Ziel dieses Projekts ist es, die 176Lu-176Hf und 238U-230Th Methodik für die Anwendung an Evaporitmineralen (Karbonat, Anhydrit, Gips, Bassanit) zu entwickeln. In Kombination würden diese Methoden das gesamte zu erwartendene Alterspektrum in der Atacama Wüste abdecken (einige Zehntausend bis Zehnermillionen Jahre).
Zinn (Sn) und Wolfram (W), deren Vorkommen hauptsächlich mit magmatisch-hydrothermalen Systemen in Verbindung gebracht werden, haben sich als strategische Metalle etabliert, und die erfolgreiche Erkundung wirtschaftlich wertvoller Lagerstätten hängt von einem grundlegenden Verständnis der erzbildenden Prozesse ab, einschließlich Quelle und Primärkonzentration, Transport, Ablagerung und Remobilisierung. Zusammen mit anderen hochfeldstarken (HFSE; z. B. Nb und Ta) und fluidmobilen Elementen (z. B. Li, P, F) treten Sn und W häufig in enger räumlicher Beziehung zu spät- bis postorogenen peraluminösen Granitsystemen der Kruste - einschließlich Seltenmetallgraniten (RMG) und Pegmatiten - und damit verbundenen hydrothermalen Aktivitäten auf. Die Anreicherung von Zinn und W bis zu wirtschaftlichen Gehalten ist das Ergebnis einer Kombination von Schmelz- (d. h. Vorkonzentration) und fluidgetriebenen Prozessen (d. h. Remobilisierung). Der Transport und die Umverteilung dieser Elemente innerhalb der Kruste hängen von verschiedenen Faktoren ab, wie z. B. ihrer Löslichkeit in der Schmelze und im Fluid im Gleichgewicht mit erzhaltigen Mineralen und ihrer Verteilung zwischen Schmelze und Fluid am magmatisch-hydrothermalen Übergang. Während die Zusammensetzung der Schmelze und des Fluids für beide Elemente wichtige Parameter sind, reagiert W sehr empfindlich auf die Temperatur und Sn auf die Redoxbedingungen (d. h. Speicherung und Transport als Sn2+ oder Sn4+) bei einer bestimmten Zusammensetzung. Obwohl die wichtigsten Kontrollparameter bereits identifiziert wurden, sind weitere Untersuchungen erforderlich, um in der Literatur auftretende Diskrepanzen zu klären (z. B. im Zusammenhang mit der Komplexität solcher Systeme und möglichen experimentellen Problemen). Zu diesem Zweck wollen wir uns auf mehrere Aspekte konzentrieren und dabei verschiedene Ansätze anwenden: (i) Löslichkeitsexperimente für Sn- und W-haltige Minerale in Schmelze und Fluid unter Berücksichtigung von deren geochemischer Vielfalt und der für Sn-W-Lagerstätten relevanten P-T-fO2-Bedingungen, (ii) Experimente zur genauen Bestimmung der Fluid/Schmelze- und Sole/Dampf/Schmelze-Verteilung von Sn und W am magmatisch-hydrothermalen Übergang, (iii) Untersuchung von Fluideinschlüssen an einem herausragenden Beispiel des Argemela-Granitsystems (Portugal) zur qualitativen und quantitativen Untersuchung der Sn- und W-Konzentration in Fluiden und des Transports am magmatisch-hydrothermalen Übergang, (iv) Untersuchung des Oxidationszustands von Sn in verschiedenen Krustenumgebungen zur Bewertung des Redox-Effekts auf den Sn-Transport und die Umverteilung innerhalb der Kruste. Insgesamt werden unsere Ergebnisse dazu beitragen, die bestehenden Modelle für die Bildung von Sn-W-Lagerstätten neu zu bewerten.
Bedeutende primäre Sn-Lagerstätten sind an geochemisch hoch-spezialisierte, unter reduzierenden Bedingungen gebildete S-Typ Granite gebunden. Zinnanreicherung erfolgt jedoch nicht nur durch fraktionierte Kristallisation und hydrothermale Umverteilung auf dem Platznahme-Niveau der Intrusion, sondern hängt auch vom Protolith und den Schmelzbedingungen, sowie vom Sn-Gehalt dieser Ausgangsgesteine an. Darüber hinaus kann prograd-metamorphe Umverteilung zu einer Anreicherung von Sn im Ausgangsgestein führen. Traditionell wird die metamorphe Mobilisierung von Sn als nicht wichtig betrachtet. Es gibt jedoch im Erzgebirge einzelne Skarne (z. B. Hämmerlein) und Quarz-Glimmer-Schiefer (z. Bsp. Bockau and Aue) mit Sn-reichen metamorphen Mineralen, die eindeutig älter sind als die lokalen variszischer Sn-spezifischen Granite, was beweist, dass Sn während der Metamorphose mobil war. Die Frage ist damit, inwieweit metamorphogene Sn-Anreicherung ein essentieller Schritt in der Anreicherung von Sn für die spätere Bildung magmatischer Sn Lagestätten ist. Dieses Projekt konzentriert sich auf die Sn-reichen Quarz-Glimmer-Schiefer (mit 200 bis zu lokal 5000 ppm Sn) mit an Quarzschlieren gebundener Sn-Vererzung (>1% Sn) aus dem Gebiet von Bockau. Wir untersuchen folgende Fragen: (i) Es gibt mehrere texturelle und strukturelle Typen von Kassiterit. Unter welchen P-T-d Bedingungen haben sich die unterschiedlichen Kassiterit-Typen gebildet? Die U-Pb Datierung der einzelnen Kassiterit-Typen erlaubt es, die Zeit und die Bedingungen der metamorphen Sn-Mobilisierung einzugrenzen. (ii) Welche Elemente wurden zusammen mit Sn mobilisiert. Dazu wird die chemische Zusammensetzung nicht vererzter und unterschiedlich intensiv vererzter Quarz-Glimmer-Schiefer miteinander verglichen. Die Isotopenzusammensetzung von Li, B, Sr, Nd and Pb wird verwendet, um einen geochemischen Fingerabdruck der Quelle der Erzelemente zu erhalten; (iii) Ändert sich der Stoffbestand der Fluide mit der Zeit? Wir verwenden dazu die chemische Zonierung von Biotit, Granat und Kassiterit. Von besonderem Interesse ist ob und wie die Fluidzusammensetzung einen Einfluss darauf hat ob Sn in Silikatminerale substituiert oder eigene Phasen bildet, da die Form in welcher Sn auftritt möglicherweise die Verteilung zwischen Mineral und Teilschmelze bei beginnendem Schmelzen der Ausgangsgesteine beeinträchtigen kann. Es gibt Beschreibungen von vergleichbaren stratiformen Sn Vererzungen (jedoch mit Sulfiden) in den entsprechenden tektonischen Einheiten in Polen und er Tschechischen Republik. Ein Vergleich der Vorkommen von Bockau mit den polnischen und tschechischen Vorkommen erlaubt eine Unterscheidung von Charakteristika die von allgemeiner Bedeutung sind und solchen die eher von lokaler Bedeutung sind. Eine Schlüsselfrage dieses Projektes ist ob die metamorphe Mobilisierung von Sn im prä-kollisionalen Akkretionskeil ein Prozess ist, der die Erz-Höffigkeit später daraus entwickelter S-Typ-Granite kontrolliert.
Im Sb-Hg-Gürtel in SW Kirgisien befinden sich rund 10 größere und kleinere, z. T. im Weltmasssstab ökonomisch bedeutende Sb- oder Hg-Lagerstätten, die einige interessante mineralogische und geochemische Besonderheiten aufweisen. Manche dieser Lagerstätten enthalten beispielsweise überwiegend bis ausschließlich Stibnit als Erzmineral, manche überwiegend Zinnober und mehrere enthalten beide. Ob es sich dabei um einen Effekt von "Telescoping" handelt oder andere Ausfällungsmechnismen die Ursache darstellen, ist unklar. Auch weisen manche der Lagerstätten komplexe Hg-Sb-(Pb-Cu)-Sulfosalze auf (auch als ökonomisch wichtige Erzmassen), die möglicherweise Remobilisierungsprodukte der primären Erze mit späteren hydrothermalen Lösungen darstellen. Manche der Erze enthalten signifikante Goldgehalte, andere nicht. Schließlich ist Fluorit neben Quarz - im Gegensatz zu allen anderen weltweiten Vorkommen dieses Typs - eine wichtige Gangart. Der vorliegende Antrag untersucht mittels Mineraltexturen und Mineralchemie die Mineralabfolge und Bildungsbedingungen der Lagerstätten, mittels Flüssigkeitseinschlüssen die Art und Zusammensetzung der an der Bildung dieser Lagerstätten beteiligten hydrothermalen Lösungen, versucht die Herkunft und Bedeutung des Fluors für die Lagerstättenbildung abzuschätzen, untersucht vergleichend die Ausfällungsmechanismen für Sb, Hg und Au in verschiedenen Erzassoziationen über verschiedene Lagerstätten hinweg (district scale) und wird versuchen, auch mittels geochemischer Modellierungen ein Modell für die Entstehung der SW-kirgisischen Sb-Hg-Lagerstätten zu erarbeiten. Das Projekt ist eng mit dem Schwesterprojekt von Prof. Wagner (Aachen) verzahnt.
Porphyrische Erzlagerstätten sind die Hauptlieferanten von Kupfer und Molybdän und eine wichtige Rohstoffquelle für weitere Metalle und Elemente, einschließlich einiger seltener Rohstoffe wie Selen und Rhenium. Diese Lagerstätten liegen stets oberhalb von Subduktionszonen. Trotzdem ist nicht wirklich bekannt, woher letztlich die Metalle in diesen Lagerstätten stammen: Aus dem asthenosphärischen Mantel, der subduzierten basaltischen Kruste, subduzierten Sedimenten oder vielleicht der Kruste der oberen Platte. Wir werden daher experimentell die Verteilung von Cu, Mo, Ag, Au und W zwischen Eklogit, Meta-Sedimenten und Wasser-reichen Fluiden unter den Bedingungen in Subduktionszonen untersuchen. Diese Hochdruckexperimente werden quantitative Vorhersagen erlauben, in welchem Umfang die subduzierte basaltische Kruste oder subduzierte Sedimente zum Metallgehalt in porphyrischen Lagestätten beitragen. Falls Sedimente die Hauptquelle der Metalle sind und falls der Metallgehalt in den Sedimenten lokal stark variiert, erlauben diese Experimente Vorhersagen, welches Segment einer Subduktionszone wahrscheinlich größere Lagerstätten enthält. Wie im Antrag beschrieben, gibt es sehr starke geochemische Argumente dafür, dass dies bei Molybdän der Fall ist. Das Verhalten der anderen Elemente erfordert jedoch auch weitere Untersuchungen.
Der Weg zu einer Gesellschaft mit geringem Kohlendioxidemission-Ausstoß in Europa erhöht unseren Bedarf an mineralischen Rohstoffen drastisch und erfordert eine zuverlässige und nachhaltige Versorgung mit mineralischen Ressourcen. Europa hat eine lange Bergbautradition, sodass es schwieriger ist neue klassische Erzvorkommen zu entdecken. Unkonventionelle Erzlagerstätten sind daher im Fokus der Exploration, um eine Sicherung der benötigten Rohstoffe zu gewährleisten. Darunter befinden sich ultramafische vulkanogene Massivsulfidlagerstätten (UM-VMS), die mit Au, Ag, Co, Cu und Ni angereichert sind. Diese Lagerstätten sind von langsam-spreizenden Mittelozeanischen Rücken (MOR) bekannt, wo sie sich im Allgemeinen entlang von Abscherungsflächen (detachment faults) bilden. Derzeit sind jedoch nur wenige UM-VMS-Lagerstätten an Land entdeckt worden. Diese geringe Anzahl ist hauptsächlich auf das Fehlen moderner und kohärenter Genese- und Explorations-Modelle zurückzuführen. Jüngste Arbeiten heben hervor, dass sich UM-VMS-Lagerstätten, zusätzlich zu MOR, in komplexeren tektonischen Umgebungen bilden als bisher angenommen, wie beispielsweise Ozean-Kontinent-Übergänge (OCT) und Supra-Subduktionszonen (SSZ). In diesem Projekt planen wir die Entwicklung von Genese- und Explorations-Modellen durch die Verwendung eines integrierten, mehrskaligen und systematischen Ansatzes (mineral systems approach), in verschiedenen tektonischen Umgebungen wie dem Troodos-Ophioliten (Zypern, SSZ) und dem Outokumpu-Ophioliten (Finnland, metamorphisierte OCT). Die Schwerpunkte dieses Projektes liegen in der Lokation der Quelle der Metalle und Fluide, der Identifizierung der Wegsamkeiten von Fluiden, der Ausfällungsmechanismen von Metallen und der Erhaltung der Erze. Diese Untersuchungen werden es ermöglichen, die wichtigsten Parameter zu bestimmen, die zur Bildung von Erzlagerstätten führen, und letztendlich dazu beitragen, neue Lagerstätten an Land und auf dem Meeresboden zu entdecken, wie beispielsweise im deutschen INDEX-Gebiet. Alle untersuchten Gebiete liegen innerhalb Europas und fördern die Charakterisierung der Erzlagerstätten in oder in der Nähe der Europäischen Union.
Trotz intesiver Untersuchungen an Karbonatiten und assozierten Gesteinen (ultrabasisch, basisch, alkalin) durch verschiedene geologische Untersuchungsmethoden und Disziplinen ist ihre Genese und Evolution immer noch nicht verstanden. Mehr noch, es gibt keinen Konsens, was die kritischen Voraussetzungen und Prozesse sind, die zur Mobilisierung, zur Metall-Anreicherung und Erz-Bildung führen. Hiermit schlagen wir eine Studie vor, die petrologische, geochemische, geochronologische und auch experimentelle Untersuchungen kombiniert, um die frühesten Metallanreicherungs-Prozesse in magmatischen Karbonatiten und assozierten Gesteinen zu verstehen. Der Hauptfokus liegt darin, die Zusammensetzung der primären magmatischen Schmelzen zu untersuchen und ihre Veränderung mit der Zeit zu verstehen. Dies wollen wir erreichen, indem wir mehrere ultrabasisch-basisch-alkaline-karbonatititsche Komplexe (UBAK) der Kola-Halbinsel untersuchen, die eine klassische und gut untersuchte Region dieser Gesteinen darstellt. Insbesondere wollen wir Antwort auf folgende Fragestellungen finden:1) Die Entwicklung mit der Zeit, a) innerhalb der Kola-Halbinsel (gibt es eine zeitabhängige Intrusionsrichtung, durch einen plume ausgelöst?), b) innerhalb ausgewählter Karbonatit-Massive (gibt es einen Altersunterschied zwischen den frühesten und späten Schmelzen?). Wir werden dafür hoch-präzise Datierung an frühen Gesteinen (z.B. durch Datierung von Perovskiten aus Pyroxeniten) und an späten Schmelzen (z.B. Datierung von Baddeleit und Zirkon aus Phoskoriten und Karbonatiten) durchführen.2) Wie war die Zusammensetzung der frühen Schmelzen, die heute nur noch in Einschlüssen von Kumulat-Mineralen vorhanden sind? Untersuchungen an Einschlüssen von sehr früh gebildeten Mineralen (Perowskit, Olivin, Pyroxen) werden uns die chemische Zusammensetzung dieser Schmelzen und deren Bedingungen (P, T, X, fO2) liefern.3) Geochemische Entwicklung der Gesteine und Minerale: welche Minerale (bzw. deren verschiedene Generationen) konzentrieren SEE, Nb und andere potentielle Erz-Elemente? Welche Rolle spielen Kumulate für Fraktionierungs- und Anreicherungs-Prozesse? Wir werden Kathodolumineszenz an Dünnschliffen anwenden, um verschiedene Mineralgenerationen zu erkennen, aber auch Mineralchemie (LA-ICP-MS), Isotopen (Sr, Nd, Pb) für ausgewählte Minerale (z.B. Karbonate, Apatite, Perowskite).Die frühesten Gesteine (Olivinite, Pyroxenite) enthalten häufig Perowskit und werden als Kumulate interpretiert. Das Studium der Schmelzeinschlüsse der Perowskite wird uns die Zusammensetung der Schmelzen liefern, aus denen sie gebildet wurden. Diese Information hilft uns, die an Perowskiten bestimmten Alter diesen Schmelzen zuzuordnen. Andererseits werden geochemische Untersuchungen an früh gebildeten (Olivinite, Pyroxenite) und spät gebildeten Gesteinen (Phoskorite, Karbonatite) die Rolle von Fraktionierungen, Mischungen und Entmischungen für Erzanreicherungs-Prozesse in Schmelzen im Laufe der Zeit aufzeigen.
Rhenium (Re) ist ein kritisches Element für technologische Anwendungen, welches im Wesentlichen in Molybdänit aus porphyrischen Lagerstätten gewonnen wird. In diesem Projekt soll ein Verständnis dafür entwickelt werden, wie Re durch hydrothermale Fluide transportiert werden kann und welches die Bedingungen für die Anreicherung in Molybdänit sind. Mit den hier den generierten thermodynamischen Modellen für die Re-löslichkeit in Fluiden, sollen konzeptionelle Modelle für die Anreicherung von Re in natürlichen Systemen, wie z.B. die Porphyrlagerstätten im nördlichen Griechenland, entwickelt werden.
Orogene Sb-Au-Lagerstätten sind Archive jener Prozesse, die in den Orogenen in der mittleren und unteren Kruste abliefen. Die Elemente Antimon und Gold sind zusammen mit Arsen und Schwefel typische Bestandteile der Erze dieser Lagerstätten. Sie bildeten sich bereits in der frühen Erdgeschichte (Archaikum), allerdings gibt auch geologisch junge Beispiele aus dem Phanerozoikum. Eines der Ziele dieser Arbeit ist es, den Grad der Fraktionierung von Antimon aus dem Erdmantel in die Kruste mit Hilfe von Sb-Isotopen (d. h. ?123Sb -Werten) zu ermitteln. Unsere Arbeitshypothese ist, dass die Fraktionierung von Antimon und vielleicht auch der Begleitelemente (Au, As, S) schon früh in der Erdgeschichte abgeschlossen war. Diese Hypothese lässt sich anhand der unterschiedlichen Fraktionierungsmuster von Sb überprüfen, da dieses Element sowohl in Silikatschmelzen als auch in Metallschmelzen fraktioniert. Unsere früheren Arbeiten haben bereits gezeigt, dass die Remobilisierung von Sb-Erzen große Veränderungen in Bezug auf ?123Sb verursacht. Diese Arbeit soll an archaischen und proterozoischen orogenen Lagerstätten im ukrainischen Schild durchgeführt werden. Ein weiteres Ziel ist die Untersuchung der räumlichen Variationen von Sb-Au-Lagerstätten, die sich auf verschiedenen Krustenebenen innerhalb eines Lagerstättenfelds befinden können. Unsere Arbeitshypothese ist, dass Fluide, die die Bildung dieser Lagerstätten verursachen, große Krustenvolumina durchqueren und die Minerale nacheinander ablagern, was zu systematischen Mustern in ?123Sb führt, wie sie bereits in unseren früheren Untersuchungen innerhalb einzelner Lagerstätten beobachtet wurden. Für diese Arbeit werden wir eine Gruppe von Sb-Au-Lagerstätten in den Westkarpaten verwenden. Um die Daten korrekt zu interpretieren, werden Fraktionierungsfaktoren für die Sb-Minerale benötigt. Das letzte Ziel dieser Arbeit verknüpft die Feld- und die experimentelle Arbeit und wird dazu verwendet, die Fraktionierungsfaktoren ? der Sb-haltigen Feststoffe aus der Temperaturabhängigkeit der Parameter der Mössbauer-Spektren zu berechnen.
Geogene Arsenverunreinigung (As) ist ein Problem in vielen Aquiferen in Südostasien und stellt eine Bedrohung für die Gesundheit von Millionen von Menschen dar. Das Verständnis der Mechanismen, die die As-Freisetzung im Grundwasser steuern, ist entscheidend, aber aufgrund der komplexen mineralogischen, geochemischen und hydrologischen Bedingungen oft begrenzt. Die reduktive mikrobielle Auflösung von As-haltigen Eisen(Fe)(III)-(Oxyhydr)oxid-Mineralen gekoppelt an die Oxidation von natürlichem organischen Material (NOM) ist ein bekannter Mechanismus für die As-Mobilisierung im Grundwasser. In den letzten Jahren wurden in verschiedenen Arsen-kontaminierten Aquiferen erhöhte Konzentrationen von gelöstem Methan (CH4) detektiert; das gelöste As korrelierte dabei direkt mit CH4 und Fe(II) im Grundwasser. Diese Ergebnisse werfen die Frage auf, ob CH4 als Elektronendonor für die mikrobielle Reduktion von As-haltigen Fe(III)-Mineralen dienen kann. Untersuchungen in unserem vorigen, DFG-Projekt "AdvectAs" haben Hinweise auf den Zusammenhang zwischen Fe(III)-abhängiger anaerober Oxidation von CH4 (AOM) und Mobilisierung von As im Red River Delta (Vietnam) geliefert. Mehrere Fragen blieben aber unbeantwortet: i) In welchem Ausmaß trägt Fe(III)-abhängige AOM zur As-Mobilisierung an verschiedenen Standorten im Red River Delta bei? ii) Welches sind die wichtigsten Stoffwechselwege und aktiven mikrobiellen Gemeinschaften in Aquiferen, in denen Fe(III)-abhängige AOM vorkommt? iii) Welche Identität haben die Mikroorganismen, die für die Fe(III)-abhängige AOM verantwortlich sind? Können wir sie isolieren? iv) Welche Gene und Stoffwechselwege tragen zur Fe(III)-abhängigen AOM in angereicherten Kulturen bei? Daher ist das Hauptziel dieses Projekts, die Rolle der Fe(III)-abhängigen AOM für die As-Mobilisierung im Red River Delta zu untersuchen. Um dieses Ziel zu erreichen, werden wir biogeochemische Analysen und molekularbiologische (Omics)Methoden einsetzen. Das Projekt ist in sechs Arbeitspakete (WPs) unterteilt. In den WPs 1 und 4 werden Feldkampagnen zur Probenahme durchgeführt, gefolgt von der Charakterisierung geochemischer Parameter und mikrobieller Gemeinschaften in Grundwasser und Sedimenten. WPs 2 und 5 werden sich auf die Isolierung von Fe(III)-abhängigen AOM-Mikroorganismen, die Charakterisierung ihrer Substratprofile und die Aufklärung der Stoffwechselwege und Genexpressionen der angereicherten Kulturen oder Isolate konzentrieren. WPs 3 und 6 werden die CH4-Oxidationsraten unter verschiedenen geochemischen Bedingungen quantifizieren und Metagenomik (und, falls möglich, Metatranskriptomik) ausgewählter Sedimentproben anwenden, um die dominanten und aktiven Stoffwechselwege zu identifizieren, die die As-Mobilisierung an den Feldstandorten beeinflussen. Unsere Ergebnisse werden Aufschluss über die Bedeutung der Fe(III)-abhängigen AOM zur As-Mobilisierung geben und zu unserem Verständnis der globalen Methanreduktion durch Fe(III)-abhängige AOM beitragen.
Origin | Count |
---|---|
Bund | 70 |
Land | 4 |
Type | Count |
---|---|
Förderprogramm | 68 |
unbekannt | 4 |
License | Count |
---|---|
geschlossen | 2 |
offen | 68 |
unbekannt | 2 |
Language | Count |
---|---|
Deutsch | 65 |
Englisch | 58 |
Resource type | Count |
---|---|
Archiv | 1 |
Keine | 11 |
Webdienst | 1 |
Webseite | 60 |
Topic | Count |
---|---|
Boden | 70 |
Lebewesen und Lebensräume | 51 |
Luft | 10 |
Mensch und Umwelt | 72 |
Wasser | 20 |
Weitere | 72 |