C1.1 Ultra-Low-Power-Hardware und -Software für die Erfassung von Sensorsignalen Wir werden die spezifischen Energiebedarfe aller verteilten Sensoren erforschen und daraus notwendige Innovationen für unsere eingebetteten autonomen Sensorsysteme ableiten. Alle Sensoren werden mit Elektronik und Kommunikationsfähigkeiten mit extrem niedrigem Strom¬verbrauch ausgestattet. So werden sie zu aktiven und intelligenten Sensorknoten in unserem ECOSENSE-Netzwerk. Selbsttestfunktionen und Energiebewusstsein werden die Leistung eines Sensorknotens im Laufe der Zeit verbessern. C1.2 Drahtlose Kommunikation mit geringem Stromverbrauch Die drahtlose Kommunikation zwischen einzelnen und zentralen Sensorknoten wird durch die Nutzung neu etablierter Kommunikationsnetze, z. B. Narrow-Band Internet-of-Things (NB-IoT) sowie durch speziell zugeschnittene lokale Funknetze mit geringem Stromverbrauch (z.B. LoRa) ermöglicht. Die Energie¬versorgung solcher weit verteilten Sensorknoten muss entweder durch Energie¬gewinnung aus thermischer, solarer oder mechanischer Umgebungs¬energie oder durch passive Funkansätze, ähnlich der heutigen RFID-Technologie erfolgen.
B2.1 4D-Kronenvitalität unter Verwendung struktureller und aktiver ChlF-Daten aus Drohnen-basierter FernerkundungWir werden Fernerkundungen von aktiver Chlorophyll Fluoreszenz (ChlF) mittels einer Drohne (UAV) nutzen, um detaillierte, wiederholte räumliche Karten zur Visualisierung und Bewertung der Baumvitalität zu erstellen, Hot Spots innerhalb der Wälder zu identifizieren und die stichprobenbasierten Erkenntnisse in ein flächen¬deckendes Monitoring zu übertragen. Dabei werden wir die Modelle für die Bewertung der Chlorophyllfluoreszenz auf der Grundlage von UAV-gestützten Fernerkundungsgeräten weiterentwickeln, die anhand der Blattmessungen kalibriert werden. B2.2 Leichtes, robustes und vielseitiges Instrument für aktive Baumkronen-Fluoreszenzmessungen mit Auflösung auf Blattebene von einem UAV ausWir werden ein stark miniaturisiertes, hochintegriertes, leichtes UAV-basiertes aktives ChlF-Messgerät entwickeln, das LiDAR-Techniken (Light detection and ranging) mit einem effizienten neuen Scan-Paradigma verwendet. Es wird ausgedehnte Flugkampagnen mit hoher räumlicher Auflösung ermöglichen. Dabei erfolgt die Kalibrierung der UAV-gestützten Daten direkt über den Abgleich mit Daten von dem Blattsensornetz von B1.
Wir untersuchen, wie Sensorknoten, die als Bodensonden und Blattsensoren in direktem Kontakt mit der Umwelt stehen, gestaltet werden müssen, so dass sie langlebig und stabil sind, indem sie Fouling-Prozesse wie die Ansammlung von Schmutz oder bakterielles Wachstum verhindern. Dies erfordert maßgeschneiderte Oberflächenstrukturen und Antifouling-Beschichtungen, deren Spezifikation stark vom Standort des Sensors abhängt. Im Boden sind sie langen feuchten Phasen ausgesetzt, während sie an der Luft großen Temperatur- und Feuchtigkeitsschwankungen oder einfach der Ansammlung von Schmutz ausgesetzt sind.
A1.1 Quantifizierung Bodenökologischer Prozesse. Wir analysieren kleinräumig die räumlich-zeitliche Heterogenität der Bodenkohlenstoffflüsse im Wurzelraum sowie mikroklimatische und edaphische Bedingungen. Dadurch lassen sich die wurzelbürtige Rhizosphärenatmung von der reinen mikrobiellen Atmung des Bodens unterscheiden. Hiermit können wir die Entstehung von Hot Spots und Hot Moments aus beiden Quellen und ihre Interaktionen identifizieren.A1.2 Multifunktionale und energieautarke Bodensonden-Messsysteme. Wir entwickeln neuartige Bodensonden zur CO2 und Temperatur Messung, die mit hoher räumlicher Auflösung in einem Messfeld installiert werden können. Durch Nutzung thermoelektrischer und Solarenergie sind sie energieautark und erfüllen damit perfekt eine "Deploy and Forget"-Strategie.
A4.1 Ökosystemreaktionen und Rückkopplungen im Ökosystem-Atmosphäre-Austausch von CO2, H2O und VOCs in einem heterogenen Waldökosystem Um die Lücke zwischen der relativ kleinen Skala eines einzelnen Baumes und einem Waldbestand zu schließen, analysiert A4.1 den Austausch zwischen Ökosystem und Atmosphäre durch Eddy-Kovarianz Messungen von H2O, CO2 und dessen Isoflux (13CO2). Somit lassen sich die Flüsse auf einer integrierten Skala in ihre Komponenten (Ökosystematmung und Bruttoprimärproduktion) auftrennen. Darüber hinaus messen wir die Aufnahme und Freisetzung von VOC durch unsere Wälder und bringen sie mit wichtigen Ökosystemfunktionen in Verbindung, die stark auf Umweltveränderungen reagieren. A4.2 Entwicklung eines auf einem Interbandkaskadenlaser basierenden Messsystems zur Untersuchung des Austauschs zwischen Ökosystem und Atmosphäre von VOCs. Hier entwickeln wir erstmals eine optische spektroskopische Sensortechnologie, um VOCs mit Hilfe der durchstimmbaren Laserabsorptionsspektroskopie (TLAS) zu messen. Dies soll entlang der Konzentrationsgradienten am Messturm und in Verbindung mit Einzelblattküvetten (A3.2) erfolgen.
A3.1 Räumliche und zeitliche Auflösung der 13CO2- und VOC-Flüsse im BlattWir erfassen die räumliche und zeitliche Dynamik des Gaswechsels in Blättern innerhalb Baumkronen und Baumarten in einem Mischbestand. Durch die Messung der natürliche 13C-Isotopen Diskrimination können Anpassungen der Wassernutzungseffizienz und Umwelteinflüsse auf die Photosynthese entschlüsselt werden. Blattemissionen flüchtiger organischer Verbindungen (VOC) sind weitere Indikatoren für biotische und abiotische Stresse, so dass Hot Spots und Hot Moments in Echtzeit erfasst werden können. A3.2 Entwicklung von miniaturisierten Blattküvetten und kompakten Laser-spektroskopen für 13CO2-IsotopeWir entwickeln Mikro-Gasküvetten, welche in großer Zahl eingesetzt werden sollen, um die 3D-Variabilität der 13CO2-Isotope innerhalb des Kronendachs zu überwachen. Sie sind mit einem integrierten Öffnungs- und Schließ-mechanismus ausgestattet und werden mit mehreren kleinen, kostengünstigen Kohlenstoffisotopen-Laserspektroskopen verbunden, die auch die H2O-Flüsse in den Blättern messen werden. Da die Laserspektroskope nicht in ähnlichem Maße miniaturisiert werden können wie die Blattküvetten, werden sie an einer zentralen Stelle platziert und durch Schläuche verbunden.
A2.1 Ökohydrologische Flüsse und Prozesse in einem Mischwald-Ökosystem. Wir wollen die Wasser- und Kohlenstoffflüsse in heterogenen Baumbeständen und deren Auswirkung auf die räumlichen Muster der Bodenwasserflüsse analysieren. Dazu untersuchen wir ökohydrologische Prozesse, die Dynamik der Wasseraufnahme durch die Wurzeln, den Saftfluss der Bäume sowie den Zuckertransport im Phloem und dessen Kohlenstoffisotope. Weiterhin analysieren wir die Rückkopplungen auf die räumlich-zeitliche Variabilität und Heterogenität der Bodenfeuchte und deren Einfluss auf die Wassernutzungseffizienz der Bäume und den Zuckertransport im Phloem. A2.2 In-situ Flow-MRI und NMR zur Messung des Wasser- und Phloemzuckertransport. Wir entwickeln eine völlig neuartige Methodik mit kompakten Magnetresonanztomographie (MRT)- / Kernspinresonanz (NMR)- Sensoren, die auf Permanentmagneten basieren. Diese ermöglichen die In-situ-Bildgebung der H2O-Flüsse an Zweigen, ohne diese zu beeinträchtigen, sowie die NMR-Analyse der Wasser- und Phloem-Saftflüsse. Kontinuierliche In-situ-NMR-Messungen des Phloemsaftes erlauben eine neue Dimension der Quantifizierung des integrierten Kohlenstofftransports in Bäumen.
B1.1 Räumlich-zeitliche Heterogenität der Blattchlorophyll Fluoreszenz Wir werden die räumlich-zeitliche Heterogenität von Chlorophyll Fluoreszenz als sensitiver Parameter für Stresseffekte zusammen mit mikroklimatischen Parametern auf Blattebene messen. Durch multiple Mikro-Sensoren erreichen wir eine neue Dimension von räumlichen Analyse um sowohl innerhalb einzelner Baumkronen und Baumgruppen Hot Spots und Hot Moments stressbedingter Veränderungen der photosynthetischen Effizienz zu identifizieren.B1.2 Minimalinvasive und energiebewusste multifunktionale Blattsensoren Wir entwickeln neuartige drahtlose, energieautarke ChlF-Sensoren, die flexible, multifunktionale (Mikroklima) und hochintegrierte Mikrosensoren verwenden. Die neuartigen Blattsensoren (<1cm²) werden den höchsten Grad an Miniaturisierung aufweisen, um die geringste Störung bei den Blättern zu gewährleisten. Diese Sensoren fungieren als unabhängige Sensorknoten, da sie dank Solarenergie ihre Daten drahtlos übermitteln. Sie können im Rahmen einer "Deploy and forget"-Strategie installiert werden.
Objective: The objective is to develop a low-cost, low temperature, portable direct methanol fuel cell device. It will also offer limited operation on ethanol fuel and will be of compact construction and modular design. The development will include novel proton exchange membranes, anode and cathode electro catalysts and fully optimised multilayer membrane electrode assemblies. New low-cost proton exchange membranes will be developed to reduce the methanol crossover rate through the electrolyte to levels significantly lower than that of currently available materials (e.g. Nafion). New electro catalyst materials will be developed to enhance the low temperature methanol (and ethanol) electro-oxidation activity of the anode. Catalyst development for the cathode will focus on enhancing the oxygen reduction activity of platinum electro catalyst and increasing its selectivity to enhance methanol tolerance. The structure of the electro catalyst and electrode layers will be optimised to promote efficient operation at low temperatures with practical flows and pressures. System optimisation, simplification and miniaturization will be carried out. The final performance objectives will be: single cells operating at 0.5V / cell at 0.2 Acm-2 at 30-60 C (in atmospheric pressure air). Prototypes of 100 and later 500 W stacks, operating at low temperatures with aimed electrical characteristics of 40 A/12.5 V, will be the targets of the project. The effective operation at this low temperature is particularly challenging. Additionally a conceptual study for up-scale will be supplied. A narrow collaboration between research centres and industry will make possible a rapid exploitation of the new components and system developments. A SME will be responsible for the integration and will deliver the prototypes. The potential market for portable fuel cells includes weather stations, medical devices, signal units, auxiliary power units, gas sensors and security cameras.
Origin | Count |
---|---|
Bund | 9 |
Type | Count |
---|---|
Förderprogramm | 9 |
License | Count |
---|---|
offen | 9 |
Language | Count |
---|---|
Deutsch | 8 |
Englisch | 9 |
Resource type | Count |
---|---|
Keine | 1 |
Webseite | 8 |
Topic | Count |
---|---|
Boden | 7 |
Lebewesen und Lebensräume | 7 |
Luft | 9 |
Mensch und Umwelt | 9 |
Wasser | 5 |
Weitere | 9 |