Unterirdische Transportpfade im Hainich CZE sind komplex und bestimmt von der Heterogenität und Reaktivität des Aquifer-Materials. Der Transport von Tonmineralen aus der Bodenzone wird unter Verwendung synthetischer Tonmineral-Nanopartikel mit der multi-methodischen massenspektrometrischen Plattform untersucht. Der besondere Schwerpunkt liegt auf der Dynamik, Steuerung und Rückkopplung des Spurenelementtransports auf das unterirdische Mikrobiom der Critical Zone vom Labormaßstab bis zum projektübergreifenden Feldexperiment.
Organisches Material (OM) tritt häufig in sedimentären Erzlagerstätten auf, wird aber zumeist nicht in einen direkten genetischen Zusammenhang gebracht. Aus diesem Grunde sind neue grundlegende Erklärungsansätze vonnöten, um organisch-anorganische Wechselwirkungen in einen direkten Zusammenhang zur Bildung von Erzlagerstätten zu bringen. Es ist das Ziel dieses Forschungsantrages, den Einfluß von OM auf erzbildende Prozesse des “Kupferschiefer-Systems” zu untersuchen. Derartige neue Erkenntnisse sollen es ermöglichen, ein solches Analog auf andere schichtgebundene Erzlagerstätten zu übertragen, indem Erkenntnisse aus unterschiedlichen und neuartigen analytischen Verfahren kombiniert werden. Das “Kupferschiefer-System” hat bereits seit dem Mittelalter ökonomische Bedeutung. Bergbau auf diese Lagerstätten wird noch heute in Polen betrieben während in Deutschland derartige Aktivitäten zum Erliegen gekommen sind. Allerdings werden zur Zeit Überlegungen angestellt, die Spremberg-Lagerstätte, die sich über die brandenburgisch-sächsische Landesgrenze erstreckt, auszubeuten. Darüberhinaus werden derzeitig Kupferschiefer-Bohrungen in Thüringen abgeteuft. Ein wesentliches Merkmal des "Kupferschiefer-Systems" in Deutschland und Polen sind die geringen thermischen Überprägungen, die es erlauben, das OM mit organisch-geochemischen und bildgebenden Verfahren aufzulösen. Und es ist genau diese geringe thermische Reife des OM (frühes Ölfenster) im südlichen Brandenburg, Sachsen-Anhalt und im nordwestlichen Bayern, die den Kupferschiefer zu einem geeigneten natürlichen Laboratorium machen, um Erkenntnisse auch auf geologisch ältere Systeme mit höherer thermischer Überprägung zu übertragen und somit die Aufsuchung, Bewertung und dann auch die Ausbeutung zu verbessern. Der hier vorgeschlagene Ansatz, unterschiedliche analytische Verfahren zu kombinieren, soll bislang fehlende Erkenntnisse liefern, um organisch-anorganische Wechselwirkungen auf kleinskaligen Dimensionen besser zu verstehen. Es ist daher das Konzept, etablierte organisch-geochemische (z.B. GC-MS) und bildgebende Verfahren (organische Petrographie, REM, TEM) zu kombinieren mit neuen Methoden. Eine dieser neuen Methoden ist die Fourier-Transform Ionenzyklotronresonanz-Massenspektrometrie (FT-ICR-MS), die es ermöglicht, organische NSO-Komponenten auf ihre Bedeutung für erzbildende Prozesse zu überprüfen. Darüberhinaus sollen weitere neue Technologien eingesetzt werden: die "Scanning transmission X-ray"-Mikroskopie (STXM) sowie die "Molecular imaging"-Massenspekrometrie (MALDI-MSI), die es ermöglichen, organische Bindungstypen zu charakterisieren und die räumliche Verteilung organischer Moleküle im Zusammenhang mit Erzmineralen darzustellen.
Submarine Massivsulfide (SMS) sind die modernen Analoge zu alten vulkanogenen massiven Sulfiderzvorkommen (VMS) und könnten eine zukünftige Metallressource darstellen. Sie bilden sich als Reaktion auf die hydrothermale Abkühlung des jungen Meeresbodens, wenn sich heiße Fluide, die von einer magmatischen Wärmequelle aufsteigen, mit Meerwasser vermischen, sodass die gelösten Metalle ausfallen und sich eine Lagerstätte bildet. Der hydrothermale TAG-Mound auf dem Mittelatlantischen Rücken beherbergt eine der größten submarinen Sulfiderzvorkommen und ist ein ausgezeichneter Ort, um die dominanten Bildungsprozesse zu untersuchen. Seine innere Struktur wurde durch Ozeanbohrungen (ODP 158) untersucht und umfangreiche geologische und geophysikalische Daten sind verfügbar. Das detaillierte hydrogeologische Regime und die chemischen Ausfällungs- und Lösungsprozesse, die den Hügel gebildet haben, wurden jedoch nie mit Reaktions-Transport-Modellen quantifiziert, und es bleiben große Wissenslücken - mit der Folge, dass die globale Menge an SMS Vorkommen, aber auch die Rolle hydrothermaler Fluide in biogeochemische Stoffkreisläufen schlecht verstanden ist. Dieser Antrag zielt darauf ab, diese Wissenslücken mithilfe von 3-D Reaktions-Transport-Modellen zu verkleinern. Unser Ansatz besteht darin, ein vorhandenes hydrothermales Strömungsmodell, hydrothermal Foam, mit der thermodynamischen MINES-Datenbank für Fluid-Gesteins-Wechselwirkungen unter Verwendung der GEMS3K-Software für die Gibbs-Freie-Energie-Minimierung zu koppeln. Dies wird es uns ermöglichen, Szenarien für die Bildung des hydrothermalen TAG Mounds zu testen und die vorherrschenden Prozesse zu erforschen, welche die hydrothermalen Metallflüsse in, innerhalb und aus hydrothermalen Mounds steuern.
Bedeutende primäre Sn-Lagerstätten sind an geochemisch hoch-spezialisierte, unter reduzierenden Bedingungen gebildete S-Typ Granite gebunden. Zinnanreicherung erfolgt jedoch nicht nur durch fraktionierte Kristallisation und hydrothermale Umverteilung auf dem Platznahme-Niveau der Intrusion, sondern hängt auch vom Protolith und den Schmelzbedingungen, sowie vom Sn-Gehalt dieser Ausgangsgesteine an. Darüber hinaus kann prograd-metamorphe Umverteilung zu einer Anreicherung von Sn im Ausgangsgestein führen. Traditionell wird die metamorphe Mobilisierung von Sn als nicht wichtig betrachtet. Es gibt jedoch im Erzgebirge einzelne Skarne (z. B. Hämmerlein) und Quarz-Glimmer-Schiefer (z. Bsp. Bockau and Aue) mit Sn-reichen metamorphen Mineralen, die eindeutig älter sind als die lokalen variszischer Sn-spezifischen Granite, was beweist, dass Sn während der Metamorphose mobil war. Die Frage ist damit, inwieweit metamorphogene Sn-Anreicherung ein essentieller Schritt in der Anreicherung von Sn für die spätere Bildung magmatischer Sn Lagestätten ist. Dieses Projekt konzentriert sich auf die Sn-reichen Quarz-Glimmer-Schiefer (mit 200 bis zu lokal 5000 ppm Sn) mit an Quarzschlieren gebundener Sn-Vererzung (>1% Sn) aus dem Gebiet von Bockau. Wir untersuchen folgende Fragen: (i) Es gibt mehrere texturelle und strukturelle Typen von Kassiterit. Unter welchen P-T-d Bedingungen haben sich die unterschiedlichen Kassiterit-Typen gebildet? Die U-Pb Datierung der einzelnen Kassiterit-Typen erlaubt es, die Zeit und die Bedingungen der metamorphen Sn-Mobilisierung einzugrenzen. (ii) Welche Elemente wurden zusammen mit Sn mobilisiert. Dazu wird die chemische Zusammensetzung nicht vererzter und unterschiedlich intensiv vererzter Quarz-Glimmer-Schiefer miteinander verglichen. Die Isotopenzusammensetzung von Li, B, Sr, Nd and Pb wird verwendet, um einen geochemischen Fingerabdruck der Quelle der Erzelemente zu erhalten; (iii) Ändert sich der Stoffbestand der Fluide mit der Zeit? Wir verwenden dazu die chemische Zonierung von Biotit, Granat und Kassiterit. Von besonderem Interesse ist ob und wie die Fluidzusammensetzung einen Einfluss darauf hat ob Sn in Silikatminerale substituiert oder eigene Phasen bildet, da die Form in welcher Sn auftritt möglicherweise die Verteilung zwischen Mineral und Teilschmelze bei beginnendem Schmelzen der Ausgangsgesteine beeinträchtigen kann. Es gibt Beschreibungen von vergleichbaren stratiformen Sn Vererzungen (jedoch mit Sulfiden) in den entsprechenden tektonischen Einheiten in Polen und er Tschechischen Republik. Ein Vergleich der Vorkommen von Bockau mit den polnischen und tschechischen Vorkommen erlaubt eine Unterscheidung von Charakteristika die von allgemeiner Bedeutung sind und solchen die eher von lokaler Bedeutung sind. Eine Schlüsselfrage dieses Projektes ist ob die metamorphe Mobilisierung von Sn im prä-kollisionalen Akkretionskeil ein Prozess ist, der die Erz-Höffigkeit später daraus entwickelter S-Typ-Granite kontrolliert.
Im Sb-Hg-Gürtel in SW Kirgisien befinden sich rund 10 größere und kleinere, z. T. im Weltmasssstab ökonomisch bedeutende Sb- oder Hg-Lagerstätten, die einige interessante mineralogische und geochemische Besonderheiten aufweisen. Manche dieser Lagerstätten enthalten beispielsweise überwiegend bis ausschließlich Stibnit als Erzmineral, manche überwiegend Zinnober und mehrere enthalten beide. Ob es sich dabei um einen Effekt von "Telescoping" handelt oder andere Ausfällungsmechnismen die Ursache darstellen, ist unklar. Auch weisen manche der Lagerstätten komplexe Hg-Sb-(Pb-Cu)-Sulfosalze auf (auch als ökonomisch wichtige Erzmassen), die möglicherweise Remobilisierungsprodukte der primären Erze mit späteren hydrothermalen Lösungen darstellen. Manche der Erze enthalten signifikante Goldgehalte, andere nicht. Schließlich ist Fluorit neben Quarz - im Gegensatz zu allen anderen weltweiten Vorkommen dieses Typs - eine wichtige Gangart. Der vorliegende Antrag untersucht mittels Mineraltexturen und Mineralchemie die Mineralabfolge und Bildungsbedingungen der Lagerstätten, mittels Flüssigkeitseinschlüssen die Art und Zusammensetzung der an der Bildung dieser Lagerstätten beteiligten hydrothermalen Lösungen, versucht die Herkunft und Bedeutung des Fluors für die Lagerstättenbildung abzuschätzen, untersucht vergleichend die Ausfällungsmechanismen für Sb, Hg und Au in verschiedenen Erzassoziationen über verschiedene Lagerstätten hinweg (district scale) und wird versuchen, auch mittels geochemischer Modellierungen ein Modell für die Entstehung der SW-kirgisischen Sb-Hg-Lagerstätten zu erarbeiten. Das Projekt ist eng mit dem Schwesterprojekt von Prof. Wagner (Aachen) verzahnt.
Porphyrische Erzlagerstätten sind die Hauptlieferanten von Kupfer und Molybdän und eine wichtige Rohstoffquelle für weitere Metalle und Elemente, einschließlich einiger seltener Rohstoffe wie Selen und Rhenium. Diese Lagerstätten liegen stets oberhalb von Subduktionszonen. Trotzdem ist nicht wirklich bekannt, woher letztlich die Metalle in diesen Lagerstätten stammen: Aus dem asthenosphärischen Mantel, der subduzierten basaltischen Kruste, subduzierten Sedimenten oder vielleicht der Kruste der oberen Platte. Wir werden daher experimentell die Verteilung von Cu, Mo, Ag, Au und W zwischen Eklogit, Meta-Sedimenten und Wasser-reichen Fluiden unter den Bedingungen in Subduktionszonen untersuchen. Diese Hochdruckexperimente werden quantitative Vorhersagen erlauben, in welchem Umfang die subduzierte basaltische Kruste oder subduzierte Sedimente zum Metallgehalt in porphyrischen Lagestätten beitragen. Falls Sedimente die Hauptquelle der Metalle sind und falls der Metallgehalt in den Sedimenten lokal stark variiert, erlauben diese Experimente Vorhersagen, welches Segment einer Subduktionszone wahrscheinlich größere Lagerstätten enthält. Wie im Antrag beschrieben, gibt es sehr starke geochemische Argumente dafür, dass dies bei Molybdän der Fall ist. Das Verhalten der anderen Elemente erfordert jedoch auch weitere Untersuchungen.
Der Weg zu einer Gesellschaft mit geringem Kohlendioxidemission-Ausstoß in Europa erhöht unseren Bedarf an mineralischen Rohstoffen drastisch und erfordert eine zuverlässige und nachhaltige Versorgung mit mineralischen Ressourcen. Europa hat eine lange Bergbautradition, sodass es schwieriger ist neue klassische Erzvorkommen zu entdecken. Unkonventionelle Erzlagerstätten sind daher im Fokus der Exploration, um eine Sicherung der benötigten Rohstoffe zu gewährleisten. Darunter befinden sich ultramafische vulkanogene Massivsulfidlagerstätten (UM-VMS), die mit Au, Ag, Co, Cu und Ni angereichert sind. Diese Lagerstätten sind von langsam-spreizenden Mittelozeanischen Rücken (MOR) bekannt, wo sie sich im Allgemeinen entlang von Abscherungsflächen (detachment faults) bilden. Derzeit sind jedoch nur wenige UM-VMS-Lagerstätten an Land entdeckt worden. Diese geringe Anzahl ist hauptsächlich auf das Fehlen moderner und kohärenter Genese- und Explorations-Modelle zurückzuführen. Jüngste Arbeiten heben hervor, dass sich UM-VMS-Lagerstätten, zusätzlich zu MOR, in komplexeren tektonischen Umgebungen bilden als bisher angenommen, wie beispielsweise Ozean-Kontinent-Übergänge (OCT) und Supra-Subduktionszonen (SSZ). In diesem Projekt planen wir die Entwicklung von Genese- und Explorations-Modellen durch die Verwendung eines integrierten, mehrskaligen und systematischen Ansatzes (mineral systems approach), in verschiedenen tektonischen Umgebungen wie dem Troodos-Ophioliten (Zypern, SSZ) und dem Outokumpu-Ophioliten (Finnland, metamorphisierte OCT). Die Schwerpunkte dieses Projektes liegen in der Lokation der Quelle der Metalle und Fluide, der Identifizierung der Wegsamkeiten von Fluiden, der Ausfällungsmechanismen von Metallen und der Erhaltung der Erze. Diese Untersuchungen werden es ermöglichen, die wichtigsten Parameter zu bestimmen, die zur Bildung von Erzlagerstätten führen, und letztendlich dazu beitragen, neue Lagerstätten an Land und auf dem Meeresboden zu entdecken, wie beispielsweise im deutschen INDEX-Gebiet. Alle untersuchten Gebiete liegen innerhalb Europas und fördern die Charakterisierung der Erzlagerstätten in oder in der Nähe der Europäischen Union.
Ziel dieses Projekts ist es, die 176Lu-176Hf und 238U-230Th Methodik für die Anwendung an Evaporitmineralen (Karbonat, Anhydrit, Gips, Bassanit) zu entwickeln. In Kombination würden diese Methoden das gesamte zu erwartendene Alterspektrum in der Atacama Wüste abdecken (einige Zehntausend bis Zehnermillionen Jahre).
Trotz intesiver Untersuchungen an Karbonatiten und assozierten Gesteinen (ultrabasisch, basisch, alkalin) durch verschiedene geologische Untersuchungsmethoden und Disziplinen ist ihre Genese und Evolution immer noch nicht verstanden. Mehr noch, es gibt keinen Konsens, was die kritischen Voraussetzungen und Prozesse sind, die zur Mobilisierung, zur Metall-Anreicherung und Erz-Bildung führen. Hiermit schlagen wir eine Studie vor, die petrologische, geochemische, geochronologische und auch experimentelle Untersuchungen kombiniert, um die frühesten Metallanreicherungs-Prozesse in magmatischen Karbonatiten und assozierten Gesteinen zu verstehen. Der Hauptfokus liegt darin, die Zusammensetzung der primären magmatischen Schmelzen zu untersuchen und ihre Veränderung mit der Zeit zu verstehen. Dies wollen wir erreichen, indem wir mehrere ultrabasisch-basisch-alkaline-karbonatititsche Komplexe (UBAK) der Kola-Halbinsel untersuchen, die eine klassische und gut untersuchte Region dieser Gesteinen darstellt. Insbesondere wollen wir Antwort auf folgende Fragestellungen finden:1) Die Entwicklung mit der Zeit, a) innerhalb der Kola-Halbinsel (gibt es eine zeitabhängige Intrusionsrichtung, durch einen plume ausgelöst?), b) innerhalb ausgewählter Karbonatit-Massive (gibt es einen Altersunterschied zwischen den frühesten und späten Schmelzen?). Wir werden dafür hoch-präzise Datierung an frühen Gesteinen (z.B. durch Datierung von Perovskiten aus Pyroxeniten) und an späten Schmelzen (z.B. Datierung von Baddeleit und Zirkon aus Phoskoriten und Karbonatiten) durchführen.2) Wie war die Zusammensetzung der frühen Schmelzen, die heute nur noch in Einschlüssen von Kumulat-Mineralen vorhanden sind? Untersuchungen an Einschlüssen von sehr früh gebildeten Mineralen (Perowskit, Olivin, Pyroxen) werden uns die chemische Zusammensetzung dieser Schmelzen und deren Bedingungen (P, T, X, fO2) liefern.3) Geochemische Entwicklung der Gesteine und Minerale: welche Minerale (bzw. deren verschiedene Generationen) konzentrieren SEE, Nb und andere potentielle Erz-Elemente? Welche Rolle spielen Kumulate für Fraktionierungs- und Anreicherungs-Prozesse? Wir werden Kathodolumineszenz an Dünnschliffen anwenden, um verschiedene Mineralgenerationen zu erkennen, aber auch Mineralchemie (LA-ICP-MS), Isotopen (Sr, Nd, Pb) für ausgewählte Minerale (z.B. Karbonate, Apatite, Perowskite).Die frühesten Gesteine (Olivinite, Pyroxenite) enthalten häufig Perowskit und werden als Kumulate interpretiert. Das Studium der Schmelzeinschlüsse der Perowskite wird uns die Zusammensetung der Schmelzen liefern, aus denen sie gebildet wurden. Diese Information hilft uns, die an Perowskiten bestimmten Alter diesen Schmelzen zuzuordnen. Andererseits werden geochemische Untersuchungen an früh gebildeten (Olivinite, Pyroxenite) und spät gebildeten Gesteinen (Phoskorite, Karbonatite) die Rolle von Fraktionierungen, Mischungen und Entmischungen für Erzanreicherungs-Prozesse in Schmelzen im Laufe der Zeit aufzeigen.
Rhenium (Re) ist ein kritisches Element für technologische Anwendungen, welches im Wesentlichen in Molybdänit aus porphyrischen Lagerstätten gewonnen wird. In diesem Projekt soll ein Verständnis dafür entwickelt werden, wie Re durch hydrothermale Fluide transportiert werden kann und welches die Bedingungen für die Anreicherung in Molybdänit sind. Mit den hier den generierten thermodynamischen Modellen für die Re-löslichkeit in Fluiden, sollen konzeptionelle Modelle für die Anreicherung von Re in natürlichen Systemen, wie z.B. die Porphyrlagerstätten im nördlichen Griechenland, entwickelt werden.
| Origin | Count |
|---|---|
| Bund | 70 |
| Land | 4 |
| Type | Count |
|---|---|
| Förderprogramm | 68 |
| unbekannt | 4 |
| License | Count |
|---|---|
| geschlossen | 2 |
| offen | 68 |
| unbekannt | 2 |
| Language | Count |
|---|---|
| Deutsch | 65 |
| Englisch | 58 |
| Resource type | Count |
|---|---|
| Archiv | 1 |
| Keine | 11 |
| Webdienst | 1 |
| Webseite | 60 |
| Topic | Count |
|---|---|
| Boden | 70 |
| Lebewesen und Lebensräume | 46 |
| Luft | 10 |
| Mensch und Umwelt | 72 |
| Wasser | 20 |
| Weitere | 72 |