Viruses, including human pathogenic viruses, can persist in water. For producing drinking water from surface water via bank filtration, natural attenuation capacities and the fate of viruses during the passage of aquatic sediments are of particular interest. Moreover, the increasing frequency of extreme hydrological events necessitate re-evaluation of the sustainability and efficacy of processes removing viruses. For this purpose, we performed bank sediment filtration experiments using a mesocosm in a technical-scale experimental facility that simulates a field situation under more tightly controlled conditions. We used the bacteriophage MS2 as a surrogate for enteric viruses to study the transport of different viral loads through the bank sediment. Additionally, we simulated a heavy rain event to investigate the re-mobilization of initially attached virus particles. We quantified the abundance of infectious MS2 phages by plaque assay and the total number of MS2 particles by qPCR. Also, we differentiated pore water concentrations by depths of the sediment column and investigated attachment to the sediment matrix at the end of the individual experimental phases. Bank filtration over a vertical distance of 80 cm through sandy sediment revealed a virus removal efficiency of 0.8 log10 for total MS2 particles and 1.7 log10 for infectious MS2 particles, with an initial phage concentration of 1.84 x 10*8 gene copies mL-1. A low load of infectious MS2 (1.9 * 106 plaque forming units mL-1) resulted in a greater removal efficiency (3.0 log10). The proportion of infectious MS2 phages of the total MS2 particle mass steadily decreased over time, i.e., in the course of individual breakthrough curves and with sediment depth. The simulated pulse of rainwater caused a front of low ionic strength water which resulted in pronounced phage remobilization. The high proportion of infectious MS2 among the detached phages indicated that attachment to the sediment matrix may substantially conserve virus infectivity. Therefore, the re-mobilization of previously attached viruses owing to hydrological extremes should be considered in water quality assessment and monitoring schemes. © 2022 The Authors
Wasserbürtige Krankheitserreger können über den Wasserpfad Erkrankungen beim Menschen verursachen. Dies geschieht zum Beispiel durch orale Aufnahme von oder direkten Kontakt mit erregerhaltigem Wasser oder durch Inhalation erregerhaltiger Aerosole. Die meisten wasserassoziierten Infektionskrankheiten werden durch Bakterien oder Viren fäkalen Ursprungs hervorgerufen. Es kann aber auch durch Mikroorganismen, die natürlich in der Umwelt vorkommen, also nicht-fäkalen Ursprungs sind, zu wasserbezogenen Erkrankungen des Menschen kommen, wie beispielsweise durch Legionellen. Hygienisch-relevante Mikroorganismen in Abwässern Durch die Einleitung von behandeltem oder unbehandeltem kommunalen Abwasser aus Kläranlagen und Mischwasserentlastungen können humanpathogene Krankheitserreger in Fließgewässer gelangen. Die konventionelle mechanisch-biologische sowie chemisch-physikalische Abwasserbehandlung, welche in kommunalen Kläranlagen erfolgt, verringert zwar die Konzentration von in Rohabwasser (unbehandeltes Abwasser) vorkommenden hygienisch-relevanten Mikroorganismen – wie parasitische Protozoen (wie Kryptosporidien und Giardien), Bakterien fäkalen Ursprungs (wie Escherichia coli und Enterokokken) sowie human-pathogene enterale Viren (wie Noroviren, Rotaviren, Enteroviren) – erheblich, führt aber nicht zu deren vollständigen Entfernung. Daher können humanhygienisch-relevante Mikroorganismen auch nach Behandlung des Abwassers in einer kommunalen Kläranlage an deren Ablauf ins Gewässer enthalten sein. Unbehandeltes Abwasser kann zudem bei erhöhten Niederschlägen durch Abschläge aus der Mischkanalisation in Gewässer gelangen. In der Mischkanalisation (Mischsystem) wird das Schmutzwasser (wie häusliches Abwasser aus Toiletten) und das Niederschlagswasser gemeinsam in einer Kanalisation abgeleitet. Fallen in kurzer Zeit große Mengen an Niederschlagswasser an, kann dies eine hydraulische Entlastung der Kanalisation erforderlich machen. Mit solchen Mischwasserentlastungen (Mischwasserabschlägen) werden in menschlichen Fäkalien enthaltene Mikroorganismen – wenn auch durch das Niederschlagswasser in ihrer Konzentration verdünnt – ins Gewässer eingeleitet. Mit den genannten Abwassereinleitungen können auch klinisch-relevante antibiotikaresistente Bakterien in Fließgewässer gelangen. Dabei handelt es sich beispielsweise um Enterobakterien (wie Escherichia coli ) mit Resistenzen gegen mehrere Antibiotikagruppen, die im Falle einer Infektion mit diesen Bakterien die verfügbaren Therapieoptionen stark einschränken. In warmen Abwässern, vorwiegend aus Industriebetrieben (wie Brauereien, Betrieben der Fleischwirtschaft oder der Zuckerherstellung sowie der Papierherstellung), können hingegen hohe Konzentrationen humanpathogener Legionellen vorkommen. Medizinische Illustration von ESBL-produzierenden Enterobakterien, Illustration: A. Eckert/D. Higgins, CDC Medizinische Illustration von Carbapenem-resistenten Enterobakterien, Illustration: S. Rossow, CDC Computergeneriertes Bild von Legionella pneumophilia, Illustration D. Higgins, CDC
To protect groundwater as a drinking water resource from microbiological contamination, protection zones are installed. While travelling through these zones, concentrations of potential pathogens should decline to levels that pose no risks to human health. Removal of viruses during subsurface passage is influenced by physicochemical conditions, such as oxygen concentration, which also affects virus survival. The aim of our study was to evaluate the effect of redox conditions on the removal of viruses during sand filtration. Experiments in glass columns filled with medium-grained sand were conducted to investigate virus removal in the presence and absence of dissolved oxygen. Bacteriophages MS2 and PhiX174, as surrogates for human enteric viruses were spiked in pulsed or in continuous mode and pumped through the columns at a filter velocity of about 1 m/d. Virus breakthrough curves were analyzed by calculating total viral elimination and fitted using one-dimensional transport models (CXTFIT and HYDRUS-1D). While short-term experiments with pulsed virus application showed only small differences with regard to virus removal under oxic and anoxic conditions, a long-term experiment with continuous dosing revealed a clearly lower elimination of viruses under anoxic conditions. These findings suggest that less inactivation and less adsorption of viruses in anoxic environments affect their removal. Therefore, in risk assessment studies aimed to secure drinking water resources from viral contamination and optimization of protection zones, the oxic and anoxic conditions in the subsurface should also be considered.<BR>Quelle: http://www.sciencedirect.com/science/
Experiments to determine the removal of viruses in different types of water (surface water from two reservoirs for drinking water treatment, treated groundwater and groundwater contaminated with either 5 or 30 % of wastewater) by ultrafiltration were performed with a semi-technical ultrafiltration unit. Concentrations of human adenoviruses (HAdVs), murine norovirus (MNV), and the bacteriophages MS2, ÖX174 and PRD1 were measured in the feed water and the filtrate, and log removal values were calculated. Bacteria added to the feed water were not detected in the filtrates. In contrast, in most cases viruses and bacteriophages were still present in the filtrates: log removal values were in the range of 1.4-6.3 depending on virus sizes and water qualities. Best removals were observed with bacteriophage PRD1 and HAdVs, followed by MNV and phages MS2 and ÖX174. Virus size, however, was not the only criterion for efficient removal. In diluted wastewater as compared to drinking water and uncontaminated environmental waters, virus removal was clearly higher for all viruses, most likely due to higher membrane fouling. For quality assessment purposes of membrane filtration efficiencies with regard to the elimination of human viruses the small bacteriophages MS2 and ÖX174 should be used as conservative viral indicators.Quelle: http://link.springer.com
Das Projekt "Teilprojekt 5" wird vom Umweltbundesamt gefördert und von Universität Bochum, Abteilung für Hygiene, Sozial- und Umweltmedizin durchgeführt. Entwicklung der Ruhr als Badegewässer für die Region. Verbesserung der Sicherheit der Trinkwassergewinnung aus der Ruhr hinsichtlich der Verminderung von Krankheitserregern. AP 1: Bestandsaufnahme und Gefährdungsanalyse der Ruhr- und Trinkwasserqualität. Dies umfasst den Virennachweis (Adenoviren, Polyomaviren, Rotaviren, Noroviren GI/GII, Enteroviren) aus ca. 24 Gewässerproben an je 8 Stellen sowie aus der Trinkwasseraufbereitung. Hinzu kommen zusätzliche Probenahmen bei besonderen hydrologischen oder meteorologischen Gegebenheiten. Die Probenahmestellen sind am Baldeney-See, im Oberlauf der Ruhr, an potentiellen Einleitequellen (Kläranlagenablauf, Regenwasserüberläufe) und im Wasserwerk lokalisiert. Ca. 50 pos. Proben werden sequenziert, um die Ergebnisse der Real-Time PCR zu bestätigen. AP 2: Hygienische Bewertung der Daten aus AP 1. Die Risikobewertung erfolgt dabei zum einen aus den mikrobiologischen Daten aus AP1, aber auch mit Hilfe chemischer Daten aus anderen Projekten des Landes NRW. Abschließendes Ziel ist es ein Priorisierungsschema für Maßnahmen im Einzugsgebiet zu erstellen, um eine sichere Trinkwasser- und Badegewässernutzung zu gewährleisten. AP4a: Untersuchung von Abwasser nach der Installation von innovativen Behandlungsmaßnahmen. An 2 Probenahmestellen sind insgesamt 30 zu analysierende Proben geplant. AP4b:Begleitung des Online Monitorings im Hinblick auf Viren. Geplant sind 2x24 Proben auf oben gen. Viren zu untersuchen.
Das Projekt "Zum Gehalt von oeffentlichen Badegewaessern und Schwimmbaedern der Stadt Dresden an enteralen Viren" wird vom Umweltbundesamt gefördert und von Technische Universität Dresden, Institut für Medizinische Mikrobiologie und Hygiene durchgeführt. Die Viruskontamination von Badewasser stellt ein spezifisches Gesundheitsrisiko fuer die Badenden dar. Untersuchungen zur Ermittlung des Grades der Viruskontamination von Badegewaessern sind somit aus hygienischer Sicht unerlaesslich fuer deren Qualitaetssicherung. Deshalb wurden waehrend der Badesaison 1994 zwei Dresdner Freibaeder auf ihren Gehalt an enteralen Viren getestet. Beobachtete Virusnachweishaeufigkeiten von bis zu ueber 50 Prozent weisen auf die Problematik der Inaktivierung von Viren durch Chlorung des Wassers hin.
Das Projekt "Teilprojekt 11" wird vom Umweltbundesamt gefördert und von Universität Bochum, Abteilung für Hygiene, Sozial- und Umweltmedizin durchgeführt. AP1-1.2: Entwicklung und Validierung molekularbiologischer Methoden zum Nachweis von Viren; AP 1-3.1: Wirksamkeit von Desinfektionsmitteln gegen Viren; AP1-4.2: Humantoxikologische Bewertungen von Problemstoffen mit Trinkwasserrelevanz AP1-1.2:Etablierung des Nachweis mittels Luminex Technologie und anschließende Validierung der Methode durch Standardanwendungen wie z. B. qRT-PCR und integrated cell culture PCR. Die Luminex Methode erlaubt aufgrund der Kombination verschiedener Nachweissysteme mit dem gleichen Trägermaterial eine Differenzierung von infektiösen und nicht-infektiösen Viren. AP1-3.1: Die Desinfektionsleistung verschiedener Verfahren, z. B. UV Licht, Chlor, Peroxide, wird in diesem AP hinsichtlich ihrer Effektivität gegenüber Viren getestet. Als virologische Parameter würden untersucht: Adenoviren, Polyomaviren, Noroviren, Rotaviren und Enteroviren. Die unter AP1-1.2 etablierte Methode kommt in diesem AP bereits zur Anwendung da eine Differenzierung von infektiösen und nicht-infektiösen Viren eine besondere Bedeutung zukommt. Im AP1.-4.2 erfolgt die humantoxikologische Bewertung auf Grundlage bestehender Bewertungskonzepten für Trinkwasserkontaminanten (GOW Konzept u.a.).
Das Projekt "Der Nachweis von pathogenen Viren im Abwasser und Enteroviren in Oberflaechenwasser" wird vom Umweltbundesamt gefördert und von Hygiene-Institut des Ruhrgebiets, Institut für Umwelthygiene und Umweltmedizin durchgeführt.
Das Projekt "Mikrobiologische und virologische Untersuchungen zur Eignung des Enterobakteriennachweises als Qualitaetskriterium fuer Trinkwasser" wird vom Umweltbundesamt gefördert und von Universität Tübingen, Medizinische Fakultät, Hygiene-Institut durchgeführt. Der Nachweis einer faekalen Verunreinigung des Trinkwasser geschieht z.Z. ueberwiegend durch die Untersuchung auf E.Coli und coliforme Bakterien. Dieses Verfahren ist sowohl vom methodischen (insb. bezuegl. der coliformen) als auch hinsichtl. der Indikatorfunktion infrage zu stellen. Es soll daher eine groessere Anzahl von Wasserproben versch. Herkunft (Grundwasser,Quellwasser,Oberflaechenwasser) auf herkoemmliche Qualitaetskriterien, d.h. Koloniezahl, coliforme Bakterien, E.Coli, faekale Streptokokken und Clostridien untersucht werden, andererseits soll nach allen Enterobakterien sowie auch nach Enteroviren gesucht werden. Durch das Vorhaben soll festgestellt werden, wie sich der Ersatz des Kriteriums: Nachweis von E. Coli und coliformen Bakterien - durch das Kriterium: Nachweis von Enterobakterien - hinsichtlich der Haeufigkeit von Beanstandungen und der Vorhersagemoeglichkeit anderer hygienisch relevanter Bakterien und Viren im Wasser auswirkt ...
Das Projekt "Vergleich und Standardisierung mikrobiologischer Wasseruntersuchungsmethoden" wird vom Umweltbundesamt gefördert und von Universität Frankfurt, Zentrum der Hygiene, Abteilung für Allgemeine und Umwelthygiene durchgeführt. Erarbeitung von einheitlichen Parametern zum internationalen Vergleich der Ergebnisse von Wasseruntersuchungen hinsichtlich der mikrobiologischen Beschaffenheit.
Origin | Count |
---|---|
Bund | 18 |
Land | 1 |
Type | Count |
---|---|
Förderprogramm | 15 |
unbekannt | 4 |
License | Count |
---|---|
geschlossen | 4 |
offen | 15 |
Language | Count |
---|---|
Deutsch | 16 |
Englisch | 5 |
Resource type | Count |
---|---|
Keine | 14 |
Webseite | 5 |
Topic | Count |
---|---|
Boden | 9 |
Lebewesen & Lebensräume | 16 |
Luft | 6 |
Mensch & Umwelt | 19 |
Wasser | 18 |
Weitere | 19 |