Dieser Datensatz enthält Informationen der Messstation Nr. 06633025 in Trendelburg. Auf der Webseite zur Messstelle ist ein Link zum Herunterladen der Rohdaten vorhanden.
• Überwachung der Radioaktivität in der Umwelt nach dem Strahlenschutzvorsorgegesetz für den Freistaat Sachsen • Überwachung der anlagenbezogenen Radioaktivität nach dem Atomgesetz am Forschungsstandort Rossendorf • Überwachung von Lebensmitteln (u. a. Amtshilfe für die Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen) • Betrieb der Radonberatungsstelle • Überwachung der anlagenbezogenen Radioaktivität nach der Verordnung zur Gewährleistung von Atomsicherheit und Strahlenschutz an den Standorten der Wismut GmbH • Überwachung der anlagenbezogenen Radioaktivität an den Altstandorten des Uranerzbergbaus • Aufsichtliche Messungen nach der Strahlenschutzverordnung inkl. Sicherheitstechnisch bedeutsame Ereignisse und Nukleare Nachsorge • Der Geschäftsbereich ist akkreditiert nach ISO 17025 für alle relevanten Prüfverfahren im Bereich Immission und Emission. Fachbereich 20 - Zentrale Aufgaben • Probenentnahmen und Feldmessungen (ohne Messungen und Probenentnahmen im Rahmen der Radonberatung) u. a. Probenentnahmen aus Fließgewässern, Messung der nuklidspezifischen Gammaortsdosisleistung • Organisation und Logistik für die von externen Probenehmern gewonnenen und dem Geschäftsbereich 2 zu übergebenden Proben. Betrieb der Landesdatenzentrale und der Datenbank zur Umweltradioaktivität im Freistaat Sachsen • Unterstützung der beiden Landesmessstellen bei der Einführung und Pflege radiochemischer Verfahren Fachbereiche 21, 22 - Erste und Zweite Landesmessstelle für Umweltradioaktivität Laboranalysen • nach dem Strahlenschutzvorsorgegesetz • zur Überwachung der Wismut-Standorte • zur Überwachung des Forschungsstandort Rossendorf • zur Überwachung der Altstandorte des Uranbergbaus • zur Lebensmittelüberwachung • zu den aufsichtlichen Kontrolltätigkeiten des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Geologie und des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft u. a. in den Medien Wasser, Boden, Luft, Nahrungs- und Futtermittel. Analysierte Parameter: u. a. gamma- und alphastrahlende Radionuklide (z. B. Cäsium-137, Cobalt-60, Kalium-40, Uran-238); Strontium-90; Radium-226 und Radium-228). Fachbereich 23 - Immissionsmessungen Kontinuierliche Überwachung der Luftqualität durch Betrieb des stationären Luftmessnetzes des Freistaates (Online-Betrieb von 30 stationären Messstationen mit Übergabe der Messdaten ins Internet): • Laufende Messung der Luftgüteparameter SO2, NOx, Ozon, Benzol, Toluol, Xylole, Schwebstaub, Ruß • Gewinnung meteorologischer Daten zur Einschätzung der Luftgüteparameter • Sammlung von Schwebstaub (PM 10- und PM 2,5-Fraktionen) und Sedimentationsstaub zur analytischen Bestimmung von Schwermetallen, polyzyklischen Kohlenwasserstoffen (PAK) und Ruß • Absicherung der Messdatenverarbeitung und Kommunikation • Betreiben einer Messnetzzentrale, Plausibilitätskontrolle der Daten und deren Übergabe an das Landesamt für Umwelt, Landwirtschaft und Geologie und an die Öffentlichkeit • Absicherung und Überwachung der vorgegebenen Qualitätsstandards bei den Messungen durch den Betrieb eines Referenz- und Kalibrierlabors • Sicherung der Verfügbarkeit aller Messdaten zu > 95% • Weiterentwicklung des Luftmessnetzes entsprechend den gesetzlichen Anforderungen • Betreuung eines Depositionsmessnetzes (Niederschlag) mit zehn Messstellen • Betrieb von drei verkehrsnahen Sondermessstellen an hoch belasteten Straßen • Durchführung von Sondermessungen mit Immissionsmesswagen und mobilen Containern • Betrieb von Partikelmesssystemen im Submikronbereich (Zählung ultrafeiner Partikel) in Dresden • Betrieb von Verkehrszähleinrichtungen und Übernahmen dieser Verkehrszähldaten sowie von Pegelmessstellen der Städte in den Datenbestand des Luftmessnetzes Fachbereich 24 - Emissionsmessungen, Referenz- und Kalibrierlabor Der Fachbereich befasst sich mit der Durchführung von Emissionsmessungen an ausgewählten Anlagen aus besonderem Anlass im Auftrag des LfULG. Beispiele: • Emissionsmessungen an Blockheizkraftwerken in der Landwirtschaft (Geruch, Stickoxide, Gesamtkohlenstoff und Formaldehyd). • Ermittlung der Stickstoff-Deposition aus Tierhaltungsanlagen für Geflügel und Rinder (Emissionsmessungen von Ammoniak, Lachgas, Methan, Wasser, Kohlendioxid, Feuchte, Temperatur und Luftströmung , Ammoniak-Immissionsmessung mit DOAS-Trassenmesssystem). • Untersuchung von Emissionen aus holzgefeuerten Kleinfeuerungsanlagen zur Abschätzung von Auswirkungen der novellierten 1. BImSchV. • Unterstützung des LfULG bei der Überwachung bekannt gegebener Messstellen nach § 26 BImSchG.
Nach § 3 StrVG werden im Rahmen des Integrierten Mess- und Informationssystems (IMIS) durch die einzelnen Bundesländer Radioaktivitätsuntersuchungen in Böden, Pflanzen, Gras, Lebens- und Futtermitteln, Grund-, Trink- und Oberflächenwasser, in Abwässern, Klärschlamm, Reststoffen und Abfällen durchgeführt. Für die im einzelnen im Normalbetrieb durchzuführenden Probenmessungen wurde vom Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU) allen Bundesländern ein Mengengerüst für die entsprechenden Umwelt- bereiche vorgegeben. Die Festlegung der Probeentnahmepunkte erfolgte auf der Grundlage dieses Mengenschlüssels sowie des am jeweiligen Ort vorhandenen Spektrum an o.a. Umweltmedien. Die Beprobungen werden nach einem festgelegten Probenentnahmeplan [PEP] -medienspezifisch- durchgeführt. Die Probeentnahmepläne sind so konzipiert, daß sie möglichst flächendeckend und gleichmäßig über das Jahr verteilt, die Entnahme repräsentativer Proben aller Umweltbereiche ermöglicht.
Ziele: Etablierung eines Monitoring-Systems zur Ermittlung der Grundbelastung der Bevoelkerung an Caesium 137 unter Beruecksichtigung regionaler Aspekte und moeglicher Auswirkungen besonderer Ernaehrungsgewohnheiten.
Kann ich die Kontamination von Lebensmitteln verringern, wenn ich diese schäle, vor dem Essen wasche oder koche? Ja. Durch sorgfältiges Waschen von Obst und Gemüse lassen sich lose Verunreinigungen und anhaftende Radionuklide gut entfernen. Selbst Tage und Wochen nach der Kontamination mit radioaktiven Stoffen lässt sich mit sorgfältigem Waschen eine deutliche Reduzierung der radioaktiven Stoffe in Obst und Gemüse erreichen. Durch Schälen oder Entfernen der äußeren Blätter von Salaten und Kohlgemüse lässt sich die Radioaktivität stark verringern. Bei Kartoffeln und Wurzelgemüse befinden sich unter der Schale höhere Cäsium- und ggf. Strontium-Gehalte als im Rest der Pflanze die durch Schälen zu einem großen Teil entfernt werden können. Bei Pilzen ist Blanchieren oder Kochen die geeignetste Methode, um die radioaktive Kontamination zu verringern (wenn das Kochwasser weggeschüttet wird). Bei Getreide befinden sich die radioaktiven Teilchen in der Schale. Vollkornprodukte sind daher höher belastet. Kochen kann die Anzahl radioaktiver Partikel im Kochgut deutlich reduzieren. Die radioaktiven Partikel befinden sich dann in der (Suppen)-brühe, die allerdings nicht mehr verwendet werden sollte . Wird Milch z.B. zu Butter oder Käse verarbeitet, verbleiben die radioaktiven Partikel, z.B. Cäsium-137 , im wässrigen Teil, also z.B. in der Buttermilch oder in der Molke. In der Butter oder im Käse verbleiben nur wenige radioaktive Partikel, insbesondere Cäsium. Wird die Molke getrocknet, nimmt die Konzentration der radioaktiven Partikel, z.B. Cäsium-137 , im Molkepulver im Vergleich zur Molke zu.
Werden in Deutschland Lebensmittel und importierte Waren aus dem Unfallland überwacht? Ja. Zuständig für die Lebensmittelüberwachung in Deutschland sind die Bundesländer. Durch die Länder werden stichprobenartig Messungen von Lebensmitteln durchgeführt und eventuell erforderliche Maßnahmen ergriffen. Alle Lebensmittel, die aus einem Unfallland eingeführt werden, müssen mit einem Zertifikat bestätigen, dass ihre Kontamination unterhalb der gesetzlich geltenden Grenzwerte liegt. Die Europäische Union legt in einem Notfall Grenzwerte für die Kontamination von Lebensmitteln fest, die dann auch in Deutschland umgesetzt werden. Bis zu einer derartigen Festlegung gelten die Grenzwerte aus dem Allgemeinen Notfallplan des Bundes . Bei Verzehr von Lebensmitteln mit einer Kontamination unterhalb der Grenzwerte sind keine gesundheitlichen Folgen zu befürchten. Im Rahmen des Integrierten Mess- und Informationssystems zur Überwachung der Umweltradioaktivität ( IMIS ) werden regelmäßig auch in Deutschland erzeugte landwirtschaftliche Produkte wie zum Beispiel Milch, Gemüse, Getreide, Fleisch, Fisch möglichst nah beim Erzeuger sowie Trinkwasser kontrolliert. Die Messungen erfolgen in der Regel ebenfalls durch die Bundesländer. Im Nachgang des Reaktorunfalls in Tschornobyl (russ. Tschernobyl) 1986 wurden Grenzwerte für Cäsium-134 und Cäsium-137 festgelegt, die bis heute gelten.
Messvergleich für ODL -Messgeräte im Juni 2025 BfS -Leitstelle führt jährlichen Messvergleich für tragbare Ortsdosisleistungsmessgeräte durch. Der Messvergleich dient Behörden der Länder und des Bundes, Firmen, Forschungseinrichtungen, Sachverständigen, Messgeräteherstellern und Ingenieurbüros zur Qualitätskontrolle der ODL -Messgeräte, die diese bei umgebungsdosimetrischen Messungen einsetzen. Der Messvergleich findet jährlich statt. Anmeldeschluss für den diesjährigen Messvergleich ist der 20. Juni 2025 Beispiele verschiedener ODL-Messgeräte beim Messvergleich Das Bundesamt für Strahlenschutz ( BfS ) führt im Rahmen seiner Leitstellenfunktion für Fragen der Radioaktivitätsüberwachung bei erhöhter natürlicher Radioaktivität (ENORM) jährlich einen Messvergleich für tragbare Ortsdosisleistungsmessgeräte ( ODL -Messgeräte) durch. Der Messvergleich findet in Zusammenarbeit mit der Wismut GmbH auf Referenzmessflächen der Wismut GmbH am Dienstag, den 24. Juni 2025, in der Zeit von 12:00 bis 15:00 Uhr sowie am Mittwoch, den 25. Juni 2025, in der Zeit von 09:00 bis 14:00 Uhr in Reust bei Ronneburg statt. Messvergleich zur Qualitätskontrolle Der Messvergleich dient zur Qualitätskontrolle der Messgeräte, die bei umgebungsdosimetrischen Messungen eingesetzt werden. Die drei Referenzmessflächen mit jeweils etwa 400 Quadratmetern Fläche bestehen aus den Materialien Beton, Haldengestein aus der ehemaligen Uranerzförderung und Aufbereitungsrückständen (Tailings), die nach der Entnahme von Uran als Rückstände bei der früheren Wismut AG anfielen. Durch diese Wahl der Materialien konnten Referenzmessflächen mit erheblich unterschiedlichen Ortsdosisleistungen geschaffen werden. Übersicht über die Referenzmessfläche Quelle: Wismut GmbH Ansprechvermögen auf natürliche Strahlungsquellen Gewöhnlich werden ODL -Messgeräte mit Photonenstrahlung aus künstlichen radioaktiven Quellen (meist Cäsium-137 ) im Labor geeicht bzw. kalibriert. Für eine sachgerechte Anwendung der Geräte im Bereich von natürlicher Radioaktivität , beispielsweise bei der Sanierung ehemaliger Bergbauflächen, ist es erforderlich, auch das Ansprechvermögen auf natürliche Strahlungsquellen zu kennen. Anmeldeschluss: 20. Juni 2025 Firmen, Forschungseinrichtungen, Sachverständige, Messgerätehersteller, Ingenieurbüros und Behörden sind herzlich eingeladen, mit ihren Messgeräten am Messvergleich teilzunehmen. Bitte melden Sie sich bis zum 20. Juni per E-Mail ( odl-messvergleich@bfs.de ) an. Stand: 27.03.2025
Erfassung der Kontaminationssituation von Holz und der aus der Nutzung resultierenden Strahlenexposition Holz in Deutschland und Europa ist in Folge des Reaktorunfalls von Tschornobyl (russ. Tschernobyl) noch immer mit Cäsium-137 ( Cs -137) kontaminiert. Wissenschaftliche Untersuchungen zeigen, dass bei der Verbrennung von kontaminiertem Holz Cs -137 erheblich in der Asche aufkonzentriert wird. Im Rahmen dieses Forschungsvorhabens sollen aktuelle Daten zur Radiocäsiumkontamination von Holz und Holzprodukten aus Deutschland erhoben werden. Hintergrund Als Folge des Reaktorunfalls von Tschornobyl (russ. Tschernobyl) ist Holz in Deutschland und Europa noch immer mit Cäsium-137 ( Cs -137) kontaminiert. Im Zuge der Energiewende gewinnt die Nutzung von Holz in Holz-(Heiz-)Kraftwerken zunehmend an Bedeutung. Wissenschaftliche Untersuchungen zeigen, dass bei der Verbrennung von kontaminiertem Holz Cs -137 erheblich in der Asche aufkonzentriert wird. Ein europäisches Land hat bereits die zulässige Radiocäsiumkontamination in importiertem Holz, das für die Verbrennung vorgesehen ist, begrenzt. Es ist zu erwarten, dass mittelfristig entsprechende Regelungen für den gesamten europäischen Wirtschaftsraum diskutiert werden. Es gibt für Deutschland keine aktuellen Daten zur Kontaminationssituation bei inländisch erzeugtem oder importiertem Holz. Und auch nicht zu der der aus der Holznutzung resultierenden Strahlenexposition – also welcher Stahlung die Menschen dadurch ausgesetzt sind. Zielsetzung Im Rahmen dieses Forschungsvorhabens sollen aktuelle Daten zur Radiocäsiumkontamination von Holz und Holzprodukten aus Deutschland erhoben werden. Es werden Holzproben aus zwei Untersuchungsgebieten sowohl direkt im Wald als auch in Holz-(Heiz-)Kraftwerken auf ihren Radiocäsiumgehalt untersucht. Anhand der Bodenkontamination und anderer relevanter lokaler Einflussfaktoren wird auf die deutschlandweite Kontaminationssituation geschlossen. Zusätzlich zur Untersuchung von Holz werden Untersuchungen zur Aufkonzentration von Cs -137 in den Verbrennungsrückständen von Holz-(Heiz-)Kraftwerken durchgeführt. Auf Grundlage dieser Informationen wird die pozentielle Strahlenexposition durch die Nutzung von kontaminiertem Holz, Holzprodukten und Holz zur Energieerzeugung ermittelt. Eckdaten Forschungs-/Auftragnehmer: Rückbau in Strahlenschutz und Kerntechnik GmbH Projektleitung: Alexander Wunderskirchner Fachbegleitung BfS : Friederike Gnädinger Beginn: 5. Mai 2023 Geplantes Ende: 31.12.2025 Finanzierung: 210.326‚19 Euro Stand: 10.04.2025
Gesundheitliche Folgen des Unfalls von Tschornobyl in der ehemaligen Sowjetunion Durch den Reaktorunfall von Tschornobyl (russ.: Tschernobyl) erhielten insbesondere Notfallhelfer*innen und Aufräumarbeiter*innen (sogenannte Liquidator*innen) hohe Strahlendosen. Auch die Bevölkerung in der Nähe war z.T. einer hohen Strahlendosis ausgesetzt. 28 Notfallhelfer*innen starben in Folge eines akuten Strahlensyndroms. Ein Anstieg von Schilddrüsenkrebserkrankungen ist auf die Strahlung zurückzuführen. Die gesundheitlichen Folgen werden bis heute untersucht. Blumen am Denkmal für die Feuerwehrleute von Tschornobyl Die gesundheitlichen Folgen des Reaktorunglücks von Tschornobyl wurden in zahlreichen Publikationen untersucht. Wichtige Zusammenfassungen dieser Erkenntnisse liefern u.a. die Berichte vom Wissenschaftlichen Komitee über die Effekte der atomaren Strahlung der Vereinten Nationen (United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR ) und des Tschernobyl-Forums . Das Tschernobyl-Forum war eine Arbeitsgruppe der Internationalen Atomenergie-Organisation (International Atomic Energy Agency, IAEA ), der Weltgesundheitsorganisation (World Health Organisation, WHO ), mehrerer UN -Organisationen und der Regierungen von Russland, Belarus und der Ukraine, die zwischen 2003 und 2005 die wissenschaftliche Aufarbeitung der Folgen des Reaktorunfalls für Mensch und Umwelt vorantrieb. Bei der Untersuchung werden oftmals folgende Personengruppen unterschieden: Notfallhelfer*innen und Liquidator*innen Am Tag des Reaktorunfalls, dem 26. April 1986, waren rund 600 Notfallhelfer*innen ( z. B. Werksangehörige, Feuerwehrleute und Rettungskräfte) an dem Kraftwerk tätig. In den Jahren 1986 und 1987 waren über 240.000 Personen als Aufräumarbeiter*innen (sogenannte Liquidator*innen) im Umkreis von 30 Kilometern um das Kraftwerk eingesetzt. Weitere Aufräumarbeiten wurden bis etwa 1990 durchgeführt. Die Gesamtzahl der für den Einsatz registrierten Liquidator*innen betrug etwa 600.000. Bevölkerung 1986 wurden etwa 116.000 Bewohner*innen aus der unmittelbaren Umgebung des Unfallreaktors evakuiert (im Umkreis von 30 Kilometern um das Kraftwerk und in weiteren Gebieten mit gemessenen Ortsdosisleistungen von mehr als 0,2 Millisievert pro Stunde). In den Folgejahren waren es zusätzlich etwa 220.000 Personen. Im Jahr 2006 lebten noch etwa 6 Millionen Menschen in den "kontaminierten Gebieten". Als "kontaminiert" gelten dabei die Gebiete der ehemaligen Sowjetunion, die am Boden Cäsium-137 -Konzentrationen von mehr als 37.000 Becquerel pro Quadratmeter aufwiesen. Auch die damals in der Ukraine, Belarus und in den 19 "betroffenen Oblasten" (Verwaltungsbezirke) in Russland lebenden 98 Millionen Menschen wurden bei der Untersuchung der gesundheitlichen Folgen betrachtet. Als "betroffen" gelten dabei die Oblaste von Russland, die kontaminierte Gebiete enthielten. Akute gesundheitliche Folgen Zwei Werksmitarbeiter starben unmittelbar an den schweren Verletzungen durch die Explosion des Reaktors. 134 Notfallhelfer*innen erlitten ein akutes Strahlensyndrom . Davon starben 28 innerhalb von vier Monaten nach dem Unfall. Ihr Tod ist auf die hohen Strahlendosen zurückzuführen. Weitere 19 Personen mit einem akuten Strahlensyndrom starben in den Folgejahren (1987 - 2004). Ihr Tod steht möglicherweise auch im Zusammenhang mit den Strahlendosen nach dem Unfall. Für die Überlebenden des akuten Strahlensyndroms sind Hautverletzungen und später auftretende, strahleninduzierte Katarakte , also eine Trübung der Augenlinse oder Grauer Star, die schwerwiegendsten gesundheitlichen Schäden. Die 134 Personen mit akutem Strahlensyndrom erhielten Ganzkörperdosen durch externe Gammastrahlung von 0,8 bis 16 Gray . Manche erhielten zudem durch Betastrahlung Hautdosen von 400 bis 500 Gray , die zu schweren Verbrennungen führten. Die meisten der Verstorbenen starben an Infektionen infolge der Verbrennungen. 13 Personen mit einem akuten Strahlensyndrom wurden mit einer Knochenmarktransplantation behandelt. Nur eine der behandelten Personen überlebte. Bei den Liquidator*innen und in der Bevölkerung wurden nach den vorliegenden Berichten keine akuten Strahlenschäden beobachtet. Später auftretende gesundheitliche Folgen In Folge des Reaktorunfalls erhielten die Liquidator*innen und die im Umkreis lebende Bevölkerung erhöhte Strahlendosen, die zu später auftretenden Strahlenschäden geführt haben können bzw. in Zukunft immer noch führen können. Die Höhe der Strahlendosen kann sich stark unterscheiden: Liquidator*innen erhielten in Folge ihrer Aufräumarbeiten im Zeitraum von 1986 bis 1990 im Mittel eine zusätzliche effektive Dosis von 120 Millisievert . Die Dosiswerte variierten von weniger als 10 bis mehr als 1000 Millisievert . Für 85% von ihnen lag sie im Bereich von 20 bis 500 Millisievert . Evakuierten Personen erhielten im Mittel eine zusätzliche effektive Dosis von 33 Millisievert . 6 Millionen Menschen in den kontaminierten Gebieten erhielten im Zeitraum von 1986 bis 2005 eine effektive Dosis von durchschnittlich 9 Millisievert . Bei 70% der Menschen lag die zusätzliche effektive Dosis unter 1 Millisievert , bei 20% zwischen 1 und 2 Millisievert , bei 2,5% lag die effektive Dosis über 50 Millisievert . 98 Millionen Menschen auf dem Gebiet der Ukraine, Belarus und den 19 betroffenen Oblasten in Russland erhielten im Mittel eine vergleichsweise geringe zusätzlich effektive Dosis (im Zeitraum von1986 bis 2005) von insgesamt 1,3 Millisievert . Zum Vergleich: Auf dem Gebiet der Ukraine, Belarus und den 19 betroffenen Oblasten in Russland wurde für denselben Zeitraum eine Hintergrundstrahlung von 50 Millisievert geschätzt. Die ermittelten zusätzlichen effektiven Dosen stellen damit in Teilen eine deutliche Erhöhung gegenüber der Hintergrundstrahlung dar. Wie viele Menschen wegen der erhöhten Strahlendosen in Folge des Reaktorunfalls erkrankten oder starben, lässt sich nicht genau angeben. Das Tschernobyl-Forum schätzte 2005, dass ungefähr 4.000 Todesfälle auf die zusätzlichen Strahlendosen zurückzuführen sind. Medien zum Thema Mehr aus der Mediathek Tschornobyl (russ. Tschernobyl) Was geschah beim Reaktorunfall 1986 in Tschornobyl? In Videos berichten Zeitzeugen. Broschüren und Bilder zeigen die weitere Entwicklung. Stand: 10.02.2025
Der Unfall von Tschornobyl ( russ. : Tschernobyl) Am 26. April 1986 kam es in Block 4 des Kernkraftwerks Tschornobyl in der Ukraine zu einem schweren Unfall. Dabei wurden erhebliche Mengen radioaktiver Substanzen freigesetzt, die aufgrund hoher Temperaturen des brennenden Reaktors in große Höhen gelangten und sich mit Wind und Wetter über weite Teile Europas verteilten. In der Folge wurden die in einem Umkreis von etwa 30 Kilometern um den havarierten Reaktor lebenden Menschen evakuiert oder zogen aus eigenem Antrieb fort. Messung der Ortsdosisleistung mit einem Handmessgerät am Reaktor von Tschornobyl im Rahmen einer Messübung im Jahr 2016. Zum Zeitpunkt des Unglücks waren die Messwerte weit höher. Am 26. April 1986 ereignete sich im Block 4 des Kernkraftwerks Tschornobyl ( russ. : Tschernobyl) in der Ukraine der bisher schwerste Reaktorunfall in der Geschichte. Die weitreichenden und langwierigen ökologischen, gesundheitlichen – auch psychischen – und wirtschaftlichen Folgen dieses Unfalls stellten die damalige Sowjetunion und später Russland, Belarus und insbesondere die Ukraine vor große Herausforderungen – auch heute noch. Unfallhergang Das Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) gehörte zu einem Reaktortyp, der ausschließlich in der ehemaligen Sowjetunion gebaut wurde. Wesentliche Unterschiede dieses Reaktortyps zu westlichen Reaktoren liegen darin, dass sie Graphit nutzen, um die Geschwindigkeit von Neutronen in der Kernspaltungsreaktion zu reduzieren, und keine druckdichte Beton- und Stahl-Sicherheitshülle um den Reaktorkern, das so genannte Containment, besitzen. Während eines planmäßigen langsamen Abschaltens und eines gleichzeitigen Versuchsprogramms zur Überprüfung verschiedener Sicherheitseigenschaften der Anlage, kam es zu einer unkontrollierten atomaren Kettenreaktion. Dies führte zu einer Explosion des Reaktors, die das rund 1.000 Tonnen schwere Dach des Reaktorbehälters anhob. Mangels Containment lag der Reaktorkern infolge der heftigen Explosion frei, so dass radioaktive Stoffe aus dem Reaktor ungehindert in die Atmosphäre gelangten. Das im Reaktor verwendete Graphit brannte. Bei den Lösch- und Aufräumarbeiten wurden viele Beschäftigte des Reaktors, Feuerwehrleute sowie als "Liquidatoren" bekannte Rettungs- und Aufräumkräfte einer extrem hohen Strahlenbelastung ausgesetzt. Bei 134 von ihnen kam es zu akuten Strahlensyndromen . Die gesundheitlichen – auch psychischen – Folgen des Reaktorunfalls werden bis heute untersucht. Die Freisetzungen radioaktiver Stoffe konnten erst nach 10 Tagen durch den Abwurf von ca. 5.000 Tonnen Sand, Lehm, Blei und Bor aus Militärhubschraubern auf die Reaktoranlage und das Einblasen von Stickstoff zur Kühlung des geschmolzenen Kernbereichs beendet werden. In den Jahren 1986 und 1987 waren über 240.000 Personen als Liquidatoren innerhalb einer 30-Kilometer-Sperrzone rund um den havarierten Reaktor eingesetzt. Weitere Aufräumarbeiten wurden bis etwa 1990 durchgeführt. Insgesamt waren etwa 600.000 Liquidatoren für den Einsatz registriert. Über den Unfallhergang und langfristige Planungen zum Rückbau der Anlage informiert das Bundesamt für Sicherheit in der nuklearen Entsorgung ( BASE ) auf seiner Webseite. Freisetzung von Radioaktivität in die Umwelt Aufgrund des Unfalls gelangten vom 26. April bis zum 6. Mai 1986 in erheblichem Maße radioaktive Stoffe in die Umwelt . Durch den 10 Tage anhaltenden Reaktorbrand entstand eine enorme Hitze. Mit dem thermischen Auftrieb gelangten tagelang große Mengen radioaktiver Stoffe durch das zerstörte Dach der Reaktorhalle in Höhen von vielen Tausenden Metern. Verschiedene Luftströmungen (Winde) verteilten die radioaktiven Stoffe über weite Teile Europas. Sie kontaminierten mehr als 200.000 Quadratkilometer, davon rund 146.000 Quadratkilometer im europäischen Teil der ehemaligen Sowjetunion. Ein Schild warnt im Sperrgebiet vor dem "Roten Wald", einem Gebiet, das nach dem Unfall in Tschornobyl (russ.--russisch: Tschernobyl) am höchsten kontaminiert wurde. Freigesetzt wurden unter anderem radioaktive Edelgase wie etwa Xenon-133, leicht flüchtige Stoffe wie radioaktives Jod, Tellur und radioaktives Cäsium, die sich mit dem Wind weit über die Nordhalbkugel, insbesondere über Europa, verteilten und schwer flüchtige radioaktive Nuklide wie Strontium und Plutonium , die sich vor allem in einem Umkreis von etwa 100 Kilometern um den Unfallreaktor in der Ukraine und in den angrenzenden Gebieten von Belarus ablagerten. Aufgrund ihrer vergleichsweise kurzen Halbwertszeiten waren radioaktives Jod und Xenon-133 drei Monate nach dem Unfall praktisch aus der Umwelt verschwunden. Cäsium-137 und Strontium-90 haben dagegen eine Halbwertszeit von rund 30 Jahren und kontaminieren die Umwelt deutlich länger: 30 Jahre nach dem Unfall in Tschernobyl hat sich die Aktivität dieser radioaktiven Stoffe etwa halbiert. Plutonium -239 und Plutonium -240 haben mehrere Tausend Jahre Halbwertszeit – diese in der näheren Umgebung des Unfallreaktors vorzufindenden radioaktiven Stoffe sind bis heute praktisch nicht zerfallen, ihre Aktivitäten sind etwa so hoch wie 1986. Ende April/Anfang Mai 1986 trafen die radioaktiven Luftmassen des Reaktorunfalls von Tschornobyl ( russ. : Tschernobyl) in Deutschland ein. Aufgrund heftiger lokaler Niederschläge im Süden Deutschlands wurde Süddeutschland deutlich höher belastet als Norddeutschland. Die radioaktiven Stoffe lagerten sich unter anderem in Wäldern, auf Feldern und Wiesen ab – auch auf erntereifem Gemüse und Weideflächen. Über die Folgen für die Umwelt in der näheren Umgebung des Reaktors sowie in Deutschland informiert der Artikel " Umweltkontaminationen und weitere Folgen des Reaktorunfalls von Tschornobyl ". Frühe Schutzmaßnahmen Der Unfall im Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) hatte nicht nur Folgen für die Umwelt , sondern auch massive Auswirkungen auf die Gesundheit und das Leben der Bevölkerung in den am stärksten betroffenen Gebieten in der nördlichen Ukraine, in Belarus und im Westen Russlands. Am 1. Mai 1986 sollte ein Vergnügungspark in Prypjat eröffnet werden. Die Stadt wurde am 27. April 1986 evakuiert; das Riesenrad steht seitdem. Evakuierungen Am Tag nach dem Unfall wurde die Stadt Prypjat evakuiert, sie ist bis heute nicht bewohnt. Das Gebiet in einem Radius von 30 Kilometern rund um das Kernkraftwerk Tschornobyl ( russ. : Tschernobyl) wurde anschließend zum Schutz der Bevölkerung vor hoher Strahlung zur Sperrzone. Die Orte innerhalb der Sperrzone wurden evakuiert und aufgegeben – betroffen davon waren 1986 neben Prypjat auch Tschornobyl, Kopatschi und weitere Ortschaften. Die Sperrzone wurde später anhand der Höhe der Kontamination räumlich angepasst. Insgesamt wurden mehrere 100.000 Personen umgesiedelt (zwangsweise oder aus eigenem Antrieb). Schutz vor radioaktivem Jod Die Zahl der Schilddrüsenkrebserkrankungen stieg nach 1986 in der Bevölkerung von Weißrussland, der Ukraine und den vier am stärksten betroffenen Regionen Russlands deutlich an. Dies ist zum größten Teil auf die Belastung mit radioaktivem Jod innerhalb der ersten Monate nach dem Unfall zurückzuführen. Das radioaktive Jod wurde vor allem durch den Verzehr von Milch von Kühen aufgenommen, die zuvor kontaminiertes Weidegras gefressen hatten. Dies gilt als Hauptursache für die hohe Rate an Schilddrüsenkrebs bei Kindern. Radioaktives Jod wurde außerdem durch weitere kontaminierte Nahrung sowie durch Inhalation mit der Luft aufgenommen. Nach Aufnahme in den Körper reichert es sich in der Schilddrüse an. Wird genau zum richtigen Zeitpunkt nicht-radioaktives Jod in Form einer hochdosierten Tablette aufgenommen, kann verhindert werden, dass sich radioaktives Jod in der Schilddrüse anreichert (sogenannte Jodblockade ). Entsprechende Informationen der zuständigen Behörden gab es in den betroffenen Staaten der ehemaligen Sowjet-Union für die Bevölkerung, insbesondere in ländlichen Gebieten, jedoch nicht – auch nicht darüber, dass potenziell betroffene Lebensmittel, insbesondere Milch, nicht oder nur eingeschränkt verzehrt werden sollte. Dazu kam, dass die betroffene Bevölkerung oft keine Alternativprodukte zur Nahrungsaufnahme zur Verfügung hatte. Schutzhülle am Reaktor Schutzhülle (New Safe Confinement) über dem havarierten Reaktor von Tschernobyl Quelle: SvedOliver/Stock.adobe.com Um die im zerstörten Reaktorblock befindlichen radioaktiven Stoffe sicher einzuschließen und weitere Freisetzungen radioaktiver Stoffe in die Umgebung zu begrenzen, wurde von Mai bis Oktober 1986 eine als "Sarkophag" bekannte Konstruktion aus Beton und Stahl um den zerstörten Reaktor errichtet. Wegen der Dringlichkeit blieb keine Zeit für eine detaillierte Planung. 2016 wurde mit internationaler Unterstützung eine etwa 110 Meter hohe Schutzhülle - das "New Safe Confinement" - über den ursprünglichen Sarkophag geschoben und 2019 betriebsbereit in die Verantwortung der Ukraine übergeben. Die Schutzhülle ist rund 165 Meter lang und besitzt eine Spannweite von ungefähr 260 Metern; ihre projektierte Lebensdauer beträgt 100 Jahre. Der Rückbau des alten Sarkophags sowie die Bergung und sichere Endlagerung des darin enthaltenen radioaktiven Materials stehen als nächste Herausforderung an. Konsequenzen für den Notfallschutz in Deutschland Über die Folgen des Reaktorunfalls von Tschornobyl ( russ. : Tschernobyl) für die Organisation und Umsetzung des radiologischen Notfallschutzes in Deutschland informiert der Artikel " Entwicklung des Notfallschutzes in Deutschland " Medien zum Thema Mehr aus der Mediathek Tschornobyl (russ. Tschernobyl) Was geschah beim Reaktorunfall 1986 in Tschornobyl? In Videos berichten Zeitzeugen. Broschüren und Bilder zeigen die weitere Entwicklung. Stand: 15.01.2025
Origin | Count |
---|---|
Bund | 218 |
Land | 66 |
Wissenschaft | 1 |
Type | Count |
---|---|
Chemische Verbindung | 2 |
Ereignis | 2 |
Förderprogramm | 29 |
Messwerte | 42 |
Text | 161 |
unbekannt | 38 |
License | Count |
---|---|
geschlossen | 216 |
offen | 54 |
unbekannt | 4 |
Language | Count |
---|---|
Deutsch | 271 |
Englisch | 23 |
Resource type | Count |
---|---|
Bild | 2 |
Datei | 14 |
Dokument | 17 |
Keine | 211 |
Unbekannt | 1 |
Webseite | 40 |
Topic | Count |
---|---|
Boden | 204 |
Lebewesen & Lebensräume | 180 |
Luft | 100 |
Mensch & Umwelt | 274 |
Wasser | 133 |
Weitere | 259 |