mancher Fahrzeuge entstehen ebenfalls kurzfristig starke Felder. In Verbrennerfahrzeugen können Menschen Magnetfeldern ähnlich stark ausgesetzt sein wie in Hybrid- oder Elektrofahrzeugen. Quelle: vladim_ka/Stock.adobe.com Welche Felder kommen in Fahrzeugen vor? Bei elektrisch betriebenen Fahrzeugen entstehen statische, niederfrequente und zwischenfrequente elektrische und magnetische Felder. Die Frequenzen dieser Felder liegen zwischen null Hertz (Hz/statische Felder) und bis zu mehreren zehn oder hundert Kilohertz (kHz/niederfrequente Felder und Felder im sogenannten Zwischenfrequenzbereich). Unter Gesichtspunkten des Strahlenschutzes sind bei E-Autos vor allem die Magnetfelder relevant, die unter anderem von folgenden Quellen ausgehen: elektrischer Antriebsstrang, Leitungen und dazugehörige Elektronik, Fahrzeugbatterie, Ladeeinrichtung und Ladekabel. Unabhängig vom Antriebssystem gibt es in modernen Fahrzeugen weitere Quellen magnetischer Felder. Daher können Insass*innen auch in einem Fahrzeug mit Verbrennungsmotor Magnetfeldern ausgesetzt sein. Relevante Quellen magnetischer Felder sind hier beispielsweise: Klimaanlagen, Lüfter, Sitzheizungen, Fensterheber sowie Fahrzeugeinschaltung bzw. Anlasser. Darüber hinaus gibt es Quellen wie Assistenz-, Komfort- und Unterhaltungssysteme, die hochfrequente elektromagnetische Felder für die Erkennung von Objekten ( Radar ) oder die drahtlose Informationsübertragung per Funk nutzen. Weitere Informationen zu hochfrequenten elektromagnetischen Feldern finden Sie in unserem Übersichtsartikel " Was sind hochfrequente elektromagnetische Felder? ". Wissenschaftlich gesicherte Wirkungen von Magnetfeldern Niederfrequente und zwischenfrequente Magnetfelder dringen nahezu ungehindert in den Körper ein und können dort elektrische Felder und Ströme hervorrufen. Diese können wiederum zu Reiz- und Stimulationswirkungen in Nerven- und Muskelgewebe führen. Damit diese wissenschaftlich gesicherten Wirkungen nicht auftreten, wurden von der Internationalen Kommission zum Schutz vor nichtionisierender Strahlung ( ICNIRP ) Richtlinien entwickelt. Diese Richtlinien beschreiben, wie stark Menschen den Feldern höchstens ausgesetzt sein sollten. Dabei wird neben der Stärke und Verteilung der Magnetfelder auch das Ausmaß der im Körperinnern entstehenden elektrischen Felder berücksichtigt. Wenn die durch die Magnetfelder hervorgerufenen körperinneren Felder die von der ICNIRP vorgeschlagenen Höchstwerte nicht übersteigen, sind keine gesundheitsrelevanten Wirkungen zu erwarten. Ob neben den wissenschaftlich gesicherten Wirkungen von Magnetfeldern auch andere, bisher unentdeckte Wirkungen auftreten können, ist Gegenstand weiterer Forschung. Auftreten von Magnetfeldern bei der Elektromobilität Eine neue Studie des BfS von 2025 gibt Aufschluss zu der Frage, in welchem Maße Fahrzeuginsass*innen den Magnetfeldern von Elektroautos ausgesetzt sind. Es ist nach Einschätzung des BfS die bislang detaillierteste Untersuchung zu diesem Thema. In dieser Studie wurden gemessen an den Zulassungszahlen besonders beliebte E-Auto-Modelle und zusätzlich auch leistungsstarke E-Auto-Modelle verschiedener Automobilhersteller untersucht. Dazu wurden Magnetfeldmessungen an unterschiedlichen Stellen im Inneren der Fahrzeuge durchgeführt. Dies geschah unter realen Bedingungen, aber auch auf Teststrecken und Prüfständen. Auf den Teststrecken und Prüfständen befanden sich die Fahrzeuge beim Beschleunigen, Bremsen oder Fahren mit gleichbleibender Geschwindigkeit in festgelegten Betriebszuständen. Beim Aufladen der E-Autos wurde an Positionen innerhalb und außerhalb der Fahrzeuge gemessen sowie Normal- und Schnellladepunkte berücksichtigt. Fahrzeughersteller waren nicht an der Untersuchung beteiligt. Zum Auftreten von Magnetfeldern in Elektroautos gibt es vier hauptsächliche Erkenntnisse: Die Magnetfelder in E-Autos treten räumlich sehr ungleichmäßig auf. Hohe Werte wurden vor allem im Bereich der Beine festgestellt. Kopf und Oberkörper der Menschen im Fahrzeug sind Magnetfeldern hingegen weniger stark ausgesetzt. Die Stärke der Magnetfelder verändert sich abhängig von der Fahrweise. Beim Beschleunigen und Bremsen entstehen höhere Werte als beim Fahren mit gleichmäßiger Geschwindigkeit. Die maximale Motorleistung der Elektroautos ist nicht alleine ausschlaggebend dafür, wie stark Menschen den Magnetfeldern im Fahrzeug ausgesetzt sind. Sowohl während der Fahrt als auch bei Fahrzeugstillstand können Insass*innen Magnetfeldern ausgesetzt sein, die nicht unmittelbar vom Antriebsstrang, sondern von anderen Quellen oder Funktionen stammen. Wie stark Menschen Magnetfeldern in elektrisch betriebenen Fahrzeugen ausgesetzt sind, hängt somit weniger von der elektrischen Leistung der Elektromotoren ab. Wichtiger ist der Betriebszustand, das technische Design der Fahrzeuge (Position von Batterie, Kabeln, Leistungselektronik etc. ) und die individuelle Fahrweise. Dummy mit Messsonden im Fond eines Elektroautos Höchstwerte schützen die Gesundheit Neben der Frage, wo und in welchen Situationen Magnetfelder in Elektroautos auftreten, stellt sich aus Sicht des Strahlenschutzes eine entscheidende Frage: Sind Insass*innen den Magnetfeldern in elektrisch betriebenen Fahrzeugen so stark ausgesetzt, dass unerwünschte oder gesundheitsrelevante Wirkungen im Menschen hervorgerufen werden können? Die BfS -Studie von 2025 liefert für die untersuchten Fahrzeuge klare Antworten: Zunächst wurden die in den Fahrzeugen gemessenen Magnetfeldstärken mit Referenzwerten verglichen, die in einer EU -Empfehlung von 1999 (Empfehlung des Rates vom 12. Juli 1999 zur Begrenzung der Exposition der Bevölkerung gegenüber elektromagnetischen Feldern (0 Hz – 300 Gigahertz )) aufgeführt sind. Hierbei zeigten sich in einigen Fällen Überschreitungen dieser Referenzwerte. Eine Überschreitung der Referenzwerte führt allerdings insbesondere bei räumlich sehr begrenzten Magnetfeld -Verteilungen nicht notwendigerweise zu bedenklich starken elektrischen Feldern oder Strömen im Körper. In detaillierten Computersimulationen wurden daher für die Fälle, die aus Strahlenschutzsicht besonders relevant waren, die durch die Magnetfelder hervorgerufenen elektrischen Ströme oder Felder in Körpernachbildungen bestimmt. Unabhängig von der Antriebsart unterschritten alle untersuchten Fahrzeuge die zum Schutz der Gesundheit empfohlenen Höchstwerte. Diese Höchstwerte begrenzen die elektrischen Ströme und Felder, die von Magnetfeldern im menschlichen Körper verursacht werden können, auf ein unschädliches Maß. Für die Untersuchung wurden die Magnetfelder an den Sitzplätzen von vierzehn verschiedenen Pkw-Modellen der Baujahre 2019 bis 2021 in unterschiedlichen Betriebszuständen gemessen und bewertet. Im Detail zeigen die Ergebnisse der BfS -Studie von 2025: Alle untersuchten Elektroautos haben die Empfehlungen zum Schutz vor gesundheitlichen Auswirkungen von Magnetfeldern eingehalten. In reinen Elektroautos ist man nicht prinzipiell stärkeren Magnetfeldern ausgesetzt als in Fahrzeugen mit konventionellem oder hybridem Antrieb. Bei einer moderaten Fahrweise werden die Referenzwerte meist im niedrigen zweistelligen Prozentbereich ausgeschöpft. Eine sportliche Fahrweise führte in mehreren Elektrofahrzeugen sowie in einem zu Vergleichszwecken untersuchten Fahrzeug mit Verbrennungsmotor zu Überschreitungen der von der EU empfohlenen Referenzwerte. Trotz der kurzfristigen Überschreitungen der Referenzwerte wurden keine Überschreitungen der empfohlenen Höchstwerte für im Körper hervorgerufene elektrische Felder festgestellt. Mit einer Ausnahme wurden die Referenzwerte in allen Fahrzeugen im Moment des Einschaltens jeweils kurzfristig überschritten – auch in dem Fahrzeug mit Verbrennungsmotor. Quelle: Pichsakul/Stock.adobe.com Empfehlungen des BfS In den kommenden Jahren ist mit einer weiter steigenden Anzahl von Elektrofahrzeugen zu rechnen. Daher sind auch bei der Elektromobilität Strahlenschutzaspekte angemessen zu berücksichtigen. Aus grundsätzlichen Strahlenschutzerwägungen sollten Verbraucher*innen den Feldern von Produkten, zu denen auch Fahrzeuge gehören, möglichst gering ausgesetzt sein. Auch wenn in der Untersuchung des BfS von 2025 keine Überschreitungen der zum Schutz der Gesundheit empfohlenen Höchstwerte festgestellt worden sind, so zeigte sich zwischen den untersuchten Fahrzeugen eine erhebliche Spannbreite. Mit einem intelligenten Fahrzeugdesign haben es die Hersteller in der Hand, lokale Spitzenwerte zu senken und Durchschnittswerte niedrig zu halten, damit auch eine kombinierte Einwirkung aus mehreren Quellen nicht zu einer Überschreitung empfohlener Höchstwerte führt. Hierfür sollte schon bei der Konzeption die Position der relevanten Bauteile elektrisch betriebener Fahrzeuge mitgedacht werden. Das Forschungsvorhaben des BfS "Bestimmung von Expositionen gegenüber elektromagnetischen Feldern der Elektromobilität" zeigt, dass dies bei Kraftfahrzeugen technisch möglich ist. Es zeigen sich erhebliche Unterschiede allein aufgrund der Positionierung relevanter Bauteile. Darüber hinaus sieht das BfS Bedarf, die Normen und Regulierungen weiterzuentwickeln. Aktuelle Bewertungsverfahren decken nicht alle relevanten oder ungünstigen Fälle ab. Personen mit aktiven Körperhilfsmitteln (Herzschrittmacher, Neurostimulatoren etc. ) sollten zudem ihren behandelnden Arzt oder ihre behandelnde Ärztin fragen, ob die Funktion des bei ihnen verwendeten Medizinprodukts durch Magnetfelder beeinflusst werden kann. Forschung des BfS zur Elektromobilität Stand: 08.04.2025
Schnurlose Festnetztelefone Schnurlose Festnetztelefone nutzen Funkwellen, um Gespräche zwischen einer Basisstation und einem tragbaren Telefon (Mobilteil) zu übertragen. In Deutschland dürfen nur noch schnurlose Festnetztelefone nach dem DECT -Standard verwendet werden. DECT steht für ein digitales System für schnurlose Telefone ( Digital Enhanced Cordless Telecommunications ). DECT -Basisstationen können auch in Routern oder Kabelmodems integriert sein. Letztere werden nicht mit dem Telefonfestnetz, sondern mit einem Breitbandkabelnetz verbunden. Die Basisstation und das Mobilteil senden jeweils mit einer maximalen Leistung von 250 Milliwatt ( mW ). Dadurch wird die Reichweite auf etwa 300 Meter im Freien begrenzt. Wegen des Zeitschlitzverfahrens ergibt sich bei einem Telefongespräch eine zeitlich gemittelte Strahlungsleistung von maximal 10 mW . Nach dem aktuellen Wissensstand geht von Schnurlostelefonen mit DECT -Technik keine Gefährdung der Gesundheit aus. Aus grundsätzlichen Vorsorgeerwägungen sollten vermeidbare Expositionen aber nach Möglichkeit reduziert werden. Schnurloses DECT-Festnetz-Telefon Der DECT -Standard Der DECT -Standard ist ursprünglich ein Industrie-Standard, der die Einrichtung drahtloser Nebenstellenanlagen in Zellstrukturen ermöglicht, die den beim Mobilfunk verwendeten ähnlich sind. Um den reibungslosen Betrieb der Mobilteile sicherzustellen, sendet die Basisstation in kurzen, regelmäßigen Abständen ein Kontrollsignal. Zunehmend sind Geräte verfügbar, bei denen das Kontrollsignal für Zeiten ohne aktive Gesprächsverbindung (Ruhezustand) deaktiviert werden kann. Dies trägt zu einer Reduzierung der Exposition des Nutzers bei. DECT -Telefone übertragen Sprache und Daten zwischen Basisstation und Mobilteilen mittels hochfrequenter elektromagnetischer Wellen. Der verwendete Frequenzbereich liegt zwischen 1800 und 1900 Megahertz ( MHz ). Wie auch beim GSM -Mobilfunk wird ein Zeitschlitzverfahren eingesetzt. Dadurch wird ermöglicht, dass mehrere Nutzer gleichzeitig über eine Basisstation telefonieren können. Ein Zeitrahmen von zehn Millisekunden (ms) wird dafür in 24 Zeitschlitze von je 0,42 ms Dauer unterteilt. Ein bestimmtes Mobilteil sendet während eines Telefonats nur in einem der 24 Zeitschlitze Informationen an die Basisstation. Während der restlichen Zeitschlitze können die anderen Mobilteile Informationen mit der Basisstation austauschen. Daraus ergibt sich für das einzelne Mobilteil ein gepulstes Sendesignal mit einer Wiederholungsfrequenz von 100 Hertz ( Hz ). Sendeleistung und SAR -Wert Die maximale Sendeleistung von Basisstation und Mobilteil beträgt jeweils 250 Milliwatt ( mW ). Dadurch wird die Reichweite auf etwa 300 Meter im Freien begrenzt. Wegen des Zeitschlitzverfahrens ergibt sich bei einem Telefongespräch eine zeitlich gemittelte Strahlungsleistung von maximal 10 mW . Sind mehrere Mobilteile mit einer Basisstation verbunden, kann sich die mittlere Strahlungsleistung der Basisstation entsprechend erhöhen. Nach bisherigen Untersuchungen liegen die spezifischen Absorptionsraten ( SAR ) bei herkömmlichen DECT Mobilteilen unter 0,1 Watt pro Kilogramm ( W/kg ). Der von der deutschen Strahlenschutzkommission ( SSK ) und der Internationalen Kommission zum Schutz vor nichtionisierende Strahlung ( ICNIRP ) empfohlene Grenzwert von 2 W/kg für eine Teilkörperbelastung wird danach deutlich unterschritten. Leistungsregelung bei DECT -Telefonen Im DECT -Standard ist keine automatische Regelung der Sendeleistung vorgeschrieben, anders als bei Mobiltelefonen. Bei Geräten ohne Sendeleistungsregelung senden Basisstation und Mobilteil während des Telefonierens immer mit der Maximalleistung, unabhängig davon, wie weit der Nutzer mit dem Mobilteil von der Basisstation entfernt ist. Moderne Geräte können ihre Sendeleistung stufenweise dem Bedarf anpassen. Die maximale Sendeleistung der Basisstation und des Mobilteils kann darüber hinaus bei einigen Geräten vom Nutzer dauerhaft abgesenkt werden. Vorsorgemaßnahmen zur Minimierung der Exposition Nach dem aktuellen wissenschaftlichen Kenntnisstand stellen die elektromagnetischen Felder von DECT -Telefonen kein Gesundheitsrisiko dar. Wenn Sie die Exposition von Schnurlostelefonen ganz vermeiden wollen, können Sie ein Telefon mit Kabel verwenden. Bei Verwendung schnurloser Geräte kann die Exposition durch einfache Maßnahmen minimiert werden: Auswahl von Geräten, die im Ruhezustand kein Kontrollsignal abstrahlen, deren maximale Reichweite auf das notwendige Maß begrenzt werden kann, die die aktuelle Strahlungsleistung automatisch an den Bedarf anpassen, Nutzung einer Freisprecheinrichtung oder Telefonate kurz halten, Aufstellung der Basisstationen im Einklang mit den Herstellerhinweisen an einem funktechnisch günstigen Ort, an dem sich Personen nicht ständig aufhalten, zum Beispiel in einem Flur. Blauer Engel für Digitale Schnurlostelefone Hersteller können digitale Schnurlostelefone mit dem Umweltzeichen "Blauer Engel" auszeichnen lassen, wenn die Geräte bestimmte Kriterien erfüllen. Hierbei stehen ein niedriger Energieverbrauch und die vorsorgliche Minderung der Funkstrahlung im Vordergrund. Nähere Infos finden Sie auf der Internetseite des Blauen Engel . Stand: 14.01.2025
Origin | Count |
---|---|
Bund | 157 |
Land | 30 |
Type | Count |
---|---|
Ereignis | 2 |
Förderprogramm | 53 |
Gesetzestext | 4 |
Text | 81 |
unbekannt | 47 |
License | Count |
---|---|
geschlossen | 73 |
offen | 77 |
unbekannt | 37 |
Language | Count |
---|---|
Deutsch | 185 |
Englisch | 10 |
Leichte Sprache | 1 |
Resource type | Count |
---|---|
Bild | 4 |
Datei | 2 |
Dokument | 29 |
Keine | 115 |
Multimedia | 1 |
Unbekannt | 1 |
Webseite | 51 |
Topic | Count |
---|---|
Boden | 84 |
Lebewesen & Lebensräume | 132 |
Luft | 87 |
Mensch & Umwelt | 184 |
Wasser | 83 |
Weitere | 187 |