API src

Found 195 results.

Related terms

Deutsche Umweltstudie zur Gesundheit von Kindern und Jugendlichen 2014–2017 (GerES V) - Teil 2: Qualität der Innenraumluft

Der Bericht stellt Ergebnisse der Deutschen Umweltstudie zur Gesundheit 2014–2017 (GerES V) zur Schadstoffbelastung der Innenraumluft bei Kindern und Jugendlichen vor. Repräsentativ ausgewählte Haushalte wurden auf flüchtige organische Verbindungen (⁠ VOC ⁠), Aldehyde, sowie ultrafeiner Partikel in der Innenraumluft untersucht. Ein Vergleich mit toxikologisch abgeleiteten Innenraumrichtwerten ermöglicht eine gesundheitliche Einordnung der Messwerte. Der Bericht liefert Aussagen zu den vermuteten Ursachen der Schadstoffe sowie Ungleichheiten der Belastung in Abhängigkeit von Geschlecht, Wohnumständen und sozioökonomischen Faktoren. Die Daten dieser Studie stellen einen Referenzdatensatz zur Grundbelastung der Innenraumluft im Wohnumfeld in Deutschland dar. Veröffentlicht in Umwelt & Gesundheit | 01/2025.

Ultrafeine Partikel im Innenraum und in der Umgebungsluft

Fein- und Ultrafeinstäube und ihr Bezug zu Atemwegs- und Herz-Kreislauferkrankungen sind wichtiges Thema der öffentlichen Gesundheitsvorsorge. Diese Studie stellt umfangreiche Messdaten für die Innenraumluft im privaten Wohnbereich vor. Die Untersuchungen erfassen Wohnungen in städtischen wie ländlichen Bereichen und geben Aufschluss über jahreszeitliche Schwankungen. Die größenaufgelöste Charakterisierung der Fein- und Ultrafeinstäube ermöglicht eine Abschätzung der durch die Tätigkeiten der Wohnungsnutzenden freigesetzten Partikel. Die Ergebnisse sind von hoher Bedeutung für die Bestimmung der auf den Menschen einwirkenden Belastung an Fein- und Ultrafeinstäuben und mögliche Maßnahmen zur Verbesserung der Innenraumluft.

Einfluss der Großflughäfen auf zeitliche und räumliche Verteilungen von Ultrafeinstaub kleiner als 100 nm im Großraum Berlin

Das Projekt "Einfluss der Großflughäfen auf zeitliche und räumliche Verteilungen von Ultrafeinstaub kleiner als 100 nm im Großraum Berlin" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Leibniz-Institut für Troposphärenforschung e.V..Großflughäfen sind eine relevante Quelle kurzlebiger Luftschadstoffe. Ihr quantitativer Beitrag zur gesundheitlichen Belastung der Anwohner ist besonders dort mit Unsicherheiten behaftet, wo auch andere Verursacher existieren, bspw. in Großstädten. Feldmessungen und Modellierungen sollen den Einfluss der Emissionen des Großflughafens Berlin Tegel (TXL) und BER auf die räumliche Verteilung folgender Schadstoffe vor und nach Schließung im Herbst 2020 untersuchen: Ultrafeinstaub (UFP) und Black Carbon (Ruß) sowie PM10, PM2,5 und NO2. Es werden drei stationäre Messstationen über ca. 2 Jahre im Umfeld von BER betrieben. In Bezug auf UFP (Partikelanzahlkonzentration und -verteilung) werden der Gesamtanteil und der nichtflüchtige Anteil gemessen. Zusätzlich werden mobile Messsysteme in mehrwöchigen Messkampagnen die räumliche Verteilung der Schadstoffe in der Abluftfahne von BER bestimmen. Die Ausbreitungsmodellierung wird mit einem Raster von 500 m für den Großraum Berlin sowie feiner aufgelöst (ca. 200 m) im Umfeld TXL und zum Teil für Schönefeld (SXF) bzw. den geplanten Berliner Großflughafen BER durchgeführt werden. Bereits entwickelte modulare Modellansätze (u.a. mittels LASPORT) sollen genutzt werden: Ausbreitung von nichtflüchtigen UFP im Umfeld von Flughäfen aufgrund Straßenverkehrs- und Flughafenaktivitätsdaten mit Lagrange Modellen. Hintergrundbelastung: Chemietransportmodelle inkl. Partikelklassen bzw. -moden. Für jedes Rasterquadrat wird ein Jahresmittelwert (1 h Basis) erstellt inkl. Herkunftsanteile. Für die Standorte der Messstationen und für Messorte der Kohorten in der BEAR-Studie werden 1h-Zeitreihen bereitgestellt. Zur Validierung des Hintergrundes werden Daten der UBA Station Neuglobsow herangezogen. Außerdem beteiligt: Senatsverwaltung für Umwelt, Verkehr und Klimaschutz: für Umgebung Flughafen, Flughafen Berlin Brandenburg (FBB) für SXF Ein Begleitkreis wird gebildet.

Immissions- und Strahlenschutz (GB 2)

• Überwachung der Radioaktivität in der Umwelt nach dem Strahlenschutzvorsorgegesetz für den Freistaat Sachsen • Überwachung der anlagenbezogenen Radioaktivität nach dem Atomgesetz am Forschungsstandort Rossendorf • Überwachung von Lebensmitteln (u. a. Amtshilfe für die Landesuntersuchungsanstalt für das Gesundheits- und Veterinärwesen Sachsen) • Betrieb der Radonberatungsstelle • Überwachung der anlagenbezogenen Radioaktivität nach der Verordnung zur Gewährleistung von Atomsicherheit und Strahlenschutz an den Standorten der Wismut GmbH • Überwachung der anlagenbezogenen Radioaktivität an den Altstandorten des Uranerzbergbaus • Aufsichtliche Messungen nach der Strahlenschutzverordnung inkl. Sicherheitstechnisch bedeutsame Ereignisse und Nukleare Nachsorge • Der Geschäftsbereich ist akkreditiert nach ISO 17025 für alle relevanten Prüfverfahren im Bereich Immission und Emission. Fachbereich 20 - Zentrale Aufgaben • Probenentnahmen und Feldmessungen (ohne Messungen und Probenentnahmen im Rahmen der Radonberatung) u. a. Probenentnahmen aus Fließgewässern, Messung der nuklidspezifischen Gammaortsdosisleistung • Organisation und Logistik für die von externen Probenehmern gewonnenen und dem Geschäftsbereich 2 zu übergebenden Proben. Betrieb der Landesdatenzentrale und der Datenbank zur Umweltradioaktivität im Freistaat Sachsen • Unterstützung der beiden Landesmessstellen bei der Einführung und Pflege radiochemischer Verfahren Fachbereiche 21, 22 - Erste und Zweite Landesmessstelle für Umweltradioaktivität Laboranalysen • nach dem Strahlenschutzvorsorgegesetz • zur Überwachung der Wismut-Standorte • zur Überwachung des Forschungsstandort Rossendorf • zur Überwachung der Altstandorte des Uranbergbaus • zur Lebensmittelüberwachung • zu den aufsichtlichen Kontrolltätigkeiten des Sächsischen Landesamtes für Umwelt, Landwirtschaft und Geologie und des Sächsischen Staatsministeriums für Umwelt und Landwirtschaft u. a. in den Medien Wasser, Boden, Luft, Nahrungs- und Futtermittel. Analysierte Parameter: u. a. gamma- und alphastrahlende Radionuklide (z. B. Cäsium-137, Cobalt-60, Kalium-40, Uran-238); Strontium-90; Radium-226 und Radium-228). Fachbereich 23 - Immissionsmessungen Kontinuierliche Überwachung der Luftqualität durch Betrieb des stationären Luftmessnetzes des Freistaates (Online-Betrieb von 30 stationären Messstationen mit Übergabe der Messdaten ins Internet): • Laufende Messung der Luftgüteparameter SO2, NOx, Ozon, Benzol, Toluol, Xylole, Schwebstaub, Ruß • Gewinnung meteorologischer Daten zur Einschätzung der Luftgüteparameter • Sammlung von Schwebstaub (PM 10- und PM 2,5-Fraktionen) und Sedimentationsstaub zur analytischen Bestimmung von Schwermetallen, polyzyklischen Kohlenwasserstoffen (PAK) und Ruß • Absicherung der Messdatenverarbeitung und Kommunikation • Betreiben einer Messnetzzentrale, Plausibilitätskontrolle der Daten und deren Übergabe an das Landesamt für Umwelt, Landwirtschaft und Geologie und an die Öffentlichkeit • Absicherung und Überwachung der vorgegebenen Qualitätsstandards bei den Messungen durch den Betrieb eines Referenz- und Kalibrierlabors • Sicherung der Verfügbarkeit aller Messdaten zu > 95% • Weiterentwicklung des Luftmessnetzes entsprechend den gesetzlichen Anforderungen • Betreuung eines Depositionsmessnetzes (Niederschlag) mit zehn Messstellen • Betrieb von drei verkehrsnahen Sondermessstellen an hoch belasteten Straßen • Durchführung von Sondermessungen mit Immissionsmesswagen und mobilen Containern • Betrieb von Partikelmesssystemen im Submikronbereich (Zählung ultrafeiner Partikel) in Dresden • Betrieb von Verkehrszähleinrichtungen und Übernahmen dieser Verkehrszähldaten sowie von Pegelmessstellen der Städte in den Datenbestand des Luftmessnetzes Fachbereich 24 - Emissionsmessungen, Referenz- und Kalibrierlabor Der Fachbereich befasst sich mit der Durchführung von Emissionsmessungen an ausgewählten Anlagen aus besonderem Anlass im Auftrag des LfULG. Beispiele: • Emissionsmessungen an Blockheizkraftwerken in der Landwirtschaft (Geruch, Stickoxide, Gesamtkohlenstoff und Formaldehyd). • Ermittlung der Stickstoff-Deposition aus Tierhaltungsanlagen für Geflügel und Rinder (Emissionsmessungen von Ammoniak, Lachgas, Methan, Wasser, Kohlendioxid, Feuchte, Temperatur und Luftströmung , Ammoniak-Immissionsmessung mit DOAS-Trassenmesssystem). • Untersuchung von Emissionen aus holzgefeuerten Kleinfeuerungsanlagen zur Abschätzung von Auswirkungen der novellierten 1. BImSchV. • Unterstützung des LfULG bei der Überwachung bekannt gegebener Messstellen nach § 26 BImSchG.

Modeling of Nanofibers and Submicron Filtration Phenomena

Das Projekt "Modeling of Nanofibers and Submicron Filtration Phenomena" wird/wurde ausgeführt durch: Universität Stuttgart, Institut für Mechanische Verfahrenstechnik.Air filters in stationary building ventilation systems guarantee the protection of people as well as sensitive technical components from harmful contaminants, from ultra-fine particles to viruses and germs. At the heart of such filter systems are highly efficient filter media with corresponding particle separation performance, which can be achieved in particular by using ultra-fine synthetic, glass or nanofibers. Against the background of rising energy costs and the need for global CO2 reduction, the energy consumption of air filters is increasingly coming into focus. In order to reduce this, modern air filter media are required to have high separation efficiency and the lowest possible pressure drop. Simulation is a valuable tool in the development of filter media for specific applications. By predicting the performance of a filter medium, its microstructure can be optimized to meet specific requirements. However, this requires a correct representation of the effects occurring in this process in order to guarantee the validity of the predicted material properties. In particular, no application-oriented model approaches currently exist for the processes involved in the deposition of ultra-fine particles on ultra-fine fibers. The aim of this project is to improve the simulation models established in virtual filter media development and to extend them with regard to the consideration of submicron fibers (nanofibers). For this purpose, suitable submodels will be developed and integrated into an overall simulation model in order to take into account, in particular, the effects that have been neglected so far. The improved model will first be extensively validated. Finally, its applicability will be demonstrated by the first simulation-driven prediction of an optimized nanofiber-coated air filter medium, which will then be manufactured and tested for its performance.

Vorhersage urbaner atmosphärischer Anzahlkonzentrationen ultrafeiner Partikel mit Hilfe von Machine Learning- und Deep Learning-Algorithmen (ULTRAMADE)

Das Projekt "Vorhersage urbaner atmosphärischer Anzahlkonzentrationen ultrafeiner Partikel mit Hilfe von Machine Learning- und Deep Learning-Algorithmen (ULTRAMADE)" wird/wurde gefördert durch: Deutsche Forschungsgemeinschaft. Es wird/wurde ausgeführt durch: Deutsche Forschungsgemeinschaft.Ultrafeine Partikel (UFP) mit einem aerodynamischen Durchmesser kleiner als 100 nm stehen unter dem Verdacht die menschliche Gesundheit zu schädigen, allerdings fehlt bisher die abschließende wissenschaftliche Evidenz aus epidemiologischen Studien. Zur Herleitung von Expositionskonzentrationen gegenüber UFP wurden zum Teil statistische Modellierungsverfahren genutzt um UFP-Anzahlkonzentrationen vorherzusagen. Ein häufig genutztes Verfahren ist eine auf Flächennutzung basierte lineare Regression („land-use regression“, LUR). Allerdings wurden in luftqualitativen Studien auch andere, ausgefeiltere Modellansätze benutzt, z.B. „machine learning“ (ML) oder „deep learning“ (DL), die eine bessere Vorhersagegenauigkeit versprechen. Das Ziel des Projekts ist die Modellierung von UFP-Anzahlkonzentration in urbanen Räumen basierend auf ML- und DL-Algorithmen. Diese Algorithmen versprechen eine bessere Vorhersagegenauigkeit gegenüber linearen Modellansätzen. Mit unserem Modellansatz wollen wir sowohl räumliche als auch zeitliche Variabilität der UFP-Anzahlkonzentrationen abbilden. In einem ersten Schritt werden die Messergebnisse aus mobilen Messkampagnen genutzt um ein ML-basiertes LUR Modell zu kalibrieren. Zusätzlich werden urbane Emissionen aus lokalen Quellen, abseits vom Straßenverkehr, identifiziert und explizit in das Modell einbezogen. In einem zweiten Schritt wird ein DL-Modellansatz basierend auf Langzeit-UFP-Messungen mit dem ML-Modell gekoppelt um die Repräsentierung der zeitlichen Variabilität zu verbessern. Unser vorgeschlagenes Arbeitsprogramm besteht aus fünf Arbeitspaketen (WP): WP 1 beinhaltet mobile Messungen mittels eines mobilen Labors und eines Messfahrads. WP 2 besteht aus stationären Messungen, die an Stationen des German Ultrafine Aerosol Network durchgeführt werden. In WP 3 werden wichtige UFP-Emissionsquellen, insbesondere Nicht-Verkehrsemissionen, mit Hilfe von zusätzlichen kurzzeitigen stationären Messungen identifiziert und quantifiziert. In WP 4 werden ML-Algorithmen genutzt um ein statistisches Modell aufzubauen. Als Kalibrierungsdatensatz werden die Messungen aus WP 1 benutzt. Das Modell wird UFP-Anzahlkonzentrationen mit Hilfe eines Datensatzes aus erklärenden Variablen, u.a. meteorologische Größen, Flächennutzung, urbaner Morphologie, Verkehrsmengen und zusätzlichen Informationen zu UFP-Quellen nach WP 3, vorhersagen. In WP 5 werden die UFP-Anzahlkonzentrationen aus WP 2 für einen DL-Modellansatz genutzt, der die zeitliche Variabilität repräsentieren wird. Dieser wird dann mit dem ML-Modell aus WP 4 gekoppelt. Der Nutzen der Modellkopplung wird mit dem Datensatz aus WP 3 validiert. Aus unserem Projekt wird ein Modell hervorgehen, das in der Lage ist die räumliche und zeitliche Variabilität urbaner UFP-Anzahlkonzentrationen in einer hohen Genauigkeit zu repräsentieren. Damit wird unsere Studie einen Beitrag zur Quantifizierung von Expositionskonzentrationen gegenüber UFP z.B. in epidemiologischen Studien leisten.

Konzeption und Pilotierung einer Gesundheitsstudie zu ultrafeinen Partikeln

Das Projekt "Konzeption und Pilotierung einer Gesundheitsstudie zu ultrafeinen Partikeln" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: Institut für Umwelt & Energie, Technik & Analytik e.V..Feinstäube in der Außenluft stellen eine gesundheitliche Belastung dar und sind daher im Rahmen der 39. Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes in Form von Grenzwerten reglementiert. Es gibt Grenzwerte für Feinstäube mit einem Durchmesser von 10 und 2,5 Mikrometer, jedoch keine für ultrafeine Partikel (UFP) mit einer Größe kleiner als 0,1 Mikrometer. Aufgrund ihrer geringen Größe können UFP tief bis in die Lungenbläschen und von dort aus in das Herz-Kreislaufsystem gelangen. Im Herz-Kreislaufsystem sowie in anderen Organen können UFP Entzündungsreaktionen hervorrufen. Es wird angenommen, dass durch anhaltende Entzündungen Organschädigungen und chronische Erkrankungen wie zum Beispiel chronische Lungenerkrankungen, Herz-Kreislauferkrankungen oder eine Schwächung des Immunsystems begünstigt werden. Zu diesen gesundheitlichen Wirkungen insbesondere nach langfristiger Exposition gegenüber UFP gibt es derzeit kaum epidemiologische Studien. Dieses Vorhaben soll diesem Mangel begegnen, indem eine epidemiologische Studie konzipiert und pilotiert wird. Hierbei sollen die gesundheitlichen Auswirkungen einer langfristigen Exposition gegenüber UFP untersucht werden unter Berücksichtigung von Confoundern und anderen Luftschadstoffen. Die Pilotierung bezieht sich auf verschiedene UFP-Messungen und Metriken, um deren zeitliche und räumliche Variabilität abdecken zu können, denn Durchschnittswerte, welche in epidemiologischen Studien meist verwendet werden und repräsentativ für eine bestimmte Umgebung und einen Zeitraum sind, können für UFP nicht verwendet werden. Es sollen konkrete Vorschläge für eine umfassende epidemiologische Studie inklusive Expositionsschätzung, UFP Metrik, Fallzahl, möglicher zu untersuchender Gesundheitsendpunkte sowie deren Erfassung gemacht werden. Das Projekt wird von einem Konsortium bearbeitet, welches aus den folgenden Institutionen besteht: Institut für Energie- und Umwelttechnik e.V., TNO - Netherlands Organisation for Applied Scientific Research, Institut für Arbeits- Sozial- und Umweltmedizin, Heinrich-Heine-Universität, Hochschule Düsseldorf, Labor für Physik und Umweltmesstechnik, IVU Umwelt GmbH, Ing.-Büro Janicke.

Entwicklung eines persönlichen Expositionsmodells für die Feinstaubbelastung

Das Projekt "Entwicklung eines persönlichen Expositionsmodells für die Feinstaubbelastung" wird/wurde ausgeführt durch: Universität Duisburg-Essen, Universitätsklinikum Essen, Institut für Medizinische Informatik, Biometrie und Epidemiologie.Feine und ultrafeine Partikel stellen auf Grund hoher Industrialisierung und zunehmender Verkehrsdichte ein zunehmendes Problem dar. Zahlreiche Studien konnten negative Auswirkungen auf die menschliche Gesundheit nachweisen, die bei Belastung mit feinen und ultrafeinen Partikeln verursacht werden können. Diese Studie befasst sich mit der Erfassung der zeit- und aktivitätsbezogenen persönlichen Exposition. Hauptziel ist die Entwicklung eines persönlichen Expositionsmodels, welches in der Lage ist, Belastungen für Fein- und Ultrafeinstaub vorherzusagen.

Messtechnische Erfassung der UFP-Anzahlkonzentrationen im Abgasstrom an der Schornsteinmündung von Kleinfeuerungsanlagen mit unterschiedlichen Brennstoffen

Das Projekt "Messtechnische Erfassung der UFP-Anzahlkonzentrationen im Abgasstrom an der Schornsteinmündung von Kleinfeuerungsanlagen mit unterschiedlichen Brennstoffen" wird/wurde gefördert durch: Bundesministerium für Umwelt, Naturschutz, nukleare Sicherheit und Verbraucherschutz (BMUV) , Umweltbundesamt (UBA). Es wird/wurde ausgeführt durch: DBFZ Deutsches Biomasseforschungszentrum gemeinnützige GmbH.Im Vorhaben soll die Anzahlkonzentration ultrafeiner Partikel aus Kleinfeuerungsanlagen unmittelbar an der Schornsteinmündung gemessen werden. Bei diesen Untersuchungen sollen die verwendeten Brennstoffen variiert werden. Dadurch kann die derzeit wenig untermauerte Datenlage ausgebaut werden und die verbesserten Kenntnisse können insbesondere in die umweltpolitische Bewertung von Holzfeuerungen einfließen. Durch das Projekt soll auch gezeigt werden, inwiefern nachgelagerte Prozesse im Schornstein zu einer Veränderung der Anzahlkonzentration beitragen. In dem Vorhaben soll zunächst eine Literaturstudie zu den typischerweise auftretenden Anzahlkonzentrationen bei besagten Feuerungen und den nachgelagerten chem.-physik. Prozessen durchgeführt werden. Die durchzuführenden Messungen müssen an Anlagen mit realitätsnahem Abgasstrang bzw. Schornstein vorgenommen werden. In einem letzten Schritt soll ein Kommunikationskonzept erarbeitet werden.

Bestimmung partikelgebundener PAK, NPAK und 3-Nitrobenzanthron sowie ihre Verteilung auf verschiedene Ultrafeinstaubfraktionen von Emissionsquellen

Das Projekt "Bestimmung partikelgebundener PAK, NPAK und 3-Nitrobenzanthron sowie ihre Verteilung auf verschiedene Ultrafeinstaubfraktionen von Emissionsquellen" wird/wurde ausgeführt durch: Technische Universität Berlin, Institut für Technischen Umweltschutz, Fachgebiet Umweltchemie.Als ultrafeine Partikel werden Teilchen mit Durchmessern kleiner als 100 nm bezeichnet. Die ultrafeinen Partikel entstehen in Verbrennungsprozessen, die unter Sauerstoffmangel stattfinden. Hierbei sind u.a. der Straßenverkehr mit seinen unzähligen instationären Verbrennungen, Industrieprozesse und Hausbrand zu nennen. Partikel dieses Größenbereichs können sehr spezielle chemische oder physikalische Wechselbeziehungen mit der Umgebung eingehen. Man beobachtet bei ultrafeinen Partikeln vorwiegend Diffusion, wogegen sich größere Teilchen eher durch Anlagerung bzw. Sedimentation auszeichnen (Limbach, 2005). In der Europäischen Union gilt seit Januar 2005 ein Grenzwert für Feinstaub, d.h. für Partikel kleiner als 10ìm (PM10), vorgeschrieben. Für ultrafeine Partikel gibt es in Europa bisher keine eigenen Grenzwerte. In einem bis dahin einmaligen Projekt wurde die Entwicklung der Belastung mit ultrafeinen Partikeln in Erfurt über zehn Jahre quantitativ bestimmt. Dabei wurde ein deutlicher Anstieg festgestellt (Krug, 2005). Die Korngrößen des Ultrafeinstaubs können das menschliche Respirationssystem erreichen. Man spricht daher vom inhalierbaren Anteil des Feinstaubs. Partikel kleiner als 100 nm werden als noch gefährlicher eingestuft, da sie lungengängig sind. Wegen ihrer geringen Größe können einzelne ultrafeine Partikel ein Lungenepithel durchqueren. Ein Weitertransport zu Leber, Knochenmark oder Herz ist möglich. Die Ultrafeinpartikel können sich in der Lunge bis zu mehreren Monaten ablagern bzw. verbleiben (WHO,1997). Es sind einige Verfahren entwickelt worden, um die PAK-Belastung auf Menschen zu erfassen und ihre Auswirkungen zu beschreiben. Dabei wurde Benzo(a)Pyren oft als Indikator für die Präsenz von karzinogenen PAK in der Umwelt genutzt. Verbreitet ist zum Beispiel die Bestimmung von PAK in Blut oder Urin und die Untersuchung der Auswirkungen von PAK auf den Metabolismus in Organen wie Niere und Leber (Larsen, 1995). Die Exposition durch NPAK erfolgt hauptsächlich über die Luft. Es gibt bislang wenige Studien, welche die Langzeitwirkung der inhalativen Aufnahme untersuchen. Darüber hinaus gelten auch die Metaboliten der NPAK als kanzerogen (Uhl, 2007). Laut WHO gibt es erheblichen Forschungsbedarf hinsichtlich der Exposition der Menschen und der Wirkungen von NPAK auf die menschliche Gesundheit (IPCS 2003). Obwohl die NPAK nur einen Bruchteil (1 bis 10Prozent) der PAK ausmachen (Nielsen, 1984), ist spezielle Aufmerksamkeit wegen ihrer hohen biologischen Aktivität notwendig. Zahlreiche NPAK wirkten in Tierversuchen deutlich mutagen und kanzerogen (Fiedler et.al, 1990). Über ihr Verhalten und ihre Anreicherung in Boden und Staub ist bis jetzt noch sehr wenig bekannt. Ebenso wenig wie über deren Metabolismus und Akkumulation in biologischem Gewebe (Fiedler et al., 1991, Fieder und Mücke 1990). (...)

1 2 3 4 518 19 20