s/hydrothermales-system/Hydrothermales System/gi
Selbst in tiefen Sedimentschichten unter z.T. mehreren Kilometern mächtiger Sedimentbedeckung finden sich noch aktive Mikroorganismen. Mit zunehmender Tiefe steigt die Temperatur im Untergrund an und überschreitet irgendwann die Grenze bis zu welcher Leben möglich ist. Die bisher festgestellte Temperaturobergrenze von Leben auf der Erde wurden an Mikroorganismen von hydrothermalen Systemen, sogenannten Schwarzen Rauchern gemessen und liegt bei ca. 120 Grad C. In Sedimenten hingegen liegt die Grenze deutlich niedriger. Messdaten aus Ölfeldern deuten auf eine Grenze von ca. 80 Grad C hin. Diese Diskrepanz zwischen hydrothermalen und sedimentären Systemen wurde dadurch erklärt, dass die Mikroorganismen in Sedimenten nicht genügend Energie gewinnen können um die bei hohen Temperaturen verstärkt notwendigen Reparaturen ihrer Zellbestandteile wie DNA und Proteinen durchzuführen. Interessanterweise lässt sich metabolische Aktivität bei extrem hohen Temperaturen nur dann nachweisen, wenn die Experimente unter hohem Druck stattfinden. IODP Expedition 370 wurde spezifisch zur Klärung der Frage nach dem Temperaturlimit von Leben in sedimentären Systemen durchgeführt. Im Nankai Graben vor der Küste Japans herrscht ein recht hoher geothermischer Gradient von ca. 100 Grad C/km, d.h. das gesamte Temperaturspektrum in dem Leben möglich ist erstreckt sich über ein Tiefeninterval von etwas mehr als einem Kilometer. Durch modernste Bohr- und Labortechniken war es möglich, Proben von höchster Qualität zu gewinnen, welche garantiert frei von Kontamination sind. Die Expedition hat einen stark interdisziplinären Charakter, so dass eine Vielzahl von biologischen und chemischen Parameter gemessen wurde, welche eine detaillierte Charakterisierung des Sediments erlauben. Das beantragte Projekt ist ein wichtiger Teil der Expedition, da Sulfatreduktion der quantitativ wichtigste anaerobe Prozess für den Abbau von organischem Material im Meeresboden ist. Im Rahmen einer MSc Arbeit wurden bereits erste Messungen durchgeführt. Diese konnten zeigen das Sulfatreduktion über die gesamte Kernlänge messbar ist, wenn auch z.T. mit extrem geringen Raten. Im Rahmen des beantragten Projekts sollen weitere Messungen durchgeführt werden, unter anderem auch unter hohem Druck. Dazu soll ein Hochdruck Temperatur-Gradientenblock gebaut und betrieben werden. Neben Sedimenten von IODP Exp. 370 sollen weitere Experimente mit hydrothermal beeinflusstem Sediment aus dem Guaymas Becken durchgeführt werden. Ein Vergleich zwischen diesen beiden Sedimenten soll weitere Einblicke in einen der wichtigsten biologischen Prozesse im Meeresboden liefern und ein besseres Verständnis über die Grenzen von Leben im allgemeinen.
Für die Medizinische Hochschule Hannover hat das GeothermieZentrum Bochum gemeinsam mit der GeoDienste GmbH (Garbsen) im Zeitraum von August 2007 bis März 2008 eine Vorstudie zur Einbindung der Geothermie in das Energiekonzept des Klinikums erstellt. Im Anschluss an diese Vorstudie wurde eine Wirtschaftlichkeitsanalyse erstellt, welche die petrothermale und hydrothermale Versorgung betrachtete. Vorstudie: Die Medizinische Hochschule Hannover (MHH) wird derzeit von den Stadtwerken Hannover mit den Medien Gas, Strom und Fernwärme zur Erzeugung ihrer dreigliedrigen Energieversorgung, bestehend aus Dampf, Raumwärme und Klimakälte, versorgt. Aufgrund der hydrogeologischen Situation am Standort der MHH in Hannover wird eine Einbindung der Geothermie sowohl in den Heizkreislauf (direkte Integration über Wärmetauscher) als auch in den Kälteklimakreislauf (modular betriebene Absorptionskältemaschinen) vorgeschlagen. Ziel der Einbindung ist es konventionelle, preislich fluktuierende und primärenergetisch nachteilige Energieträger, wie in erster Linie elektrischen Strom und nachrangig Fernwärme oder Gas, durch den Einsatz der Geothermie vollständig, oder im Rahmen der Leistungsfähigkeit des geothermischen Reservoirs teilweise, zu ersetzen. Wirtschaftlichkeit, CO2-Bilanz und Versorgungssicherheit stehend dabei im Vordergrund. Die Grundlastfähigkeit der Geothermie wird in der vorgeschlagenen Anlagenkonfiguration vollständig ausgenutzt. Im Bereich der Spitzenlastdeckung spielt die Geothermie daher keine Rolle. Die geothermisch unterstützte Dampferzeugung findet im betrachteten Szenario keinen Eingang. Dies liegt in der internen Wärmerückgewinnung im Dampferzeuger durch den Economizer zur Vorwärmung des Speise- und Verbrauchswassers begründet. Da die Geothermie bei der Dampfherstellung nur einen geringen energetischen Beitrag leisten kann und Investitionen für ihre Anbindung an das Dampferzeugersystem entstehen, wird von der Betrachtung dieser Systeme abgesehen. Übersteigt die Bereitstellung von geothermischer Energie im Heiz- oder Kühlfall die Energienachfrage, lassen sich Pufferspeicher integrieren um diese überschüssig Energie effizient zu speichern. Bei Lastspitzen kann die Energie zurückgewonnen werden. Somit erhöht sich der geothermische Anteil an der Gesamtenergiebereitstellung. Wirtschaftlichkeitsanalyse: Hier wurden 9 verschiedene Szenarien untersucht, welche sich aufgrund ihrer Art (petrothermal / hydrothermal), der Bohrtiefe (4500 / 3000 m), ihrer Schüttung (15-50 l/s), Temperatur (115 / 160 Grad C) oder Bereitstellung (Wärme / Strom+Wärme) unterscheiden. Die höheren Investitionskosten für die petrothermalen Systeme werden durch die höhere Energieausbeute (Schüttung und Temperatur) abgefangen und diese somit wirtschaftlicher als die hydrothermalen Systeme, welche sich in der Amortisationsrechnung nur aufgrund der steigenden Energiepreise nach einigen Jahren rechnen.
Seismological experiment at Strokkur from 2020" is a seismological experiment realized at the most active geyser on Iceland by Eva Eibl (University of Potsdam) in collaboration with Gylfi P. Hersir formerly at ISOR Iceland. The geyser is part of the Haukadalur geothermal area in south Iceland, which contains numerous geothermal anomalies, hot springs, and basins (Walter et al., 2018). Strokkur is a pool geyser and has a silica sinter edifice with a water basin on top, which is about 12m in diameter with a central tube of more than 20m depth. The aim of the seismic experiment is to monitor eruptions of Strokkur geyser from March 2020 using three broadband seismic stations (Nanometrics Trillium Compact 120s). Sensors were buried at distances of 38.8m (GE4, SE), 47.3m (GE3, SW), and 42.5m (GE2, N) from Strokkur center. Within this time period about 1 month of data is missing due to power outages. At any other times at least one station recorded the eruptions. From this dataset, converted to MSEED using Pyrocko, currently a catalogue of 506,131 water fountains was determined and further investigated in Eibl et al. (2025). In addition, Eibl et al. (2025) assessed the effect of the weather on the system including the bubble trap suspected at around 24 m depth by Eibl et al. (2021). Waveform data are available from the GEOFON data centre, under network code 2Z.
Der Datensatz enthält eine Übersicht der Anzahl der bewilligten Anträge auf Grundlage der Richtlinie progres.nrw - Risikoabsicherung hydrothermale Geothermie. Er enthält den Antragsteller, Fördergegenstand, die förderfähigen Gesamtkosten sowie den bewilligten Zuschuss.
Die Karte "Hydrothermale Nutzhorizonte des tieferen Untergrund von Schleswig-Holstein" enthält Datensätze zur Verbreitung von untersuchungswürdiger Sandstein-Horizonte des Dogger, Buntsandstein und Rhät zur Hydrothermalen Nutzung im tieferen Untergund von Schleswig-Holstein sowie Zusatzinformationen zur Qualität der Datengrundlagen. Sandsteinhorizonte von ausreichender Verbreitung und Mächtigkeit bieten ein großes Potenzial zur hydrothermalen Nutzung. Sowohl die Mächtigkeiten als auch die Porositäten bzw. Permeabilitäten stellen wichtige Kriterien für die Beurteilung der Nutzhorizonte dar. Durch die komplexe geologische Entwicklung in Schleswig-Holstein in Hinblick auf die verschiedenen Ablagerungsbedingungen und diagenetischen Prozesse, die auf die Ablagerungen eingewirkt haben, sind daher nur Teilräume für die hydrothermale Nutzung von Bedeutung. Basierend auf dem anhand von Bohrungen ableitbarem Trend der Porositätsabnahme mit zunehmender Tiefe berücksichtigt diese Darstellung nur die Sandsteinhorizonte von mind. 20 m Mächtigkeit bis zu einer Tiefe von 2500 m unter Gelände. Darunter ist das Risiko Horizonte mit unzureichenden Porositäten und Permeabilitäten anzutreffen deutlich größer. Die Sandstein-Horizongte liegen in verschiedenen Tiefenlagen und können sich in der Karte überlagern. Bereiche in dem die Datenbasis zum tieferen Untergund in Schleswig Holstein besonders gering ist, sind durch eine Punktsignatur kenntlich gemacht. Informationen zu Eigenschaften von tiefen Sandsteinhorizonten, die potentielle hydrothermale Nutzhorizonte darstellen, konnten hier nur aus wenigen z.T. weit von einander entfernt liegenden Bohrungen abgeleitet werden und sind entsprechend unsicher.
Erdwärme kann als erneuerbare Energiequelle fossile Energieträger mehr und mehr ersetzen und damit zum Klimaschutz beitragen und Wertschöpfung vor Ort schaffen. Trotz großer Potenziale ist der Anteil der Wärme aus tiefer Geothermie noch sehr gering. Ziel der Bundesregierung ist es, diesen Anteil in den nächsten Jahren deutlich zu erhöhen. Ein zentrales Hemmnis zum bundesweiten Ausrollen der tiefen Geothermie für die kommunale oder gewerbliche Wärmeversorgung ist das ungünstige Verhältnis hoher Anfangsinvestitionen gegenüber den späteren moderaten Betriebskosten. So ist für die Planung und erfolgreiche Umsetzung eines Geothermieprojekts eine geowissenschaftlich fundierte Datenbasis unerlässlich. Weitere wichtige Hemmnisse für die Umsetzung von Projekten sind das Fündigkeitsrisiko, die Finanzierung von Projekten und die Akzeptanz von Netzbetreibern, Kommunen sowie der Bevölkerung vor Ort. Zentrales Ziel des Projekts Warm-UP ist es, den Roll-Out der Mitteltiefen, hydrothermalen Geothermie im Bereich der Wärmenutzung zu unterstützen. Das Teilvorhaben des IÖW zielt hierbei insbesondere darauf ab, sozioökonomische Hemmnisse und Erfolgsfaktoren herauszuarbeiten, um darauf aufbauend Empfehlungen zur lokalen Ausgestaltung für einen wirtschaftliche Integration der Mitteltiefen Geothermie unter Akzeptanz der lokalen Stakeholder abzuleiten. Die Ergebnisse fließen ein in die Weiterentwicklung obertägiger Bewertungskriterien für Explorationskampagnen.
Die Energiewende hin zu erneuerbaren Energien ist eine der größten sozioökonomischen Herausforderungen in Europa. Rund die Hälfte der Energie wird in Form von Wärme benötigt, wovon nur ca. 20 % im Moment aus erneuerbaren Energiequellen stammt. Ein wichtiger Bestandteil zur vollständigen Wärmeabdeckung durch erneuerbare Energieressourcen ist die hydrothermale Geothermie. Dabei ist die nachhaltige Verfügbarkeit ein wichtiges Thema. Ziel des Projektes MALEG ('Machine Learning for Enhancing Geothermal energy production') ist es, ein maschinell lernendes Vorhersageprogramm zu entwickeln, das in Verbindung mit neuen verfahrenstechnischen Anlagen die Möglichkeit schafft, Produktivität und Wirtschaftlichkeit von Geothermieanlagen deutlich zu verbessern. Ziel ist es, die Möglichkeiten einer stärkeren Temperaturabsenkung für eine Kaskadennutzung zu analysieren und anlagentechnisch zu ermöglichen unter Berücksichtigung eines nachhaltigen Reservoir Managements. Basierend auf standortspezifischen Eigenschaften wie Temperatur, Reservoirdruck oder Thermalwasserchemie, sollen die optimalen Betriebsparameter ermittelt werden, um damit auch die Betriebssicherheit über lange Zeiträume zu gewährleisten. Das Ziel des Teilprojektes der Hydroisotop ist die Charakterisierung der Thermalwässer der drei am Projekt beteiligten Geothermieanlagen, die Evaluierung von möglichen störenden, die Anlagen gefährdenden Prozessen sowie die Ermittlung möglicher Prozesse bei möglichen Veränderungen der Betriebsparameter. Die Ermittlung der hydrochemischen Parameter sowohl in der Anlage als auch während der Demonstratorexperimente bildet die Grundlage für die Validierung und Kalibrierung der hydrochemischen Modelle und des Inputs für die maschinellen Lernprogramme und -modelle.
Viele der Elektrizität produzierenden geothermalen Felder Island liegen in der Nähe oder gar innerhalb von Kratern, gebildet durch dampfgetriebene Eruptionen. Kraflas geotermales Feld ist ein typisches Beispiel solch einer wertvollen Infrastruktur mit einem ungewissen Gefahrenpotential. Die dampf-getriebene (phreatische) Vití-Eruption fand direkt vor der effusiven Spalteneruption der Mývatn Fires (1724-29) statt: Auslöser der Eruption und Ursache für ihre Lage weit abseits der Hauptspalten für die Magmenförderung sind unbekannt. Unter diesem Aspekt werfen die Funde der Bohrung IDDP-1 - eine rhyolitische Schmelze in etwa 2km Tiefe unterhalb der Krafla Caldera und einer konduktiven Grenzschicht (CBL), welche das Magma von dem darüberliegenden hydrothermalen System trennt - eine Schlüsselfrage auf: Falls sich die Intrusion während der letzten Spalteneruption, den Krafla Fires (1975-84) bildete, warum kam es dann diesmal zu keiner explosiven Eruption (wie bei Vití)? Bisherige Arbeiten legen Nahe, dass vorallem die Gesteinspermeabilität darüber entscheidet ob ein unter Überdruck stehendes Fluid sein Umgebungsgestein fragmentiert oder ob es aufgrund von effektiver Ausströmung entweichen kann. Eine Lage wie die CBL mit unbekannter Permeabilität, kann eine vorzügliche lithologische Barriere oberhalb der rhyolitischen Magma darstellen. Das hier beantragte Forschungsvorhaben hat das Verständnis des magma/hydrothermalen Systems und seiner Auswirkungen auf potentielle vulkanische Gefahrenmomente zum Ziel, wie ebenfalls in dem wissenschaftlichen Programm des KMDP-Bohrprojektes verankert. Die zwei synergetisch verknüpften Kernpunkte dieses Antrags sind: (i) die Bestimmung der Belastbarkeit und Reaktion der CBL auf P-T-Perturbationen zum Beispiel aufgrund schneller/stufenweiser Dekompression (natürlicher Art sowie durch Produktion induziert), oder langsamer bis schneller Erwärmung (Magmenintrusion), sowie (ii) die Bestimmung des Zeitmaßstabes bei welchem die CBL ihr Verhalten von Verformung (belastbar) zu spröder Reaktion (Bruch) verändern. Daten und Proben von Bohrprojekten bieten eine einmalige Gelegenheit unser Verständnis der Rolle der Permeabilität solcher CBLs um einen Magmenkörper herum voranzutreiben. Wir wollen diese Wissenslücke schließen durch die Verknüpfung eines neuen Datensatzes zu Gesteinen aus der KMDP Bohrung mit Laborexperimenten zum Dekompression-Explosion Verhalten dieser Gesteine. Mit einer der weltgrößten Stoßrohrapparatus für vulkanische Fragestellungen planen wir verschiedene Szenarien der Reaktion der CBL auf kontrollierte schnelle Dekompression, sowie auf schnelle bzw. Langsame Heizprozesse zu simulieren.
Origin | Count |
---|---|
Bund | 83 |
Land | 12 |
Wissenschaft | 6 |
Type | Count |
---|---|
Förderprogramm | 76 |
Text | 4 |
unbekannt | 10 |
License | Count |
---|---|
geschlossen | 4 |
offen | 85 |
unbekannt | 1 |
Language | Count |
---|---|
Deutsch | 89 |
Englisch | 19 |
Resource type | Count |
---|---|
Archiv | 1 |
Datei | 2 |
Dokument | 4 |
Keine | 35 |
Unbekannt | 1 |
Webdienst | 6 |
Webseite | 53 |
Topic | Count |
---|---|
Boden | 79 |
Lebewesen & Lebensräume | 53 |
Luft | 27 |
Mensch & Umwelt | 90 |
Wasser | 55 |
Weitere | 85 |