API src

Found 288 results.

Similar terms

s/voda/Soda/gi

Entwicklung und Erprobung von funktionalen Komponenten und einer Prozesskette zur klimaneutralen Herstellung von Soda und Natron als Senke für erzeugtes CO2, Teilvorhaben: Experimentelle Untersuchung und Bewertung der Produktaufbereitung

Gegenstand des BMWi-Verbundvorhabens 'GreenSoda' ist die Entwicklung und Demonstration eines neues CCU-Konzeptes für die Herstellung der chemischen Grundstoffe Soda (Natriumcarbonat) und Natron (Natriumhydrogencarbonat) auf der Basis von CO2 aus Produktaufbereitungsprozessen, biogenem CO2 und/oder weiteren industriellen Emissionsquellen. Als Natriumquelle wird Natronlauge verwendet, die mittels eines neuen, im Rahmen des Vorhabens zu entwickelnden und optimierenden, elektrochemischen Verfahrens aus Salzsole hergestellt wird. Zur Bereitstellung der für den Prozess benötigten Elektroenergie und Prozesswärme ist die Nutzung regenerativ erzeugter Energie bzw. Tiefer Geothermie vorgesehen. Somit werden in der Gesamtbilanz CO2-Emissionen, die mit der Herstellung auf konventionellem Wege verbunden sind, weitestgehend vermieden und der Prozess kann perspektivisch als Senke für CO2 dienen. Ein weiteres Ziel besteht darin, die bisher mit der Herstellung unvermeidlich verbundenen Abproduktprobleme zu vermeiden. Die zu entwickelnden Prozessschritte sollen anschließend adaptiert, zusammengeführt und für den Test im Technikumsmaßstab bis auf Ebene TRL 5/6 hochskaliert werden. Die prozesstechnischen Forschungs- und Entwicklungsarbeiten werden durch energetische, ökonomische und ökologische Bewertungen der einzelnen Verfahrensstufen sowie des Gesamtverfahrens flankiert.

Altglas

<p>Altglas richtig trennen und entsorgen</p><p>Wie Sie Altglas richtig trennen und entsorgen</p><p><ul><li>Entsorgen Sie Altglasbehälter im Altglas-Container.</li><li>Achten Sie auf die korrekte Trennung von Weiß-, Grün- und Braunglas.</li><li>Noch besser: Verwenden Sie Mehrweg-Behälter.</li></ul></p><p>Gewusst wie</p><p>Der Einsatz von Altglas in der Produktion von neuem Glas verringert den Primärrohstoff- und Energieverbrauch, die Wasser- und Luftbelastung deutlich. Beispielsweise sinkt der Bedarf an Schmelzenergie um bis zu 3 % pro 10 % Scherbeneinsatz. Außerdem wird hierdurch eine Deponierung von Altglas überflüssig.</p><p><strong>Im Altglas-Container entsorgen:</strong> Altglas-Container finden sich in Deutschland fast immer in fußläufiger Entfernung von Wohnungen. Sparen Sie sich deshalb zusätzliche Spritkosten durch einen Transport mit dem Auto. Bringen Sie das Altglas zu Fuß oder per Fahrrad zum Container. Wenn Sie Schraubdeckel entfernen, vermindert sich zudem der Ausschuss des nicht nutzbaren Altglases. In den Altglas-Container gehört nur sogenanntes Behälterglas (Flaschen, Konservengläser, etc.). Auf keinen Fall dürfen Porzellan und Keramik, Bleikristallgläser und andere Trinkgläser&nbsp;sowie temperaturbeständiges Glas (z.B. Mikrowellen- oder Backofengeschirr) in den Altglas-Container. Sie gehören in den Restmüll, wie auch Fenster- und Spiegelglas.&nbsp;Leuchtmittel (Energiesparlampen, LEDs) müssen gesondert über Sammelboxen oder Wertstoffhöfe entsorgt werden.</p><p><strong>Die richtige Farbwahl:</strong> Je sortenreiner die gesammelten Glasfarben, desto mehr Altglas kann in der Neuproduktion eingesetzt werden. Bei farblichen "Verunreinigungen" entstehen sonst vom Verbraucher nicht gewollte "Zwischentöne". Achten Sie deshalb auf das farblich richtige Einwurfloch. Im Zweifelsfall (z.B. weiß-grün oder blau) verwenden Sie den Container für Grünglas.</p><p><strong>Mehrweg – der bessere Weg:</strong> Auch wenn aus Altglas neue Glasverpackungen erzeugt werden können, sind Mehrweg-Verpackungen Glas-Einwegverpackungen vorzuziehen. Glas-<a href="https://www.umweltbundesamt.de/umwelttipps-fuer-den-alltag/essen-trinken/mehrwegflaschen">Mehrwegflaschen</a> können z.B. über 40-mal wiederbefüllt werden. Einweg-Glasverpackungen haben wegen ihres hohen Gewichtes auch im Vergleich zu anderen Einwegverpackungen wie Karton oder Plastik eine schlechtere Ökobilanz.</p><p><strong>Was Sie noch tun können:</strong></p><p>Hintergrund</p><p>Glas kann grundsätzlich beliebig oft geschmolzen und zu neuen Produkten verarbeitet werden. Da Altglas bei niedrigeren Temperaturen als die zur Glasherstellung erforderlichen Rohstoffe schmilzt, verringert sich je Prozentpunkt Scherbenzugabe der Energiebedarf um etwa 0,3 %. Altglasrecycling verringert somit die mit dem Glasschmelzprozess verbundenen Umweltbelastungen (z.B. CO2-Emissionen) und schont Deponieraum für Abfälle. Die Einsparung von Rohstoffen (unter anderem Quarzsand, Soda, Kalk) reduziert ebenfalls Umweltbelastungen.</p><p>Seit Beginn der Altglassammlung Anfang der 1970er-Jahre hat sich der Anteil von Altglas bei der Glasherstellung kontinuierlich gesteigert. Ab 01.01.1996 sah die Verpackungsverordnung für Glas eine jährliche Recyclingquote von mindestens 70 %, seit 01.01.1999 von mindestens 75 % vor. Das Verpackungsgesetz sieht seit dem 1.1.2019 vor, dass 80 % des in Verkehr gebrachten Glases zur Wiederverwendung vorbereitet oder recycelt werden müssen. Ab dem 01.01.20022 stieg die Quote sogar auf 90 %. Die Sammelquote ist von 78,8 % (1996) auf den Maximalwert von 91,2 % (2004) gestiegen, dann allerdings wieder auf 82,5 % (2009) gesunken (⁠UBA⁠ 2012). Im Jahr 2022 lag die Quote bei 80,1 % (⁠UBA⁠ 2024).</p><p>In Deutschland wurden 2024 insgesamt 6,686 Millionen Tonnen (Mio. t) Glas und Mineralfasern hergestellt. Zu den Hauptproduktgruppen zählten Behälterglas mit etwa 3,788 Mio. t und Flachglas mit 1,794 Mio. t. Behälterglas wird insbesondere im Lebensmittel- und Getränkehandel zum Warenverkauf eingesetzt (Getränke, Joghurt etc.).</p><p>Weitere Informationen finden Sie unter:</p><p><strong>Quellen:</strong></p>

Gemengeanbau von Ackerbohnen und Ölfrüchten

Der Anbau von Ölpflanzen zur Gewinnung von Speiseöl und Energie ist bislang im Organischen Landbau wenig entwickelt. Zum einen mindern Probleme bei der Regulierung von Schaderregern und Unkraut die Wirtschaftlichkeit, zum anderen konkurriert der Anbau von Energiepflanzen um Fläche für die Erzeugung von Lebensmitteln. Der Gemengeanbau leistet einen Beitrag zur Diversifizierung im Ackerbau und lässt Synergie-Effekte zwischen den Gemengepartnern wirksam werden. Eine effizientere Ressourcennutzung, geringere Anfälligkeit gegenüber Schaderregern und reduziertes Unkrautaufkommen können zu höheren Gesamterträgen bzw. Gewinnen je Flächeneinheit führen. Im Hinblick auf diese Aspekte wird untersucht, inwieweit die Ölsaaten Öllein (Linum usitatissimum L.), Saflor (Carthamus tinctorius L.) bzw. Senf (Sinapis alba L.) für den jeweils zeitgleichen Anbau mit Ackerbohnen (Vicia faba L.) geeignet sind. In Abhängigkeit von verschiedenen Standraumzumessungen werden die Erträge und die Konkurrenzverhältnisse um Stickstoff und Wasser bei den jeweiligen Gemengepartnern untersucht,sowie die Ölsaaten hinsichtlich Ölgehalt und Fettsäurezusammensetzung analysiert. Arbeitshypothesen: - Der zeitgleiche Anbau von Ackerbohnen und Ölfrüchten führt zu höheren Gesamterträgen bei nur unwesentlich verminderten Ackerbohnen-Erträgen. - Die hauptsächlich im Bodenraum zwischen den Ackerbohnenreihen freigesetzten Stickstoffmengen werden zur Ertragsbildung der Ölfrüchte effizient genutzt. - Ein weiterer Abstand zwischen Ölfrucht- und Ackerbohnenreihe führt zu geringerer interspezifischer Konkurrenz und durch gleichmäßigere Durchwurzelung des Bodenraumes zur effizienteren Nutzung von bodenbürtig freigesetztem Stickstoff und Wasser. Die Folge sind, verglichen mit engerem Reihenabstand, höhere Ölfruchterträge und nur unwesentlich geringere Ackerbohnen-Kornerträge. - Die Ölfrüchte Saflor, Öllein und Senf nehmen aufgrund ihres Pfahlwurzelsystems Stickstoff auch aus tieferen Bodenschichten auf und senken so das Austragungspotential von bodenbürtig freigesetztem Stickstoff bzw. Stickstoff-Restmengen.

Nachbewilligung zur Dritten Phase des Projektes: Entwicklung eines zweistufigen biologischen Verfahrens zur Reinigung von Deponiesickerwasser und industriellen Abwässern mit komplexen Stoffgemischen

Zielsetzung und Anlass des Vorhabens: Ziel der letzten Projektphase war es, mit einer Langzeit-Praxiserprobung das zweistufige biologische Verfahren zur Deponiesickerwasserreinigung als Stand der Technik zu etablieren und zu bilanzieren. Nach der Inbetriebnahme des Technikums am Deponiestandort Schöneiche ging es in der zwölfmonatigen Laufzeit des Projektes AZ 14996/04 in den Langzeitversuchen um die Validierung der Laborergebnisse im technischen Maßstab, die verfahrenstechnische Optimierung der Anlage und um eine damit verbundene mögliche Kostenreduzierung des Systems. Darstellung der Arbeitsschritte und der angewandten Methoden: Nach dem ersten Technikums-Probebetrieb wurde eine Reihe von Optimierungsmaßnahmen durchgeführt: - der Umbau des Rohsickerwasserzulaufs, - die Verwendung von Soda statt Bicarbonat für die Ammoniumoxidation in Reaktor 2, - der Einsatz von Membrandosierpumpen mit integrierten Rückschlagventilen für die Zugabe von Soda und Essigsäure, - der Einbau von zusätzlichen Polyurethan-Festbetten zur Vergrößerung der Oberfläche für die Besiedlung mit Mikroorganismen, - die Einstellung des Sollwerts für Reaktor 4 auf einen pH-Wert von 6,5, - ein Update der SPS-Steuerung der Nanofiltration zur freien Programmierung der Spülzyklen, - der Einbau eines Absperrhahns vor den Nanofiltrations-Vorfilter - und die Trennung des Nanofiltrationsablaufs vom Reaktoren-Sammelablauf zur Behälterleerung. Es wurde sowohl Rohsickerwasser der MEAB-Deponie Schöneiche als auch Sickerwasserkonzentrat der Deponie Vorketzin behandelt. Fazit: Wegen der durchgeführten Optimierungsmaßnahmen ist es prinzipiell gelungen, das Schöneicher Rohsickerwasser gemäß Anhang 51 der Abwasserverordnung aufzureinigen. In Vorketzin wurde die organische Belastung über 70% und Stickstoff über 80% reduziert. Nach Rückgang der Calciumfracht sollte es zukünftig möglich sein, mit der Zweistufen-Biologie das Sickerwasserkonzentrat ausreichend zu reinigen, da organische Belastung und Stickstoffgehalt geringer als im Schöneicher Rohsickerwasser sind. Um das Verfahren als Stand der Technik, vor allem für die Behandlung von Sickerwasserkonzentraten, zu etablieren, müssten die Laborvorgaben mit den Erfahrungen des Technikumsbetriebs kombiniert und in einer weiteren Versuchsreihe unter optimierten Bedingungen verifiziert werden.

Glas und Altglas

<p>Altglas kann unendlich oft wieder eingeschmolzen und zur Herstellung neuer Glasprodukte genutzt werden. Solch eine erneute stoffliche Nutzung ist umweltverträglich und kann viel Energie (ca. 10 Prozent) und viele Rohstoffe einsparen, wenn die verschiedenen Glasprodukte wie Flaschen und Fenstergläser an ihrem Lebensende dem richtigen Entsorgungsweg zugeführt werden.</p><p>Massenprodukt Glas</p><p>In Deutschland stellten Glashersteller 2024 rund 6,661 Millionen Tonnen (Mio. t) Glas her. Aus 3,788 Mio. t davon wurde Behälterglas gefertigt, aus 1,794 Mio. t Flachglas. Aus rund 292.500 Tonnen (t) entstanden spezielle Gläser für Haushalte, Forschung und Wirtschaft. Der folgende Text beschreibt die Sammlung und Verwertung dieser Gläser. Zusätzlich gibt es Produzenten von Mineralwollen, die rund 786.000 t Glas- und Steinwolle herstellen, die als Dämmmaterial eingesetzt wurden (siehe Abb. „Glasproduktion im Jahr 2024 und die Anteile der einzelnen Glasbranchen“).</p><p>Glas: gut recycelbar!</p><p>Glas lässt sich unendlich oft wieder verwenden. Es kann beliebig oft in den Schmelzprozess zurückgeführt und zu neuen Produkten verarbeitet werden. Da recyceltes Glas bei niedrigeren Temperaturen als die zur Glasherstellung erforderlichen Rohstoffe schmilzt, sinkt der Energiebedarf, wenn Glasscherben zugesetzt werden. Über den Daumen lässt sich sagen, dass der Energiebedarf um etwa 0,2 bis 0,3 % sinkt, wird ein Prozent Altglas dem Schmelzofen hinzugefügt. Einschmelzen von Altglas schützt so das ⁠<a href="https://www.umweltbundesamt.de/service/glossar/k?tag=Klima#alphabar">Klima</a>⁠ und spart Rohstoffe wie Quarzsand, Soda und Kalk ein. Das trägt ebenfalls zur Verringerung der dem Herstellungsprozess anrechenbaren Umweltbelastungen bei. Weiterhin braucht eingeschmolzenes Altglas nicht deponiert zu werden.</p><p>Glashersteller setzen Scherben, die als Ausschuss bei der Produktion anfallen, wieder ein. Der Einsatz von Altglas hängt aber von den herstellungsspezifischen Anforderungen an den Reinheitsgrad der Scherben ab. So kann gefärbtes Glas nicht zur Herstellung von Weißglas genutzt werden und Keramikscherben oder Steine stören den Produktionsprozess.</p><p>Im Jahr 2015 haben Behälterglashersteller in Glaswannen durchschnittlich 60 % Scherben eingesetzt, bei Grünglas sogar bis zu 90 %.</p><p>Altglassammlung mit Tradition</p><p>Für Behälterglas wurde bereits im Jahr 1974 ein flächendeckendes Sammelsystem eingerichtet. Meist werden Bringcontainersysteme zur getrennten Erfassung von Weiß-, Braun- und Grünglas eingesetzt. Über 250.000 solcher Altglascontainer sind bundesweit im Einsatz.</p><p>Die Aufbereitung des gesammelten Behälterglases erfolgt zwar weitestgehend vollautomatisch. Die Farbsortierung erfordert jedoch aus technischen und ökonomischen Gründen eine nach Farben getrennte Sammlung der Glasbehälter. So ist die Sortenreinheit der gesammelten Glasmengen eine Voraussetzung für die Rückführung von Behälterglasscherben in den Schmelzprozess zur Herstellung neuer Flaschen und Gläser.</p><p>Im Jahr 2006 erreichte die Behälterglasverwertung eine Quote von 83,6 %. Bis zu diesem Jahr hat die Gesellschaft für Glasrecycling und Abfallvermeidung mbH (GGA) die entsprechenden Daten zur Verfügung gestellt. Nach dem kartellrechtlichen Verbot dieser Organisation fehlen verlässliche Daten über das Aufkommen von Behälterglasscherben. Zahlen müssen nunmehr aus den entsprechenden Abfallstatistiken sowie den jährlichen Erhebungen zum Aufkommen und zur Verwertung von Verpackungsabfällen in Deutschland (siehe auch <a href="https://www.umweltbundesamt.de/daten/ressourcen-abfall/verwertung-entsorgung-ausgewaehlter-abfallarten/verpackungsabfaelle">„Verpackungsabfälle“</a>) entnommen werden. Diese Veröffentlichung weist für das Jahr 2022 eine Verwertungsquote von 84,6 % für auf den Markt gebrachte Behältergläser aus (siehe Abb. „Verwertung von Glas aus gebrauchten Verpackungen“).&nbsp;</p><p>Generell ist eine Vorsortierung beim Verbraucher unbedingt erforderlich. Fensterglas, Autoglas, Kristallglas und feuerfeste Gläser wie Laborglas, Ceran®, Pyrex® lassen sich bei der Altglasaufbereitung nur schwer aussortieren und können zu hohen Produktionsausfällen oder zur Anreicherung von Schwermetallen im Behälterglaskreislauf führen, zum Beispiel durch Bleikristallglasscherben. Deshalb dürfen diese Gläser nicht in Altglasbehältern entsorgt werden.</p><p>Stoffliche Verwertung von Behälterglas</p><p>In der Behälterglasindustrie stellt Altglas mittlerweile die wichtigste Rohstoffkomponente dar. Eine Tonne Altglas darf jedoch nicht mehr als 25 g an Keramik, Steinen und Porzellan (KSP-Fraktion) enthalten und maximal 5 g an Nichteisenmetallen wie Aluminium. Zudem sind Grenzwerte für Eisenmetalle und für organische Bestandteile wie Kunststoffe und Papier zu unterschreiten.</p><p>Besonders wichtig ist die Farbreinheit der Altglasscherben. Um weißes Behälterglas herzustellen, ist bei einer Altglasscherbenzugabe von 50 % eine Farbreinheit von 99,7 % erforderlich. Der Fehlfarbenanteil im Braunglas darf die 8 %-Marke nicht überschreiten. Lediglich grünes Glas lässt einen Fehlfarbenanteil von bis zu 15 % zu.</p><p>Stoffliche Verwertung von Flachglas</p><p>Für Flachglasprodukte wie Fensterglas und andere Baugläser gelten besondere Qualitätsanforderungen wie Farbreinheit und Blasenfreiheit. Die Flachglasindustrie setzt daher überwiegend sortenreine Glasscherben aus weiterverarbeitenden Betrieben und Eigenscherben ein. In den letzten Jahren wurden die Sammelsysteme zur Erfassung möglichst sortenreiner und fremdstoffarmer Flachglasprodukte im weiterverarbeitenden Gewerbe ausgebaut. Altglas, das nicht den vorgegebenen Anforderungen an den Reinheitsgrad entspricht, muss aufbereitet werden. Hierfür stehen in Deutschland derzeit zehn Aufbereitungsanlagen zur Verfügung.</p><p>Altglasfraktionen, die sich aus Qualitätsgründen nicht für die Herstellung neuer Flachgläser eignen, können in geringem Umfang bei der Herstellung von Behälterglas eingesetzt werden, aber auch bei der Herstellung von Dämmwolle, Schmirgelpapier, Schaumglas und Glasbausteinen.</p><p>Autoscheiben werden geschreddert</p><p>Demontagebetriebe für Altfahrzeuge müssen grundsätzlich Front-, Heck- und Seitenscheiben sowie Glasdächer von Altfahrzeugen ausbauen und dem Recycling zuführen. Das schreibt die Altfahrzeugverordnung vor (siehe <a href="https://www.umweltbundesamt.de/daten/ressourcen-abfall/verwertung-entsorgung-ausgewaehlter-abfallarten/altfahrzeugverwertung-fahrzeugverbleib">"Altfahrzeugverwertung und Fahrzeugverbleib"</a>). Im Jahr 2023 nahmen die deutschen Altfahrzeug-Demontagebetriebe 253.195 Altfahrzeuge zur Behandlung an. Sie enthielten im Schnitt etwa 35 kg Fahrzeugglas je Altfahrzeug, insgesamt rund 8.900 t. Aufgrund behördlicher Ausnahmen von der Demontagepflicht haben die Altfahrzeugverwerter nach Angaben des <a href="https://www-genesis.destatis.de/genesis/online?operation=table&amp;code=32111-0004&amp;bypass=true&amp;levelindex=1&amp;levelid=1698847590512#abreadcrumb">Statistischen Bundesamtes</a> (öffentlich verfügbare Werte auf 100 t gerundet) davon nur etwa 7 % – also 578 t – demontiert. Der überwiegende Anteil der Fahrzeugscheiben und Glasdächer gelangt mit den Altfahrzeugen in Schredderanlagen. Die dabei anfallenden nichtmetallischen mineralischen Rückstände wurden im Jahr 2023 überwiegend verwertet, etwa als Bergversatz oder im Deponiebau, und teilweise beseitigt.</p><p>Über die Ersatzverglasung, also den Anfall von Fahrzeugglas durch Scheibenwechsel, liegt eine grobe Schätzung für das Jahr 2020 vor: In Markenwerkstätten wurden in Deutschland schätzungsweise rund 1,7 Millionen Verbundglasscheiben ersetzt. Geht man von einem durchschnittlichen Gewicht einer Windschutzscheibe von knapp 10 kg aus, so bedeutet dies einen Anfall von etwa 16.000 t an Verbundsicherheitsglas (VSG). Hinzu kommt noch eine unbekannte Menge aus der Ersatzverglasung aus weiteren Werkstätten. Etwa 90 % der Altgläser aus der Ersatzverglasung werden einer Verwertung zugeführt.</p>

Ammoniak-Emissionen

<p>Ammoniak-Emissionen </p><p>Die Ammoniak-Emissionen stammen im Wesentlichen aus der Tierhaltung und weiteren Quellen in der Landwirtschaft. Von 1990 bis 2023 sanken die Ammoniak-Emissionen aus der Landwirtschaft um etwa 32 Prozent.</p><p>Entwicklung seit 1990</p><p>Von 1990 bis 2023 sanken die Ammoniak-Emissionen (NH3) im Gesamtinventar um 265 Tausend Tonnen (Tsd. t) oder knapp 32 %. Die Emissionen stammen hauptsächlich aus der Landwirtschaft (um die 93 % Anteil an den Gesamtemissionen). Die Emissionsreduktionen in den ersten Jahren unmittelbar nach der Wiedervereinigung lassen sich auf den strukturellen Umbau in den neuen Bundesländern zurückführen. Seit der Berichterstattung 2016 werden auch Ammoniak-Emissionen aus Lagerung und Ausbringung von Gärresten nachwachsender Rohstoffe (NAWARO) der Biogasproduktion berücksichtigt, deren Zunahme auf den Ausbau der Anlagen zurückzuführen ist. Zusätzlich werden Emissionen aus der Klärschlammausbringung betrachtet.</p><p>Die Ammoniak-Emissionen aus der Landwirtschaft dominieren seit Mitte der 1990er Jahre auch die in Säure-Äquivalenten berechneten, summierten Emissionen der Säurebildner Schwefeldioxid (SO2), Stickstoffoxide (NOx) und Ammoniak (NH3). Berechnet man das Versauerungspotenzial dieser drei Schadstoffe, so ergibt sich wegen der erheblich stärkeren Emissionsminderung bei SO2 und NOx ein steigender Einfluss von NH3 und somit der Landwirtschaft. Von 18 % im Jahre 1990 stieg der Emissionsanteil der Landwirtschaft bei den Säurebildnern bis 2023 auf 57 % (siehe Tab. „Emissionen ausgewählter Luftschadstoffe nach Quellkategorien“).</p><p>Verursacher</p><p>Ammoniak (NH3) entsteht vornehmlich durch Tierhaltung und in geringerem Maße durch die Verwendung mineralischer Düngemittel, sowie die Lagerung und Ausbringung von Gärresten der Biogasproduktion in der Landwirtschaft.</p><p>Von geringerer Bedeutung sind industrielle Prozesse (Herstellung von Ammoniak und stickstoffhaltigen Düngemitteln sowie von kalziniertem Soda), Feuerungsprozesse, Anlagen zur Rauchgasentstickung sowie Katalysatoren in Kraftfahrzeugen.</p><p>Umweltwirkungen</p><p>Ammoniak und das nach Umwandlung entstehende Ammonium schädigen Land- und Wasserökosysteme erheblich durch ⁠<a href="https://www.umweltbundesamt.de/service/glossar/v?tag=Versauerung#alphabar">Versauerung</a>⁠ und ⁠<a href="https://www.umweltbundesamt.de/service/glossar/e?tag=Eutrophierung#alphabar">Eutrophierung</a>⁠ (Nährstoffanreicherung).</p><p>Mehr Informationen auf der Themenseite Luftschadstoffe im Überblick: <a href="https://www.umweltbundesamt.de/themen/luft/luftschadstoffe-im-ueberblick/ammoniak">Ammoniak</a>.</p><p>Erfüllungsstand der Emissionsminderungsbeschlüsse</p><p>Im <a href="https://unece.org/environment-policy/air/protocol-abate-acidification-eutrophication-and-ground-level-ozone">Göteborg-Protokoll</a> zur ⁠<a href="https://www.umweltbundesamt.de/service/glossar/u?tag=UNECE#alphabar">UNECE</a>⁠-Luftreinhaltekonvention und in der ⁠<a href="https://www.umweltbundesamt.de/service/glossar/n?tag=NEC-Richtlinie#alphabar">NEC-Richtlinie</a>⁠ (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) der EU wird festgelegt, dass die jährlichen NH3-Emissionen ab 2020 um 5 % niedriger sein müssen als 2005. Dieses Ziel wird für alle betreffenden Jahre eingehalten.&nbsp;</p><p>Auf EU-Ebene legt die NEC-Richtlinie (<a href="https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32016L2284">EU 2016/2284</a>) auch fest, dass ab 2030 die jährlichen Emissionen 29 % niedriger gegenüber 2005 sein sollen. Dieses Ziel wurde bisher nicht erreicht.</p>

KlimPro: Entwicklung eines umweltfreundlichen Verfahrens zur Herstellung von Soda

KlimPro: Entwicklung eines umweltfreundlichen Verfahrens zur Herstellung von Soda, Teilprojekt 2: Verfahrensgrundlagen, Prozessentwicklung und Modellierung

Staatssekretär besucht Solvay GmbH

Am 20.11.2024 fand anlässlich des 25-jährigen Jubiläums der Umweltallianz Sachsen-Anhalt ein weiterer Besuch bei den Erstmitgliedern des Bündnisses statt. Gemeinsam mit Staatssekretär Thomas Wünsch haben Vertreter und Partner der Umweltallianz die Solvay GmbH am Standort in Bernburg besucht. Die Haupttätigkeiten des Unternehmens in Bernburg liegen in der Produktion von Soda (Natriumcarbonat), Natron (Natriumhydrogencarbonat) und Wasserstoffperoxid (inklusive hochreinem Wasserstoffperoxid in Electronic Grade Qualität für die Halbleiterindustrie). Nach einem Grußwort des Staatssekretärs stellten der Werkleiter Hugo Walravens und die Betriebsleiter der einzelnen Bereiche zunächst das Unternehmen, die Projekte der letzten 25 Jahre am Standort Bernburg sowie aktuelle und vorgesehene Unternehmungen vor. Die Solvay GmbH ist seit dem Jahr 2000 Mitglied der Umweltallianz und hat in diesem Zeitraum eine Vielzahl freiwilliger Umweltschutzleistungen erbracht, die über die gesetzlichen Vorgaben hinausgehen. Das Unternehmen betreibt ein nach DIN EN ISO 14001 zertifiziertes Umweltmanagementsystem. Im Laufe der Jahre hat Solvay zahlreiche freiwillige Umweltinitiativen ergriffen und dabei bedeutende Fortschritte bei der Ressourceneinsparung und -effizienz erzielt: Reduzierung des Prozesswasserverbrauchs um 20 % in den letzten zwei Jahrzehnten. Senkung des Kühlwasserverbrauchs um fast 40 %. Verbesserung der Betriebsabläufe zur Verringerung des Materialverbrauchs und Verbesserung der Nachhaltigkeit. Neben einer Vielzahl weiterer umgesetzter Projekte und Optimierungen sind zukünftig unter anderem ein Elektrolyseur (30 MW) für die Wasserstoffperoxid-Produktion und eine PV-Anlage (70 MW peak) geplant. Als weltweit agierendes Unternehmen hat sich die Solvay GmbH zudem dazu verpflichtet, bis 2050 CO 2 -neutral zu werden. Nach der Unternehmensvorstellung wurden die Wasserstoffperoxid- und die Electronic- Grade-Anlage besichtigt.

Kommunen innovativ: Impulse für eine nachhaltige, interkommunal abgestimmte Daseinsvorsorge in der Planungsregion Harz, Teilprojekt 1

1 2 3 4 527 28 29