API src

Found 8 results.

thermische Energiespeicher: poMMes: Synthese und Charakterisierung poröser Metall-Metallsalz-Verbünde für chemische Wärmepumpen und Wärmespeicher, Teilvorhaben: Herstellung und Charakterisierung metallischer Trägerstrukturen für Adsorptionsmaterialien in chemischen Wärmepumpen und Wärmespeichern

Die Nutzung von chemischen oder Sorptionswärmepumpen ist bislang eine kaum verwendete Möglichkeit, fossile Energieträger durch Umweltwärme oder Niedertemperaturabwärme zu substituieren. Kernprobleme in der Anwendung sind momentan die Gewährleistung eines ausreichenden Wärme- und Stofftransportes sowie die Vermeidung von Agglomerationen der Arbeitsmedien. Ziel des Forschungsvorhabens ist daher die Entwicklung neuer Arbeitsstoffe für chemische Wärmepumpen auf Basis poröser Metallstrukturen, die mit Metallsalzen als reaktives Arbeitsmedium beladen werden. Das Teilprojekt am Fraunhofer IFAM Dresden beschäftigt sich vor allem mit der Auslegung, Auswahl und Herstellung der porösen metallischen Trägerstrukturen sowie der wärme- und strömungstechnischen Charakterisierung der Metall-Metallsalz-Verbünde. Die Metallstrukturen werden dabei pulver- bzw. schmelzmetallurgisch hergestellt. Die Trägerstrukturen werden charakterisiert und optimiert, sodass eine gezielte Nutzung der Metall-Metallsalz-Verbünde in Wärmepumpensystemen ermöglicht wird. Einen wesentlichen Bestandteil bilden dabei Simulationen zum Verständnis der auftretenden physikalischen Effekte. Nach Festlegung der Spezifikationen für die untersuchten Materialien (AP 1) durch alle Projektpartner werden Vorversuche an flachen Material- und Strukturproben durchgeführt, die das IFAM-DD herstellt und geometrisch sowie thermisch und strömungstechnisch charakterisiert (AP 2). Die Bestimmung der Sorptionsisothermen der einzelnen Hydratstufen der Salze (AP 3) dient als Basis für spätere Auslegungsrechnungen. Hauptarbeitspunkt des Projektes ist die Synthese und Charakterisierung der Trägerstrukturen (AP 4) sowie die Analyse der Verbünde (AP 6) von verschiedenen Metallen und Salzen. Diese Ergebnisse werden zur iterativen Optimierung der Metallsalzsynthese und der Trägerstrukturen verwendet. Abschließend wird das Zusammenspiel der Komponenten an einem Versuchsmuster demonstriert.

thermische Energiespeicher: poMMes: Synthese und Charakterisierung poröser Metall-Metallsalz-Verbünde für chemische Wärmepumpen und Wärmespeicher, Teilvorhaben: Entwicklung und Evaluierung einer Technologie zur Herstellung von Adsorbern aus Metall-Metallsalz-Verbundmaterial

Die Bereitstellung von Raum- und Prozesswärme sowie Warmwasser stellt den größten Anwendungsbereich beim Endenergieverbrauch dar. Durch den Einsatz von Wärmepumpen kann ein Teil dieses Energiebedarfs durch Umweltwärme oder Niedertemperaturabwärme substituiert werden. Einen vielversprechenden Ansatz stellen thermisch angetriebene Wärmepumpen und Kältemaschinen auf der Basis reversibler chemischer Reaktionen oder Sorptionsprozesse dar. Zur dauerhaften Gewährleistung eines guten Wärme- und Stofftransportes müssen die Arbeitsstoffe auf poröse Trägerstrukturen aufgebracht werden. Bisher werden dafür vor allem Silicagel und Zeolithe verwendet, die aufgrund geringer Wärmeleitfähigkeiten die erreichbare Leistungsdichte solcher Systeme limitieren. Im Forschungsvorhaben sollen daher neue Arbeitsstoffe für chemische Wärmepumpen auf Basis poröser Metallstrukturen untersucht werden, die eine Verbesserung der Eigenschaften versprechen. Das Teilprojekt beschäftigt sich mit der Entwicklung einer Herstellungstechnologie zur Verbindung der untersuchten Metall-/Metallsalz-Verbünde mit dem Wärmeübertrager. Im Projekt werden verschiedene Verfahren (Weiten der Rohre, Löten) zur Anbindung der Metallstrukturen an Rohre mit und ohne Lamellenbleche untersucht und analysiert. Im Ergebnis sollen Aussagen zur thermischen Leistungsfähigkeit des gesamten Wärmeübertragers sowie zur thermischen und mechanischen Stabilität des Aufbaus getroffen werden. Aufbauend auf den Ergebnissen soll ein Versuchsmuster eines Adsorber-Wärmeübertragers für eine Wärmepumpe konstruiert und gefertigt werden. In experimentellen Untersuchungen wird die Funktionalität des Versuchsmusters mit verschiedenen Temperaturen getestet. Aus den Ergebnissen werden wichtige Kenngrößen wie die spezifische Leistungsdichte und erreichbare Werte für den COP abgeleitet.

thermische Energiespeicher: poMMes: Synthese und Charakterisierung poröser Metall-Metallsalz-Verbünde für chemische Wärmepumpen und Wärmespeicher, Teilvorhaben: Synthese und makrokinetische Untersuchung von Adsorptionsmitteln mit metallischer Trägerstruktur

Die Bereitstellung von Raum- und Prozesswärme sowie Warmwasser stellt den größten Anwendungsbereich beim Endenergieverbrauch dar. Durch den Einsatz von Wärmepumpen kann ein Teil dieses Energiebedarfs durch Umweltwärme oder Niedertemperaturabwärme substituiert werden. Einen vielversprechenden Ansatz stellen thermisch angetriebene Wärmepumpen und Kältemaschinen auf der Basis reversibler chemischer Reaktionen oder Sorptionsprozesse dar. Zur dauerhaften Gewährleistung eines guten Wärme- und Stofftransportes müssen die Arbeitsstoffe auf poröse Trägerstrukturen aufgebracht werden. Bisher werden dafür vor allem Silicagel und Zeolithe verwendet, die aufgrund geringer Wärmeleitfähigkeiten die erreichbare Leistungsdichte solcher Systeme limitieren. Im Forschungsvorhaben sollen daher neue Arbeitsstoffe für chemische Wärmepumpen auf Basis poröser Metallstrukturen untersucht werden, die eine Verbesserung der Eigenschaften versprechen. Dieses Teilprojekt beschäftigt sich mit der Synthese und Charakterisierung dieser Metall-Metallsalz-Verbünde. Salze ermöglichen mit Wasserdampf, Ammoniak oder Alkoholen die Nutzung verschiedener Gas-Feststoff-Reaktionen, die sich für Anwendungen in Wärmepumpen, Kältemaschinen oder thermochemischen Speichern im Niedertemperaturbereich eignen. Das Ziel ist die Erzeugung von reaktiven Salzschichten auf porösen metallischen Schaum- oder Faserstrukturen. Hierzu sollen unterschiedliche Synthesepfade und deren Einfluss auf die Eigenschaften und Haftung der Salzschichten untersucht werden. Die hergestellten Verbundmaterialien werden anschließend experimentell charakterisiert, um Aussagen zu den Wärmeleiteigenschaften, zur Kinetik der Reaktions- bzw. Adsorptionsvorgänge und zur erreichbaren Leistungs- und Speicherdichte zu treffen. Anhand der Ergebnisse sollen Optimierungsmöglichkeiten abgeleitet und ein Simulationsmodell zur Auslegung von Adsorber-Wärmeübertragern auf Basis der neuen Verbundmaterialien erstellt werden.

SolSpaces2.0 - Weiterentwicklung und Optimierung eines solaren Heizungssystems mit Sorptionswärmespeicher zur vollständigen Wärmeversorgung von Energieeffizienzhäusern, Teilvorhaben: Systemtechnik und Monitoring

Das Forschungsvorhaben SolSpaces 2.0 knüpft inhaltlich unmittelbar an das Forschungsprojekt SolSpaces 'Entwicklung und Erprobung einer autarken solaren Wärmeversorgung für energieeffiziente Kompaktgebäude' an. In letzterem wurde ein neues solares Heizsystem mit Sorptionswärmespeicher für die saisonale Speicherung thermischer Energie zur Gebäudebeheizung entwickelt und realisiert. Nachdem erste Betriebserfahrungen vorliegen, sollen in dem Nachfolgeprojekt nun weitere konzeptionelle und apparative Optimierungsschritte erfolgen, um die Technologie weiterzuentwickeln und Szenarien zur Integration der neuen Technologie zu erarbeiten. Neben der dynamischen Erprobung soll die Technologie durch innovative Elemente weiter optimiert und vereinfacht werden. Ein wichtiger Aspekt ist die Reduzierung der Desorptionstemperatur. Die Kombination des thermischen Systems mit einer photovoltaischen Anlage bietet hinsichtlich Betrieb der Lüfter und Erreichung hoher Temperaturen während der Desorptionsphasen interessante Ansätze, die untersucht werden sollen. Zur Vermeidung der sommerlichen Überhitzung von Gebäuden mit großflächiger Verglasung werden aktive und passive Maßnahmen, wie solare Kühlung und schaltbare Verglasungen, erprobt. Um weitere Kostensenkungspotentiale zu identifizieren soll der Herstellungsprozess des Speichers aus produktionstechnischer Sicht betrachtet werden. Auf dieser Basis werden Umsetzungsszenarien und die Integration des solaren Heizungssystems für verschiedene Gebäude und Klimazonen erarbeitet.

Ökologische Bewertung ausgewählter Konzepte und Materialien zur Wärme- und Kältespeicherung, Teilvorhaben: ökologische Modellierung zur Lebenszyklusanalyse

Die zentrale Aufgabe des Teilprojekts ist die Entwicklung eines frei verfügbaren Softwaretools zur ökologischen lebenszyklusbasierten Bewertung innovativer Konzepte zur thermischen Energiespeicherung in Gebäuden. Es soll Entscheidungsträgern eine wissenschaftlich fundierte Hilfestellung bei der Auswahl des, im Sinne einer ganzheitlichen ökologischen Betrachtung, geeignetsten thermischen Speicherkonzepts bieten. Mit Hilfe der Methode der Ökobilanz wird eine Entscheidungsgrundlage für Fragestellungen bezüglich des Primärenergieeinsatzes und der Klimarelevanz geliefert. Grundlage für das Softwaretool ist die Erarbeitung der Ökobilanzen (LCA) von Systemen zur Speicherung thermischer Energie in Gebäuden. Dabei werden sowohl die Speichermaterialien selbst und die zugehörigen Komponenten als auch ihre Einbettung in Gebäudeenergiekonzepte analysiert. Die Auswahl und Simulation der Systeme findet durch die Projektpartner statt. Sensible, latente, sorptive und thermochemische Speicherkonzepte für zentrale sowie gebäudeintegrierte Anwendung werden hierbei untersucht und energetische Kennzahlen durch Simulation auf Material- und Gebäudeebene ermittelt. Die im Softwaretool dargestellten Umweltprofile berücksichtigen Herstellung, Nutzung und Lebensende, also den gesamten Lebenszyklus der Wärmespeichermaterialien. Das ökologische Profil beinhaltet die Wirkungskategorie 'Treibhauspotential' (GWP) sowie den fossilen und regenerativen Primärenergiebedarf. Sie werden sowohl als Umweltprofil in Analogie der Darstellung von Umweltproduktdeklarationen als auch in Bezug auf die potentiellen Einsparungen in Form einer energetischen und ökologischen Amortisationsdauer in Zyklen angegeben. Zusätzlich werden Materialeigenschaften und eine technische Kurzbeschreibung des Systems dargestellt. Das Softwaretool ermöglicht es dem Anwender, Speichermaterialien, Speicherkomponenten und Speicherkonzepte zur thermischen Energiespeicherung in Gebäuden für verschiedene Gebäudetypen und Klimaregionen auf Basis fundierter ökologischer Analysen zu bewerten und zu vergleichen. Zusätzlich können eigene Materialien und Konzepte sowie Gebäude bewertet werden, sofern diese den Rahmenbedingungen des Projekts entsprechen.

Teilvorhaben: Beiträge zu Materialcharakterisierung und Modellierung für die Speicherkonzepte A,B,C^MAKSORE: Materialien und Komponenten für Sorptionswärmespeicher mit hoher Energiedichte^Teilvorhaben: Speicherkonzept C 'Absorptionswärmespeicher'^MAKSORE: Materialien und Komponenten für Sorptionswärmespeicher mit hoher Energiedichte, Teilvorhaben: Gesamtkoordination und Beiträge zum Speicherkonzept A - Kaskadierender Sorptionsspeicher

Die Energie- und Leistungsdichte von Sorptionsspeichern sollen durch neue Adsorbenzien, neue Komposite für verbesserten Wärme- und Stofftransport und durch neue Systemkonzepte deutlich erhöht werden. Am KIT-FSM wird das Konzept eines mit einer Sorptionswärmepumpe kaskadierend betriebenen Adsorptionsspeichers untersucht. Zielwert ist eine effektive Energiedichte von 180 kWh pro Kubikmeter bei einem nutzbaren Temperaturhub von 30 K. Am KIT-TFT wird ein Beschichtungsverfahren für Adsorbentien auf Wärmeübertragerstrukturen entwickelt. Hierzu soll ein grundlegendes Verständnis der rheologischen Eigenschaften der verwendeten Schlicker, der Beschichtung und Trocknung, der Kinetik und der Adsorptionsdynamik geschaffen werden. Das KIT-FSM übernimmt die Gesamtkoordination (AP5) des Vorhabens MAKSORE und arbeitet an der Systemmodellierung und -simulation des kaskadierenden Sorptionsspeichers (AP A.3). Als aussichtsreich identifizierte Systemkonfigurationen werden in AP 4 einer detaillierten techno-ökonomischen Bewertung unterzogen. Das KIT-TFT konzentriert sich in AP A.1 auf das Beschichtungsverfahren für flache sowie strukturierte Substrate. Hierfür werden in AP A.1.2 die benötigten Schlicker hergestellt, charakterisiert und optimiert, in AP A.1.3 wird ein geeignetes Beschichtungswerkzeug entwickelt und evaluiert, und in AP A.1.4 wird der Trocknungsschritt näher untersucht. Für den gesamten Adsorptionsprozess werden die einzelnen Teilprozesse charakterisiert und modelliert.

Teilvorhaben: Gesamtkoordination und Beiträge zum Speicherkonzept A - Kaskadierender Sorptionsspeicher^Teilvorhaben: Beiträge zu Materialcharakterisierung und Modellierung für die Speicherkonzepte A,B,C^Teilvorhaben: Speicherkonzept C 'Absorptionswärmespeicher'^MAKSORE: Materialien und Komponenten für Sorptionswärmespeicher mit hoher Energiedichte^MAKSORE: Materialien und Komponenten für Sorptionswärmespeicher mit hoher Energiedichte, Teilvorhaben: Speicherkonzept B - Offener Sorptionsspeicher

MAKSORE: Materialien und Komponenten für Sorptionswärmespeicher mit hoher Energiedichte, Teilvorhaben: Speicherkonzept C 'Absorptionswärmespeicher'

Ziel des Verbundvorhabens ist es das grundlegende Verständnis von Sorptionsspeichern zu erweitern und die Voraussetzungen für deutlich verbesserte Sorptionsspeicher zu schaffen. - Ziel des Teilvorhabens C ist es dieses Verständnis bezüglich eines Absorptionswärmespeichers herzustellen, der die Lösungswärme eines Sorbens-Sorptiv-Paares und/oder die Kristallisationswärme eines im Wesentlichen flüssigen Stoffpaares nutzt. AP1: Material - Recherche geeigneter Arbeitsstoffpaare. - Recherche und Messung der relevanten physikalischen Eigenschaften, wie Sorptionsgleichgewichte, Lösungs- und Kristallisationswärmen, Wärmekapazitäten. - Charakterisierung der Stoffeigenschaften. - Recherche von Strukturmaterialien. AP2: Prozessdynamik - Aufbau eines Labormodelles eines Lösungs- bzw. Kristallisationswärmespeichers. -Test der Prozessdynamik, Bestimmung der effektiven Energiespeicherdichte - Entwicklung von Kinetikmodellen. AP3: Systemmodellierung und -analyse - Entwickeln vereinfachter Modelle zur Beschreibung der Stoffeigenschaften und der Prozesskinetik für Lösungs-/Kristallisationsspeicher - Einbindung der vereinfachten Modelle in Programme zur Systemsimulation oder Systemauslegung. AP4: Techno- ökonomische Bewertung - Bewertung der Speichertypen im Vergleich zu konkurrierenden Systemen nach technischen und ökonomischen Kriterien. AP5: Koordination / Kommunikation -Koordination und Kommunikation im Verbundprojekt. Kommunikation der Ergebnisse auf Tagungen und in Journalen.

1