Ziel des Projekts ist es, eine Alternative zur Verwendung von Balsaholz als Kernwerkstoff in den Rotorblattschalen von Windenergieanlagen aufzuzeigen. Dies reduziert das Risiko von Lieferengpässen und steigenden Kosten beim Balsaholz, um die Versorgung der nationalen und europäischen Rotorblatthersteller mit Kernmaterialien sicherzustellen. Zudem bestehen Defizite in der Nachhaltigkeit und Ressourceneffizienz durch die langen Transportwege aus Südamerika und die dortigen Anbaubedingungen des Balsaholzes. Das Projekt schafft den für die Bewertung erforderlichen Untersuchungsrahmen, zur Identifikation der Anforderungen an Kernmaterialien und die Entwicklung und Erweiterung der erforderlichen Berechnungsmethoden. Durch die Kombination unterschiedlicher innovativer Materialien geht das Projekt zudem einen Schritt Richtung zukünftiger Materialsysteme, was eine ganzheitliche Betrachtung von Aspekten wie Rezyklierfähigkeit und Nachhaltigkeit erlaubt. Dies ermöglicht einen ressourcen-sparenden und nachhaltigen Einsatz in zukünftigen Rotorblättern. Das Projekt adressiert einen Wissenstransfer aus Branchen außerhalb der Windenergie in denen bereits Erfahrungen mit heterogenen Kernwerkstoffen und Sandwichmaterialien gewonnen werden konnten, um diese Kenntnisse bei der Methodenentwicklung zu berücksichtigen. Neben zahlreichen Akteuren der Materialentwicklung beinhaltet das Projektkonsortium deshalb Partner aus dem Schienenverkehr und der Flugzeugausstattung.
Ziel des Projekts ist es, eine Alternative zur Verwendung von Balsaholz als Kernwerkstoff in den Rotorblattschalen von Windenergieanlagen aufzuzeigen. Dies reduziert das Risiko von Lieferengpässen und steigenden Kosten beim Balsaholz, um die Versorgung der nationalen und europäischen Rotorblatthersteller mit Kernmaterialien sicherzustellen. Zudem bestehen Defizite in der Nachhaltigkeit und Ressourceneffizienz durch die langen Transportwege aus Südamerika und die dortigen Anbaubedingungen des Balsaholzes. Das Projekt schafft den für die Bewertung erforderlichen Untersuchungsrahmen, zur Identifikation der Anforderungen an Kernmaterialien und die Entwicklung und Erweiterung der erforderlichen Berechnungsmethoden. Durch die Kombination unterschiedlicher innovativer Materialien geht das Projekt zudem einen Schritt Richtung zukünftiger Materialsysteme, was eine ganzheitliche Betrachtung von Aspekten wie Rezyklierfähigkeit und Nachhaltigkeit erlaubt. Dies ermöglicht einen ressourcen-sparenden und nachhaltigen Einsatz in zukünftigen Rotorblättern. Das Projekt adressiert einen Wissenstransfer aus Branchen außerhalb der Windenergie in denen bereits Erfahrungen mit heterogenen Kernwerkstoffen und Sandwichmaterialien gewonnen werden konnten, um diese Kenntnisse bei der Methodenentwicklung zu berücksichtigen. Neben zahlreichen Akteuren der Materialentwicklung beinhaltet das Projektkonsortium deshalb Partner aus dem Schienenverkehr und der Flugzeugausstattung.
Ziel des Projekts ist es, eine Alternative zur Verwendung von Balsaholz als Kernwerkstoff in den Rotorblattschalen von Windenergieanlagen aufzuzeigen. Dies reduziert das Risiko von Lieferengpässen und steigenden Kosten beim Balsaholz, um die Versorgung der nationalen und europäischen Rotorblatthersteller mit Kernmaterialien sicherzustellen. Zudem bestehen Defizite in der Nachhaltigkeit und Ressourceneffizienz durch die langen Transportwege aus Südamerika und die dortigen Anbaubedingungen des Balsaholzes. Das Projekt schafft den für die Bewertung erforderlichen Untersuchungsrahmen, zur Identifikation der Anforderungen an Kernmaterialien und die Entwicklung und Erweiterung der erforderlichen Berechnungsmethoden. Durch die Kombination unterschiedlicher innovativer Materialien geht das Projekt zudem einen Schritt Richtung zukünftiger Materialsysteme, was eine ganzheitliche Betrachtung von Aspekten wie Rezyklierfähigkeit und Nachhaltigkeit erlaubt. Dies ermöglicht einen ressourcen-sparenden und nachhaltigen Einsatz in zukünftigen Rotorblättern. Das Projekt adressiert einen Wissenstransfer aus Branchen außerhalb der Windenergie in denen bereits Erfahrungen mit heterogenen Kernwerkstoffen und Sandwichmaterialien gewonnen werden konnten, um diese Kenntnisse bei der Methodenentwicklung zu berücksichtigen. Neben zahlreichen Akteuren der Materialentwicklung beinhaltet das Projektkonsortium deshalb Partner aus dem Schienenverkehr und der Flugzeugausstattung.
Mehr als 90 Prozent der anthropogen emittierten Stickstoffoxide entstehen als Nebenprodukte von Verbrennungsvorgängen. Verursacher sind Kfz-Motoren, Feuerungsanlagen der Kraftwerke, Industriebetriebe und Hausheizungen. Der Verkehr ist die Emittentengruppe mit den höchsten Anteilen an Stickstoffoxiden (NOX). Trotz der in den vergangenen Jahren verstärkten Anstrengungen, die NOX-Emissionen zu reduzieren (Kfz-Katalysatoren, Rauchgasentstickungsanlagen) führen hohe Verkehrsdichten in Ballungsräumen und oftmalige Inversionswetterlagen zu erheblichen NOX-Belastungen. So kommt es, dass in Innenstadtbereichen trotz der erwähnten Emissionsminderungsmaßnahmen, aufgrund des ständig steigenden Verkehrsaufkommens, Grenz- bzw. Richtwerte überschritten werden. Ein neues Verfahren zur Minimierung der Immissionen basiert darauf, vorhandene Gebäudeoberflächen (z. B. Dächer, Häuserfassaden, Verglasungen) zur Reduktion von Stickoxiden in städtischen Atmosphären zu nutzen. Hierzu sollen die katalytischen bzw. photokatalytischen Eigenschaften bestimmter Substanzen gezielt baulich eingesetzt werden. Der katalytische Abbau von NOX in Rauchgasentstickungsanlagen ist ein umfangreich erforschtes Gebiet der technischen Chemie. Erst oberhalb Temperaturen von 250 - 400 Grad C erreichen die Katalysatoren Umsatzgeschwindigkeiten, die für die technische Nutzung brauchbar sind. In Großstädten stehen ausgedehnte Gebäudeflächen zur Verfügung. Würde ein Teil dieser Flächen aus katalytisch aktiver Bausubstanz bestehen, so wären hier auch langsame, auf niedrigem Temperaturniveau (Sommeraußentemperatur) stattfindende katalytische Reaktionen interessant, da die großen Flächen den Nachteil geringer Umsätze kompensieren würden. Diese neue Gruppe von funktionellen Baustoffen für den passiven katalytischen Schadstoffabbau werden als p-Baustoffe (Protective Integrated Building Materials) bezeichnet. Erste Voruntersuchungen mit beschichteten Dachsteinen waren erfolgreich.
Faser- und plättchenförmige neuartige Materialien wie beispielswiese Kohlenstoffnanoröhrchen, Graphene oder MXene weisen außergewöhnliche mechanische, elektronische, optische und chemische Eigenschaften auf. Sie werden daher für eine Vielzahl von Anwendungen untersucht. Diese umfassen beispielsweise optoelektronische Anwendungen (z.B. Solarzellen, Leuchtdioden), Sensortechnik, Verbundmaterialien (z.B. für elektrische Leitfähigkeit, EMV-Abschirmung), Energiespeicherung, Katalysatoren oder Textilien (z.B. für elektrische Leitfähigkeit, Flammschutz). Faser- und plättchenförmige neuartige Materialien können aufgrund ihrer Eigenschaften methodische Herausforderungen für die regulative Risikobewertung gemäß EU-Chemikalienrecht mit sich bringen. Welche Mechanismen zur ökotoxischen Wirkung dieser Materialien beitragen, ist wenig untersucht. Zudem besteht die Besorgnis, dass mögliche ökotoxische Wirkungen der Materialien über die klassischen Methoden nicht ausreichend aufgeklärt werden können. Somit besteht der Bedarf geeignete Prüfstrategien zu entwickeln, die es ermöglichen relevante Mechanismen und (sub)letale Effekte zu identifizieren, die eine spezifische Einschätzung des ökotoxischen Potentials faser- und plättchenförmiger neuartiger Materialien erlauben. In dem Vorhaben sollen daher besondere Wirkmechanismen und relevante (sub)letale Effekte dieser Materialien recherchiert werden. Davon ausgehend soll abgeleitet werden, welche Prüfsysteme zum Einsatz kommen müssen, um spezifische Aussagen zur Ökotoxikologie dieser Materialien vornehmen zu können. Ausgewählte Prüfsysteme sollen exemplarisch anhand von ausgewählten faser- und plättchenförmigen Materialien erprobt und adaptiert werden. Auf diese Weise sollen Empfehlungen abgeleitet werden, wie nicht-klassische Effekte im Rahmen der Umweltrisikobewertung solcher Materialien berücksichtigt werden könnten und welche weiteren Schritte vorgenommen werden müssten.
1
2
3
4
5
…
230
231
232