Pflanzen-besiedelnde Mikroorganismen etablieren komplexe Netzwerke, in denen Pilze und Oomyceten entscheidend die Diversität von Pflanzen-assoziierten Bakterien beeinflussen. Andererseits konkurrieren Oomyceten und Pilze um die ökologische Nische „Pflanze“. Daher ist es von großer Bedeutung, die Wechselwirkungen beider Organismengruppen zu verstehen.Ein Schlüsselorganismus der Phyllosphäre ist der Oomycet Albugo laibachii. In Vorarbeiten identifizierten wir zudem die zu den Basidiomyceten gehörende Hefe Moesziomyces bullatus ex Albugo on Arabidopsis (MbA) als Antagonisten von A. laibachii. Mittels Gen-Deletion konnten wir eine Glucoside hydrolase-family 25 (GH25) aus MbA identifizieren, die für den Antagonismus gegen A. laibachii essentiell ist. In Arabidopsis -Experimenten zeigte rekombinant produziertes GH25, welches eine Lysozymaktivität besitzt, eine signifikante Inhibition gegen A. laibachii. Phylogenetische Analysen zeigten, dass GH25 in Basidiomyceten weit verbreitet ist und in 2 Kladen auf splittet. Einige Basidiomyceten besitzen jedoch kein GH25-Ortholog. Zu diesen gehören die Cystofilobasidiales, die wir als “core taxa“ der Arabidopsis-Phyllosphere identifizieren konnten. Cystofilobasidiales zeigen einen Antagonismus gegenüber A. laibachii vergleichbar mit MbA, was einen GH25-unabhängigen Mechanismus der Inhibition impliziert.In diesem Projekt soll die Rolle von GH25-vermitteltem Antagonismus in mikrobiellen Gemeinschaften untersucht werden. Zudem sollen GH25-unabhängige Mechanismen in basidiomyceten Hefen identifiziert werden. Wir untersuchen die funktionelle Konservierung von GH25 als Inhibitor verschiedener Oomyceten, Pilze und Bakterien. Weiterhin werden wir die Rolle der GH25 Aktivität für die Mikrobiom-Struktur untersuchen unter der Annahme, dass ein Verlust der GH25-vermittelten Inhibition zur Destabilisierung und damit erhöhten Fluktuation in mikrobiellen Gemeinschaften führt.GH25-Orthologe verschiedener Basidiomyceten werden in der MbA_GH25 Mutante exprimiert, um deren Funktion in der mikrobiellen Interaktion zu testen. Parallel werden wir Inhibitoren aus Cystofilobasidium identifizieren. Dabei untersuchen wir den Einfluss von MbA und Cystofilobasidium auf bakterielle Gemeinschaften in An- und Abwesenheit von A. laibachii, wobei uns insbesondere die Rolle von GH25 für die Fitness der Hefen in verschiedenen Interaktionen interessiert.Parallel dazu werden wir Algorithmen weiter entwickeln, die es uns ermöglichen, mikrobielle Eigenschaften wie deren Wirtsspezifität und Lebensweise vorherzusagen, um die Zusammensetzung mikrobieller Substrukturen sowie die Rolle einzelner Schlüsselgene wie GH25 für deren Ausbildung zu verstehen. Somit kombiniert dieses Projekt einen bioinformatischen Ansatz zur Analyse und Vorhersage mikrobieller Strukturen mit einer funktionellen Analyse spezifischer Interaktionen, um Assemblierung, Stabilität und Verhalten mikrobieller Gemeinschaften in der Phyllosphäre auf mechanistischer Ebene zu verstehen.
1. Zielsetzung: Verbraucherschutz. Die Proben werden von Fleischbeschautieraerzten eingesandt. Die Ergebnisse werden bei der fleischbeschaurechtlichen Beurteilung beruecksichtigt. Auf folgende Stoffe wird untersucht (in Klammern Methode): a) Hemmstoffe (Agar-Diffusionstest) b) Thyreostatika (Histologie) c) Oestrogene (Radioimmuniassay) d) Schwermetalle (Atomadsorptionsspektrometrie) e) Pestizide (Gaschromatographie) f) sonstige Stoffe mit pharmakologischer Wirkung (verschiedene) 2. Zielsetzung: Belastung wild lebender Tiere durch Schwermetalle und Pestizide zu erfassen. Die Proben werden von den Veterinaeraemtern oder Forstaemtern eingesandt. a) Schwermetalle (Atomadsorptionsspektrometrie) b) Pestizide (Gaschromatographie).
In Wüstenökosystemen wird die zeitliche Dynamik durch Nass-Trocken-Zyklen bestimmt, und diese werden durch den Klimawandel zunehmend gestört. Niederschläge in Wüstenökosystemen lösen einen unmittelbaren CO2-Anstieg aus, verbunden mit erheblichen Emissionen von Petrichor, dem "Geruch von Regen". Dieser erdige Geruch setzt sich aus verschiedenen flüchtigen organischen Verbindungen (VOC) zusammen, die mit dem Wind über große Entfernungen transportiert werden. Die Wassertröpfchen, die mit trockenen Böden in Berührung kommen, setzen zuvor gebundene VOCs frei und regen Bakterien und Pilze zur Neuproduktion von VOCs an. Sechzig Jahre nach der ersten Beschreibung von Petrichor ist immer noch wenig über seine Rolle in der Bodenökologie und seine Bedeutung für die Atmosphärenchemie bekannt.Biotische Interaktionen zwischen Mitgliedern mikrobieller Gemeinschaften im Boden erfolgen durch den Austausch von Signalmolekülen. Flüchtige Signale wirken auf einer größeren räumlichen Skala als lösliche Verbindungen und werden zunehmend als entscheidende Infochemikalien zur Vermittlung von intra- und interspezifischen Interaktionen zwischen Bodenmikrobiota anerkannt. Dennoch ist wenig über die spezifischen Funktionen von VOCs und ihre Rolle bei der Vermittlung von Wechselwirkungen zwischen Organismen bekannt, insbesondere in Trockengebieten.Die Emissionen von Petrichor aus Trockengebieten wie der Negev-Wüste (Israel) werden sich in naher Zukunft verändern, da die Niederschlagsmenge bis 2050 voraussichtlich um ~40 % zunehmen wird. Biogene flüchtige organische Verbindungen (VOC) - insbesondere Terpenoide und Benzoide - sind als wesentliche Akteure der Atmosphärenchemie bekannt und beeinflussen das Klima durch Wolkenbildung und die Entstehung sekundärer organischer Aerosole die Strahlungsenergie absorbieren und streuen. Mikrobielle Bodengemeinschaften dominieren die Wüstenökosysteme, die sich über 20 % der Erdoberfläche erstrecken. Daher ist es dringend erforderlich, die Rolle der mikrobiellen Gemeinschaften im Wüstenboden für die Chemie der Atmosphäre zu untersuchen. Unser Ziel ist es, die Quellen, Regulierungsmechanismen und Kontrollfaktoren der VOC-Emissionen in Wüstenökosystemen zu verstehen, was für die Erstellung umfassender globaler Klimaprojektionsmodelle von größter Bedeutung ist. Zu diesem Zweck wollen wir Veränderungen in der Petrichor-Zusammensetzung entlang eines Trockenheitsgradienten in der Negev-Wüste (Israel) quantifizieren und charakterisieren, die gesamte aktive mikrobielle Gemeinschaft (Eukaryonten, Prokaryonten, Archaeen) nach Niederschlagsereignissen in den Biokrusten der Wüste und in tieferen Bodenschichten identifizieren, mit Hilfe von Netzwerkanalysen Kandidaten für die Produktion von und die Reaktion auf VOC ermitteln und die Rolle der VOC durch Experimente mit mikrobiellen Isolaten und durch die Anwendung von Inhibitoren der wichtigsten Petrichor-VOC in Böden verifizieren und die globalen Auswirkungen der Petrichor-Emissionen hochskalieren.
Die Landwirtschaft ist für etwa 80% der gesamten N2O-Emissionen in Deutschland und für 45% der Treibhausgasemissionen (THG) aus dem Agrarsektor verantwortlich. Die größte N2O-Quelle in der Landwirtschaft ist der Einsatz von Stickstoffdüngern (Mineraldünger und organischer Dünger, einschließlich Biogasgärresten), der ca. 60% der gesamten N2O-Emissionen aus der Landwirtschaft verursacht. Dabei sind sowohl direkte N2O-Emissionen aus den gedüngten Böden als auch indirekte N2O-Emissionen durch die Freisetzung reaktiver Stickstoffverbindungen (z.B. Auswaschung von Nitrat, Emission von Ammoniak) von Bedeutung. Die Verringerung dieser Emissionen und die Verbesserung der Effizienz der Stickstoffnutzung sind unerlässliche Maßnahmen, um die in internationalen Vereinbarungen festgelegten Emissionsminderungsziele für den Agrarsektor zu erreichen. Nitrifikationshemmer werden als robuste und skalierbare Maßnahme zur Reduzierung der Treibhausgasemissionen im Pflanzenbau vorgeschlagen. Ob dies jedoch eine effiziente, praktikable und umweltverträgliche Maßnahme zur Reduzierung der düngemittelbedingten N2O-Emissionen unter mitteleuropäischen Bedingungen ist, wird in Wissenschaft, Politik und Praxis kontrovers diskutiert. Einerseits besteht das Potenzial, durch die Hemmung der Nitratbildung sowohl die direkten als auch die indirekten N2O-Emissionen deutlich zu reduzieren und damit die Effizienz der Stickstoffdüngung zu verbessern. Andererseits fehlen wissenschaftlich belastbare und standortdifferenzierte Ergebnisse, die NI-Effekte unter mehreren Gesichtspunkten verlässlich bewerten: i) die standortdifferenzierten jährlichen N2O-Emissionen und Nitratauswaschungen, ii) die ökologische Langzeitwirkung der Hemmstoffe und ihr Einfluss auf andere umwelt- und klimawirksame Emissionen (z.B. Ammoniakemissionen) und iii) die Gesamtbewertung als Klimaschutzmaßnahme unter Berücksichtigung von Klimaschutzeffekten, ökologischen Risiken sowie ökonomischen und pflanzenbaulichen Effekten.
Lachgas(N2O)-Emissionen der Landwirtschaft sind für rund 80% der gesamten N2O-Emission in Deutschland verantwortlich und für 45% der Treibhausgasemission (THG) des Sektors Landwirtschaft. Die größte N2O-Quelle in der Landwirtschaft ist der Einsatz von Stickstoffdüngern, der rund 60% der gesamten N2O-Emission der Landwirtschaft verursacht. Bedeutend sind hierbei sowohl direkte N2O-Emissionen aus den gedüngten Böden als auch indirekte N2O-Emissionen, die durch den Austrag reaktiver Stickstoffverbindungen verursacht werden. Sowohl direkte als auch indirekte THG Emissionen der N-Düngung hängen direkt mit der ausgebrachten N-Menge zusammen. Die Minderung dieser Emissionen und die Verbesserung der Effizienz des Stickstoffeinsatzes sind daher vordringliche Maßnahmen für das Einhalten des verbindlichen Emissionsreduktionsziels des Sektors Landwirtschaft. Nitrifikationshemmstoffe werden als robuste und skalierbare THG Reduktionsmaßnahme für den Pflanzenbau vorgeschlagen. Ob dies aber eine effiziente, praxisgerechte und umweltschonende Maßnahme zur Verringerung düngungsinduzierter N2O-Emissionen unter mitteleuropäischen Bedingungen ist, wird von Wissenschaft, Politik und Praxis kontrovers diskutiert. Einerseits bestehen die Potenziale, durch die Hemmung der Nitratbildung sowohl die direkten als auch indirekten N2O-Emissionen deutlich zu mindern und die Effizienz der Stickstoffdüngung zu verbessern. Andererseits fehlen für eine gesicherte Bewertung in mehreren Punkten wissenschaftlich belastbare und standortdifferenzierende Ergebnisse: i) die Bewertung der Wirkung auf die N2O-Jahresemission und Nitratauswaschung, ii) die ökologischen Langzeitwirkungen einer regelmäßigen Ausbringung der Hemmstoffe und ihre Wirkung auf andere umwelt- und klimawirksamen Emissionen sowie iii) die zusammenführende und standortdifferenzierende Gesamtbewertung als Klimaschutzmaßnahme unter Einbeziehung von Klimaschutzeffekten, ökologischen Risiken, sowie ökonomischen und pflanzenbaulichen Effekten.
1
2
3
4
5
…
31
32
33