API src

Found 40 results.

Klimadaten und –produkte

Meteorologische Mess- und Beobachtungsdaten und daraus abgeleitete Datensätze für die Vergangenheit (vom Vortag oder älter) und für die Zukunft (Klimaprojektionen bis 2100). Die Klimadatensätze sind stationsbezogene, gebietsbezogene Daten oder Rasterdatenfelder für Deutschland. Klimadatensätze, die über Deutschland hinausgehen, werden hier ebenfalls bereitgestellt, wenn ihre entgeltfreie Bereitstellung geregelt ist (z.B. im Rahmen der WMO oder in Projektvereinbarungen der international beteiligten Partner). Die Datensätze stehen entgeltfrei unter https://opendata.dwd.de/climate zur Verfügung. Weitere Infos finden Sie auch auf dem Leistungssteckbrief unserer Internetseite https://www.dwd.de/DE/leistungen/opendata/opendata.html.

Teilprojekt 1

Das Projekt "Teilprojekt 1" wird vom Umweltbundesamt gefördert und von Universität Kiel, Institut für Natur- und Ressourcenschutz, Abteilung Hydrologie und Wasserwirtschaft durchgeführt. Das aktuelle Seen-Monitoring beschränkt sich auf die punktuelle, mehrmals unterjährig und zumeist manuell stattfindende Messung von Qualitätsparametern und Sichttiefen im Gewässer zur Ableitung des Gewässerzustandes bzw. des Trophiegrades. Aussagen über saisonale Schwankungen, das Vorkommen von Makrophyten oder den Fischbesatz sind damit aber nur begrenzt möglich. Insbesondere in Zeiten von Algenblüten (Sommer - Frühherbst) ist zudem eine Videobefahrung aufgrund der geringen Sichtweiten nur sehr eingeschränkt anwendbar und deshalb wenig aussagekräftig. Folglich ist eine zusätzlich stattfindende automatisierte, räumlich hochaufgelöste Aufnahme und Auswertung des Gewässerzustandes von hohem Interesse. Es sollen daher im Vorhaben verschiedene SONAR-Sensoren darauf getestet werden, ob diese eine ausreichende Datenqualität liefern, um eine Klassifikation insbesondere der Bodenbedeckung, aber auch von Makrophyten, Makrozoobenthos oder Fischen durch ein tiefes neuronales Netz zu ermöglichen. Ebenfalls sollen die Möglichkeiten unterschiedlicher Fahrzeugplattformen und Systemkomponenten für die autonome sonarbasierte Datenerhebung evaluiert werden. Ziel des Teilprojektes A ist die Weiterentwicklung eines vorhandenen Messfahrzeuges zu einem vollautonomen Sensorträger zur hochauflösenden Erfassung von Sonardaten, um mit Hilfe neuronaler Netze (Bestandteil des Teilprojektes B des DFKI) sowohl die Bodenbedeckung als auch Pflanzenbewuchs und Fischbesatz in ausgewählten Seen zu klassifizieren. Dieses Fahrzeug soll im Rahmen einer Messkampagne in enger Zusammenarbeit mit den Teilprojekten B (DFKI) und C (SMC) praktisch erprobt und die aufgenommenen und klassifizierten Daten auf ihre Praxistauglichkeit im Rahmen der Gewässerbeprobung untersucht werden.

Teilprojekt 3

Das Projekt "Teilprojekt 3" wird vom Umweltbundesamt gefördert und von Stein Maritime Consulting durchgeführt. Das aktuelle Seen-Monitoring beschränkt sich auf die punktuelle, mehrmals unterjährig und zumeist manuell stattfindende Messung von Qualitätsparametern und Sichttiefen im Gewässer zur Ableitung des Gewässerzustandes bzw. des Trophiegrades. Aussagen über saisonale Schwankungen, das Vorkommen von Makrophyten oder den Fischbesatz sind damit aber nur begrenzt möglich. Insbesondere in Zeiten von Algenblüten (Sommer - Frühherbst) ist zudem eine Videobefahrung aufgrund der geringen Sichtweiten nur sehr eingeschränkt anwendbar und deshalb wenig aussagekräftig. Folglich ist eine zusätzlich stattfindende automatisierte, räumlich hochaufgelöste Aufnahme und Auswertung des Gewässerzustandes von hohem Interesse. Es sollen daher im Vorhaben verschiedene SONAR-Sensoren darauf getestet werden, ob diese eine ausreichende Datenqualität liefern, um eine Klassifikation insbesondere der Bodenbedeckung, aber auch von Makrophyten, Makrozoobenthos oder Fischen durch ein tiefes neuronales Netz zu ermöglichen. Ebenfalls sollen die Möglichkeiten unterschiedlicher Fahrzeugplattformen und Systemkomponenten für die autonome sonarbasierte Datenerhebung evaluiert werden.

Teilvorhaben: 5G NetMobil als Grundlage für das vernetzte Auto

Das Projekt "Teilvorhaben: 5G NetMobil als Grundlage für das vernetzte Auto" wird vom Umweltbundesamt gefördert und von Robert Bosch GmbH durchgeführt. Hauptziel des 5G NetMobil-Projektes ist es, eine allumfassende Kommunikationsinfrastruktur für taktil vernetztes Fahren zu entwickeln und die Vorteile des taktil vernetzten Fahrens in Bezug auf Verkehrssicherheit, Verkehrseffizienz und Umweltbelastung gegenüber dem ausschließlich auf lokalen Sensordaten basierenden autonomen Fahren aufzuzeigen. Während autonomes Fahren bereits mehr Komfort und Sicherheit verspricht, ermöglicht das taktil vernetzte Fahren neue Fahrstrategien, welche die Sicherheit des Straßenverkehrs nochmals erhöhen, den CO2 Ausstoß signifikant verringern, und die Verkehrseffizienz auf der Straße durch bessere Auslastung und verringerte Stau- und Unfallgefahr erheblich verbessern. Zusätzliche Vernetzungsmöglichkeiten werden die grundlegende Begrenzung heutiger autonomer Systemansätze beseitigen, die für die Regelung des Fahrzeugs ausschließlich die durch lokal-verbaute Onboard-Sensoren gewonnenen Informationen nutzen. Dadurch ist der Entscheidungshorizont extrem eingeschränkt, da die 'Sichtweite des Fahrzeugs' durch die verwendeten Sensortechnologien, wie insbesondere Radar- und Kamerasensoren beschränkt wird. Die Sensoren aller Fahrzeuge wie auch der Umgebung bzw. der vorhandenen Infrastruktur können im Netz virtuell zusammengeführt werden, was zu einer besseren Entscheidungsfindung beiträgt und insbesondere Informationen über Regionen und Szenarien liefert, die noch weit vom Fahrzeug entfernt liegen, aber relevant für die Zielführung sind. Auch direkte Kommunikation zwischen Fahrzeugen erweitert deren Sichtfeld und ermöglicht neue Anwendungsfälle, die zu erhöhter Effizienz und erhöhtem Komfort führen. Die so gewonnenen Informationen können allen Fahrzeugen durch eine zentrale Entscheidungsinstanz zugeführt werden und so zur Steuerung und Regelung der lokalen Aktuatoren genutzt werden. Für die dabei entstehenden Regelkreisläufe sind Übertragungslatenzzeiten in Echtzeit, d.h. von wenigen Millisekunden, unbedingt erforderlich. Die Umsetzung dieser Visionen in die Realität setzt die sichere und robuste Kommunikation zum Steuern und Regeln in Echtzeit voraus. Deshalb werden in diesem Forschungsvorhaben neuartige 5G-Kommunikationsarchitekturen mit entsprechenden Informations- und Kommunikationstechnologien erarbeitet. Der Begriff 'Taktiles Internet' umfasst hierbei technische Lösungen für mobile Kommunikationsnetze der fünften Generation (5G), die den Echtzeit-Anforderungen des vernetzten Fahrens mit höchster Zuverlässigkeit und Verfügbarkeit gerecht werden. In diesem Zusammenhang werden auch die Integrationsmöglichkeiten bestehender Technologien, wie z. B. Mobilfunk 4G oder IEEE 802.11p, betrachtet. Das Forschungsvorhaben 5G NetMobil verbindet sowohl Multi-OEM , Multi-Netzausrüster als auch Multi-Netzwerkbetreiber sowie hochinnovative KMUs miteinander. Demonstrationsfälle sind z.B. das vernetzte Fahren an Kreuzungen zur Erhöhung der Verkehrssicherheit und das Konvoi Fahren von LKWs zur Reduktion des Spritverbrauchs.

Bringing Earth Observation Services for Monitoring Dynamic Forest Disturbances to the Users EOMonDis (EOMonDis)

Das Projekt "Bringing Earth Observation Services for Monitoring Dynamic Forest Disturbances to the Users EOMonDis (EOMonDis)" wird vom Umweltbundesamt gefördert und von GAF AG durchgeführt.

Teilvorhaben: 5G Lösungen für die vernetzte Mobilität der Zukunft in der Anwendung

Das Projekt "Teilvorhaben: 5G Lösungen für die vernetzte Mobilität der Zukunft in der Anwendung" wird vom Umweltbundesamt gefördert und von Bayerische Motorenwerke AG durchgeführt. Hauptziel des 5G NetMobil-Projektes ist es, eine allumfassende Kommunikationsinfrastruktur für taktil vernetztes Fahren zu entwickeln und die Vorteile des taktil vernetzten Fahrens in Bezug auf Verkehrssicherheit, Verkehrseffizienz und Umweltbelastung gegenüber dem ausschließlich auf lokalen Sensordaten basierenden autonomen Fahren aufzuzeigen. Während autonomes Fahren bereits mehr Komfort und Sicherheit verspricht, ermöglicht das taktil vernetzte Fahren neue Fahrstrategien, welche die Sicherheit des Straßenverkehrs nochmals erhöhen, den CO2 Ausstoß signifikant verringern, und die Verkehrseffizienz auf der Straße durch bessere Auslastung und verringerte Stau- und Unfallgefahr erheblich verbessern. Zusätzliche Vernetzungsmöglichkeiten werden die grundlegende Begrenzung heutiger autonomer Systemansätze beseitigen, die für die Regelung des Fahrzeugs ausschließlich die durch lokal-verbaute Onboard-Sensoren gewonnenen Informationen nutzen. Dadurch ist der Entscheidungshorizont extrem eingeschränkt, da die 'Sichtweite des Fahrzeugs' durch die verwendeten Sensortechnologien, wie insbesondere Radar- und Kamerasensoren beschränkt wird. Die Sensoren aller Fahrzeuge wie auch der Umgebung bzw. der vorhandenen Infrastruktur können im Netz virtuell zusammengeführt werden, was zu einer besseren Entscheidungsfindung beiträgt und insbesondere Informationen über Regionen und Szenarien liefert, die noch weit vom Fahrzeug entfernt liegen, aber relevant für die Zielführung sind. Auch direkte Kommunikation zwischen Fahrzeugen erweitert deren Sichtfeld und ermöglicht neue Anwendungsfälle, die zu erhöhter Effizienz und erhöhtem Komfort führen. Die so gewonnenen Informationen können allen Fahrzeugen durch eine zentrale Entscheidungsinstanz zugeführt werden und so zur Steuerung und Regelung der lokalen Aktuatoren genutzt werden. Für die dabei entstehenden Regelkreisläufe sind Übertragungslatenzzeiten in Echtzeit, d.h. von wenigen Millisekunden, unbedingt erforderlich. Die Umsetzung dieser Visionen in die Realität setzt die sichere und robuste Kommunikation zum Steuern und Regeln in Echtzeit voraus. Deshalb werden in diesem Forschungsvorhaben neuartige 5G-Kommunikationsarchitekturen mit entsprechenden Informations- und Kommunikationstechnologien erarbeitet. Der Begriff 'Taktiles Internet' umfasst hierbei technische Lösungen für mobile Kommunikationsnetze der fünften Generation (5G), die den Echtzeit-Anforderungen des vernetzten Fahrens mit höchster Zuverlässigkeit und Verfügbarkeit gerecht werden. In diesem Zusammenhang werden auch die Integrationsmöglichkeiten bestehender Technologien, wie z. B. Mobilfunk 4G oder IEEE 802.11p, betrachtet. Das Forschungsvorhaben 5G NetMobil verbindet sowohl Multi-OEM , Multi-Netzausrüster als auch Multi-Netzwerkbetreiber sowie hochinnovative KMUs miteinander. Demonstrationsfälle sind z.B. das vernetzte Fahren an Kreuzungen zur Erhöhung der Verkehrssicherheit und das Konvoi Fahren von LKWs zur Reduktion des Spritverbrauchs.

Teilvorhaben: Authentifizierung und Sicherheit in SDN/NFV für 5G taktil vernetzte Fahrzeuge

Das Projekt "Teilvorhaben: Authentifizierung und Sicherheit in SDN/NFV für 5G taktil vernetzte Fahrzeuge" wird vom Umweltbundesamt gefördert und von acticom GmbH durchgeführt. Hauptziel des 5G NetMobil-Projektes ist es, eine allumfassende Kommunikationsinfrastruktur für taktil vernetztes Fahren zu entwickeln und die Vorteile des taktil vernetzten Fahrens in Bezug auf Verkehrssicherheit, Verkehrseffizienz und Umweltbelastung gegenüber dem ausschließlich auf lokalen Sensordaten basierenden autonomen Fahren aufzuzeigen. Während autonomes Fahren bereits mehr Komfort und Sicherheit verspricht, ermöglicht das taktil vernetzte Fahren neue Fahrstrategien, welche die Sicherheit des Straßenverkehrs nochmals erhöhen, den CO2 Ausstoß signifikant verringern, und die Verkehrseffizienz auf der Straße durch bessere Auslastung und verringerte Stau- und Unfallgefahr erheblich verbessern. Zusätzliche Vernetzungsmöglichkeiten werden die grundlegende Begrenzung heutiger autonomer Systemansätze beseitigen, die für die Regelung des Fahrzeugs ausschließlich die durch lokal-verbaute Onboard-Sensoren gewonnenen Informationen nutzen. Dadurch ist der Entscheidungshorizont extrem eingeschränkt, da die 'Sichtweite des Fahrzeugs' durch die verwendeten Sensortechnologien, wie insbesondere Radar- und Kamerasensoren beschränkt wird. Die Sensoren aller Fahrzeuge wie auch der Umgebung bzw. der vorhandenen Infrastruktur können im Netz virtuell zusammengeführt werden, was zu einer besseren Entscheidungsfindung beiträgt und insbesondere Informationen über Regionen und Szenarien liefert, die noch weit vom Fahrzeug entfernt liegen, aber relevant für die Zielführung sind. Auch direkte Kommunikation zwischen Fahrzeugen erweitert deren Sichtfeld und ermöglicht neue Anwendungsfälle, die zu erhöhter Effizienz und erhöhtem Komfort führen. Die so gewonnenen Informationen können allen Fahrzeugen durch eine zentrale Entscheidungsinstanz zugeführt werden und so zur Steuerung und Regelung der lokalen Aktuatoren genutzt werden. Für die dabei entstehenden Regelkreisläufe sind Übertragungslatenzzeiten in Echtzeit, d.h. von wenigen Millisekunden, unbedingt erforderlich. Die Umsetzung dieser Visionen in die Realität setzt die sichere und robuste Kommunikation zum Steuern und Regeln in Echtzeit voraus. Deshalb werden in diesem Forschungsvorhaben neuartige 5G-Kommunikationsarchitekturen mit entsprechenden Informations- und Kommunikationstechnologien erarbeitet. Der Begriff 'Taktiles Internet' umfasst hierbei technische Lösungen für mobile Kommunikationsnetze der fünften Generation (5G), die den Echtzeit-Anforderungen des vernetzten Fahrens mit höchster Zuverlässigkeit und Verfügbarkeit gerecht werden. In diesem Zusammenhang werden auch die Integrationsmöglichkeiten bestehender Technologien, wie z. B. Mobilfunk 4G oder IEEE 802.11p, betrachtet. Das Forschungsvorhaben 5G NetMobil verbindet sowohl Multi-OEM , Multi-Netzausrüster als auch Multi-Netzwerkbetreiber sowie hochinnovative KMUs miteinander. Demonstrationsfälle sind z.B. das vernetzte Fahren an Kreuzungen zur Erhöhung der Verkehrssicherheit und das Konvoi Fahren von LKWs zur Reduktion des Spritverbrauchs.

Validation von SCIAMACHY level-2 Daten mit DOAS-Messungen von der DLR-Falcon aus

Das Projekt "Validation von SCIAMACHY level-2 Daten mit DOAS-Messungen von der DLR-Falcon aus" wird vom Umweltbundesamt gefördert und von Universität Heidelberg, Institut für Umweltphysik durchgeführt. Ein DOAS-Geraet auf dem Forschungsflugzeug DLR-Falcon wird in mehreren Kampagnen Breitenschnitte fuer eine Reihe von Spurengasen messen, um damit das Satelliteninstrument SCIAMACHY zu validieren. Gemessen werden Gesamtsaeulen von O3, NO2, OCIO, BrO, H2O, SO2 und HCHO, alles Near Real Time Produkte von SCIAMACHY. Zusaetzlich kann durch eine spezielle Beobachtungsgeometrie (simultan ca. 10 unterschiedliche Blickrichtungen) fuer alle Absorber die troposphaerische von der stratosphaerischen Gesamtsaeule getrennt werden, und damit die aus Limb- und Nadirmessungen von SCIAMACHY berechneten troposphaerischen Saeulen (wissenschaftliches Datenprodukt) validiert werden. Um eine hohe Genauigkeit bei gleichzeitiger Ueberdeckung des gesamten Spektralbereichs in verschiedenen Blickrichtungen zu ermoeglichen, werden zwei getrennt, optimierte Systeme fuer UV und sichtbaren Spektralbereich eingesetzt. Das UV-Geraet wird von der Uni Bremen, das vis-Geraet von der Uni Heidelberg gestellt. Planung und Integration der Geraete sowie die Auswertung und Interpretation der Messergebnisse wird in enger Zusammenarbeit durchgefuehrt.

Teilvorhaben: Entwicklung eines Parallelen Platooning Systems für den Bereich der Landtechnik unter Verwendung von 5G Technologien

Das Projekt "Teilvorhaben: Entwicklung eines Parallelen Platooning Systems für den Bereich der Landtechnik unter Verwendung von 5G Technologien" wird vom Umweltbundesamt gefördert und von CLAAS E-Systems KGaA mbH & Co KG durchgeführt. Hauptziel des 5G NetMobil-Projektes ist es, eine allumfassende Kommunikationsinfrastruktur für taktil vernetztes Fahren zu entwickeln und die Vorteile des taktil vernetzten Fahrens in Bezug auf Verkehrssicherheit, Verkehrseffizienz und Umweltbelastung gegenüber dem ausschließlich auf lokalen Sensordaten basierenden autonomen Fahren aufzuzeigen. Während autonomes Fahren bereits mehr Komfort und Sicherheit verspricht, ermöglicht das taktil vernetzte Fahren neue Fahrstrategien, welche die Sicherheit des Straßenverkehrs nochmals erhöhen, den CO2 Ausstoß signifikant verringern, und die Verkehrseffizienz auf der Straße durch bessere Auslastung und verringerte Stau- und Unfallgefahr erheblich verbessern. Zusätzliche Vernetzungsmöglichkeiten werden die grundlegende Begrenzung heutiger autonomer Systemansätze beseitigen, die für die Regelung des Fahrzeugs ausschließlich die durch lokal-verbaute Onboard-Sensoren gewonnenen Informationen nutzen. Dadurch ist der Entscheidungshorizont extrem eingeschränkt, da die 'Sichtweite des Fahrzeugs' durch die verwendeten Sensortechnologien, wie insbesondere Radar- und Kamerasensoren beschränkt wird. Die Sensoren aller Fahrzeuge wie auch der Umgebung bzw. der vorhandenen Infrastruktur können im Netz virtuell zusammengeführt werden, was zu einer besseren Entscheidungsfindung beiträgt und insbesondere Informationen über Regionen und Szenarien liefert, die noch weit vom Fahrzeug entfernt liegen, aber relevant für die Zielführung sind. Auch direkte Kommunikation zwischen Fahrzeugen erweitert deren Sichtfeld und ermöglicht neue Anwendungsfälle, die zu erhöhter Effizienz und erhöhtem Komfort führen. Die so gewonnenen Informationen können allen Fahrzeugen durch eine zentrale Entscheidungsinstanz zugeführt werden und so zur Steuerung und Regelung der lokalen Aktuatoren genutzt werden. Für die dabei entstehenden Regelkreisläufe sind Übertragungslatenzzeiten in Echtzeit, d.h. von wenigen Millisekunden, unbedingt erforderlich. Die Umsetzung dieser Visionen in die Realität setzt die sichere und robuste Kommunikation zum Steuern und Regeln in Echtzeit voraus. Deshalb werden in diesem Forschungsvorhaben neuartige 5G-Kommunikationsarchitekturen mit entsprechenden Informations- und Kommunikationstechnologien erarbeitet. Der Begriff 'Taktiles Internet' umfasst hierbei technische Lösungen für mobile Kommunikationsnetze der fünften Generation (5G), die den Echtzeit-Anforderungen des vernetzten Fahrens mit höchster Zuverlässigkeit und Verfügbarkeit gerecht werden. In diesem Zusammenhang werden auch die Integrationsmöglichkeiten bestehender Technologien, wie z. B. Mobilfunk 4G oder IEEE 802.11p, betrachtet. Das Forschungsvorhaben 5G NetMobil verbindet sowohl Multi-OEM , Multi-Netzausrüster als auch Multi-Netzwerkbetreiber sowie hochinnovative KMUs miteinander. Demonstrationsfälle sind z.B. das vernetzte Fahren an Kreuzungen zur Erhöhung der Verkehrssicherheit und das Konvoi Fahren von LKWs zur Reduktion des Spritverbrauchs.

Teilvorhaben: Netzwerkarchitektur und Lösungen für die vernetzte Mobilität der Zukunft

Das Projekt "Teilvorhaben: Netzwerkarchitektur und Lösungen für die vernetzte Mobilität der Zukunft" wird vom Umweltbundesamt gefördert und von Deutsche Telekom AG durchgeführt. Hauptziel des 5G NetMobil-Projektes ist es, eine allumfassende Kommunikationsinfrastruktur für taktil vernetztes Fahren zu entwickeln und die Vorteile des taktil vernetzten Fahrens in Bezug auf Verkehrssicherheit, Verkehrseffizienz und Umweltbelastung gegenüber dem ausschließlich auf lokalen Sensordaten basierenden autonomen Fahren aufzuzeigen. Während autonomes Fahren bereits mehr Komfort und Sicherheit verspricht, ermöglicht das taktil vernetzte Fahren neue Fahrstrategien, welche die Sicherheit des Straßenverkehrs nochmals erhöhen, den CO2 Ausstoß signifikant verringern, und die Verkehrseffizienz auf der Straße durch bessere Auslastung und verringerte Stau- und Unfallgefahr erheblich verbessern. Zusätzliche Vernetzungsmöglichkeiten werden die grundlegende Begrenzung heutiger autonomer Systemansätze beseitigen, die für die Regelung des Fahrzeugs ausschließlich die durch lokal-verbaute Onboard-Sensoren gewonnenen Informationen nutzen. Dadurch ist der Entscheidungshorizont extrem eingeschränkt, da die 'Sichtweite des Fahrzeugs' durch die verwendeten Sensortechnologien, wie insbesondere Radar- und Kamerasensoren beschränkt wird. Die Sensoren aller Fahrzeuge wie auch der Umgebung bzw. der vorhandenen Infrastruktur können im Netz virtuell zusammengeführt werden, was zu einer besseren Entscheidungsfindung beiträgt und insbesondere Informationen über Regionen und Szenarien liefert, die noch weit vom Fahrzeug entfernt liegen, aber relevant für die Zielführung sind. Auch direkte Kommunikation zwischen Fahrzeugen erweitert deren Sichtfeld und ermöglicht neue Anwendungsfälle, die zu erhöhter Effizienz und erhöhtem Komfort führen. Die so gewonnenen Informationen können allen Fahrzeugen durch eine zentrale Entscheidungsinstanz zugeführt werden und so zur Steuerung und Regelung der lokalen Aktuatoren genutzt werden. Für die dabei entstehenden Regelkreisläufe sind Übertragungslatenzzeiten in Echtzeit, d.h. von wenigen Millisekunden, unbedingt erforderlich. Die Umsetzung dieser Visionen in die Realität setzt die sichere und robuste Kommunikation zum Steuern und Regeln in Echtzeit voraus. Deshalb werden in diesem Forschungsvorhaben neuartige 5G-Kommunikationsarchitekturen mit entsprechenden Informations- und Kommunikationstechnologien erarbeitet. Der Begriff 'Taktiles Internet' umfasst hierbei technische Lösungen für mobile Kommunikationsnetze der fünften Generation (5G), die den Echtzeit-Anforderungen des vernetzten Fahrens mit höchster Zuverlässigkeit und Verfügbarkeit gerecht werden. In diesem Zusammenhang werden auch die Integrationsmöglichkeiten bestehender Technologien, wie z. B. Mobilfunk 4G oder IEEE 802.11p, betrachtet. Das Forschungsvorhaben 5G NetMobil verbindet sowohl Multi-OEM , Multi-Netzausrüster als auch Multi-Netzwerkbetreiber sowie hochinnovative KMUs miteinander. Demonstrationsfälle sind z.B. das vernetzte Fahren an Kreuzungen zur Erhöhung der Verkehrssicherheit und das Konvoi Fahren von LKWs zur Reduktion des Spritverbrauchs.

1 2 3 4