Das Brandverhalten von Kalksandstein-Mauerwerk wurde bisher ausschliesslich durch Brandpruefungen gemaess DIN 4102 Teil 2 und Teil 3 an praxisgerechten, grossformatigen Bauteilen nachgewiesen. Ueber das Hochtemperaturverhalten von Kalksandsteinen und Moerteln sowie der Kombination Stein/Moertel lagen weltweit bisher kaum Ergebnisse vor. Im vorliegenden Forschungsbericht werden die Ergebnisse der Untersuchungen unter erhoehten Temperaturen zur Bestimmung der thermischen und mechanischen Materialeigenschaften von ausgewaehlten Kalksandsteinen und Moerteln vorgestellt und bewertet. Zur Ermittlung der thermischen Materialkennwerte wurden zahlreiche Temperaturmessungen aus den oa Bauteilpruefungen ausgewertet. Ausserdem wurden nach der Entwicklung der dafuer erforderlichen Pruefmaschine erste Warmkriechversuche mit instationaerer Erwaermung an Mauerwerksabschnitten durchgefuehrt. Hierbei wurde der Einfluss von Stoff- und Lagerfugen - vermoertelt oder stumpf gestossen - auf die thermische Dehnung und Gesamtdehnung unter Last ermittelt. Die erzielten Ergebnisse wurden derart aufbereitet, dass sie in einem Parallelvorhaben als Rechengrundlagen eines rechnerischen Nachweisverfahrens fuer das Brandverhalten von Kalksandstein-Mauerwerk verwendbar sind.
Sauropod dinosaurs represent one of the most important components of Mesozoic terrestrial vertebrate faunas, yet their early evolution and diversification in the Jurassic is still poorly understood. Furthermore, most of the pertinent data so far comes from Early and Middle Jurassic rocks in eastern Asia. The only abundant basal sauropod material reported from the Western Hemisphere so far comes from the Middle Jurassic Cañadón Asfalto Formation of Chubut province, Argentina, from where two species, Patagosaurus fariasi and Volkheimeria chubutensis, have been described. Especially the first of these taxa has figured prominently in basal sauropod phylogenies. However, recent research suggests that more sauropods are represented in the original material referred to this species, and intensive fieldwork in the rocks that have yielded these materials has resulted in the recovery of a wealth of new material. Thus, the objective of this project is a revision of the original materials of Patagosaurus as well as an incorporation of new materials. The alpha taxonomy of the sauropods from the Cañadón Asfalto Formation will be established, detailed osteological descriptions of the different taxa provided and their significance for our understanding of early sauropod evolution will be evaluated.
norganische Funktionsmaterialien spielen innerhalb der Schlüsseltechnologien des 21. Jahrhunderts, etwa im Bereich der Informationstechnik oder der Energieerzeugung und -speicherung, eine zentrale Rolle. Dabei sind komplex strukturierte multifunktionelle Materialien auf rein anorganischer Basis sowie im Verbund mit organischen Anteilen zur Weiterentwicklung dieser Technologien von wesentlicher Bedeutung. Die Erzeugung solcher Materialien mit definierter Struktur und Stöchiometrie über die konventionelle Prozesstechnik, die in der Regel bei erhöhten Temperaturen und/oder Drücken sowie unter erheblichem verfahrenstechnischen Aufwand abläuft, stößt hierbei jedoch an ihre Grenzen. Demgemäß ist die Suche nach neuen Verfahren, die eine Generierung von diesen Materialien bei Umgebungsbedingungen und mit reduziertem prozesstechnischen Aufwand ermöglichen, derzeit Gegenstand weltweiter Forschungsanstrengungen. Für die Bildung von komplex strukturierten anorganischen Festkörpern bei Umgebungsbedingungen liefert die belebte Natur eindrucksvolle Beispiele. So entstehen durch Biomineralisationsprozesse Stoffe wie etwa Calciumphosphat oder -carbonat, deren Bildung genetisch determiniert ist und durch die Wechselwirkung mit Biomolekülen gesteuert wird, wobei unter anderem Selbstorganisationsprozesse eine Rolle spielen. Die hierdurch entstehenden anorganischen Materialien besitzen multifunktionelle Eigenschaften, wobei deren Eigenschaftsspektrum durch den Einbau von bioorganischen Komponenten erweitert wird. Wenngleich viele technisch relevante Materialien bei diesen natürlichen Prozessen keine Rolle spielen, ergeben sich hieraus unmittelbar aussichtsreiche Perspektiven zur Generierung neuer anorganischer Funktionsmaterialien durch spezifische molekulare Interaktionen zwischen bioorganischen und anorganischen Stoffen. Das Hauptziel dieses Schwerpunktprogramms ist daher die Übertragung von Prinzipien der Biomineralisation auf die Generierung von anorganischen Funktionsmaterialien und von deren Hybriden mit bioorganischen Anteilen. Zur Erreichung dieses Ziels werden Arbeiten durchgeführt (1) zur In-vitro- und In-vivo-Synthese anorganischer Funktionsmaterialien und deren Hybride mit bioorganischen Molekülen in Form von Schichten oder 3D-Strukturen, (2) zur Charakterisierung der Bildungsprozesse und der Struktur der Materialien sowie (3) zur Bestimmung und zum Design von deren physikalischen und chemischen Eigenschaften. Diese experimentellen Untersuchungen werden weiterhin durch Arbeiten zur Modellierung der Materialbildung, -struktur und -eigenschaften begleitet.
Breakthroughs in computing have led to the development of new generations of Earth Systems Models, which provide detailed information on how our planet may locally respond to the ongoing global warming, with unprecedented spatial and temporal resolutions of 1 km and a few minutes, respectively. This massive climate data may be of little value, if not utilized by engineers who are involved in developing technical solutions for real-world challenges. Engineers stand to benefit from seizing this opportunity and by incorporating climate data in engineering designs, solutions, and practices. This benefit is precisely the key driving force for founding the Research Training Group (RTG) on Climate-informed Engineering (CIE) as an emerging interdisciplinary field of research integrating state-of-the-art climate information with engineering education. A structured training strategy is designed in the RTG featuring a broad range of educational activities to facilitate training and promote early-career researchers who will contribute to developing the next generation of engineering solutions that are adaptive to climate. In doing so, we will integrate a new generation of climate models in our training through the active involvement of the Max-Planck Institute for Meteorology (MPI-M), an internationally renowned organization at the forefront of global efforts on climate models. Furthermore, the RTG offers a joint PhD program between TUHH and the United Nations University Institute for Water, Environment and Health (UNU-INWEH). Hence, the PhD candidates will benefit from the interactions with renowned experts at UNU and the UN on a variety of topics related to United Nations Sustainable Development Goals, which is at the heart of our RTG. The RTG will utilize engineering science and innovative approaches to develop new materials, processes, and predictive capabilities to help people, businesses, and ecosystem in the face of climate change. The RTG will include three main Research Areas, namely CIE for Built Environment, CIE for Process Engineering and CIE for Sustainable Resource Management and Environment. Ten projects are designed in the first funding phase, covering a wide range of topics, spanning from influence of climate on renewable resources and food engineering to developing novel materials for latent heat storage. The projects will couple indoor and outdoor climates based on Internet-of-Things technologies and will develop predictive capabilities for water and food security. All the principal investigators and PhD candidates share the common goal of employing new-generation climate information to devise strategies for mitigating climate change. This interdisciplinary RTG is the first of its kind, ultimately enabling engineers to build infrastructure and to develop new materials and processes that are informed by the climate data, which will be an increasingly important dimension of engineering education in the 21st century.
The report describes the state of knowledge and technology on current and future applications of advanced materials in the various technologies to support the energy transition. Based on a literature review, a systematic overview of applications of advanced materials for the generation, saving, storage and transportation of renewable energies and energy sources is presented. In addition, based on specific relevance criteria, ten advanced materials identified in the systematic overview were examined closer for their specific potential for the energy transition but also with regard to potential challenges for chemical safety and sustainability which may lead to conflicting objectives. Veröffentlicht in Texte | 83/2025.
Zielsetzung: In diesem Forschungsvorhaben soll ein neuartiges, recyceltes Aktivmaterial aus einer Stahllegierung für elektrische Maschinen (EMn) mithilfe eines innovativen, nachhaltigen Herstellungsverfahrens entwickelt werden. Die Grundidee des Projekts besteht darin, eine Recyclingroute für Blechpakete aus ausgemusterten Statoren und Rotoren von EMn sowie für den bei der Herstellung neuer Blechpakete anfallenden Blechschrott zu etablieren. Diese neue Recyclingroute zeichnet sich dadurch aus, dass die für neue EMn benötigten Statoren und Rotoren durch das Verpressen von Metallspänen hergestellt werden – anstelle des üblichen Weges über Verschrottung, Einschmelzen, Stranggießen sowie anschließendes Warm- und Kaltwalzen. Die Antragsteller verfolgen das Konzept, sämtlichen Schrott zu zerkleinern, die entstehenden Späne chemisch zu beschichten und anschließend durch ein Umformverfahren in die finale Geometrie von Stator- und/oder Rotorbauteilen zu verpressen. Das gepresste Bauteil kann dann als Aktivmaterial oder als Teil davon, z.?B. in einem EM oder in Transformatoren, eingesetzt werden. Fazit: Das gepresste Bauteil kann anschließend als Aktivmaterial oder als Teil davon verwendet werden, z.?B. in einer elektrischen Maschine (EM) oder in Transformatoren. Der daraus resultierende neuartige Werkstoff „Compacted Chip Magnetic Composite“ (CCMC) besteht aus recycelten, isolierten Blechspänen und ähnelt damit den heute bekannten weichmagnetischen Pulververbundwerkstoffen (SMC – Soft Magnetic Composites). Zur Validierung dieser Idee wird der Einfluss verschiedener Spangeometrien, deren Isolierung sowie weiterer Prozess- und Systemparameter im Herstellungsprozess untersucht. Die Ergebnisse dieser Forschung sollen dazu beitragen, den Einsatz von recyceltem Blechschrott in der Elektromobilität und anderen Anwendungen (z.?B. Transformatoren und/oder andere elektrische Maschinen zur Magnetfeldinduktion) zu verbessern und die Nachhaltigkeit von EMn zu erhöhen. Gelingt es, den Energiebedarf für das Recycling von EMn deutlich zu senken, kann dies einen wesentlichen Beitrag zur Reduzierung des CO2-Fußabdrucks zukünftiger elektrischer Maschinen leisten. Die in den Kreislauf zurückgeführten Motorkomponenten helfen dabei, den Verbrauch nicht erneuerbarer Rohstoffe sowie den Energiebedarf, die CO2-Emissionen und den Wasserverbrauch zu verringern.
| Origin | Count |
|---|---|
| Bund | 2331 |
| Land | 2 |
| Wissenschaft | 1 |
| Type | Count |
|---|---|
| Förderprogramm | 2283 |
| Text | 33 |
| Umweltprüfung | 1 |
| unbekannt | 17 |
| License | Count |
|---|---|
| geschlossen | 48 |
| offen | 2286 |
| Language | Count |
|---|---|
| Deutsch | 2171 |
| Englisch | 283 |
| Resource type | Count |
|---|---|
| Dokument | 22 |
| Keine | 948 |
| Unbekannt | 1 |
| Webseite | 1373 |
| Topic | Count |
|---|---|
| Boden | 1429 |
| Lebewesen und Lebensräume | 1142 |
| Luft | 1314 |
| Mensch und Umwelt | 2334 |
| Wasser | 792 |
| Weitere | 2310 |