API src

Found 9 results.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: EXClAvE - Landnutzungseffekte auf Pflanzen- und Bakteriengemeinschaften in einem experimentellen 'common garden' Ansatz

In der nächsten Phase der Biodiversitäts Exploratorien sollen Experimente dabei helfen die Effekte verschiedener Landnutzungskomponenten auf Ökosysteme zu ermitteln. 'Common garden' Experimente werden genutzt, um die Umweltheterogenität zu minimieren, die ansonsten interessante Effekte verschleiert. Wir planen Grasnarben, die von n = 42 Plots der Biodiversitäts Exploratorien entnommen werden, in einem 'common garden' auszubringen wo die Intensität der Mahd und der Düngung manipuliert werden soll. In den nächsten drei bis 15 Jahren werden die Veränderungen in den Pflanzen- und Bakteriengemeinschaften auf den Grasnarben verfolgt. Hierfür wird die Zusammensetzung und Diversität der Pflanzen und Bakterien (next-generation 16S rRNA gene amplicon sequencing) ermittelt. Zusätzlich werden noch 3D-Modelle der Pflanzengemeinschaften, die durch multispektrale Information ergänzt werden, erstellt (PlantEye F500, Phenospex, Heerlen, The Netherlands). Diese Modelle erlauben die Errechnung von Parametern, die ganze Pflanzengemeinschaften charakterisieren. Änderungen in den Pflanzen- und Bakteriengemeinschaften werden mit der Landnutzung der Plots in den vergangenen Jahren ins Verhältnis gesetzt. Wir erwarten, dass Gemeinschaften, die aus verschiedenen Plots stammen, aber die gleiche Landnutzung erfahren in Ihrer Zusammensetzung und Diversität konvergieren; Gemeinschaften aus den gleichen Plots, die aber unterschiedliche Landnutzung erfahren, sollten divergieren. Das Projekt nutzt das Vorwissen zu den einzelnen Plots in Bezug auf Landnutzung und Artenzusammensetzung, liefert neuartige Daten für die Biodiversitäts Exploratorien, und stellt einen unabhängigen und neuartigen Beitrag zu der Frage, wie Landnutzug Ökosysteme beeinflusst, dar.

Transregio (TRR) 410: neuartige Ökosysteme in wiedervernässten Niedermoorlandschaften, Teilprojekt S01: Integration von biotischen und abiotischen Faktoren zum Verständnis von Produktion und den Verbrauch von Treibhausgasen in Wetcapes 2.0

In diesem Syntheseprojekt befassen wir uns mit den komplexen Beziehungen zwischen autotrophen und heterotrophen Makro- und Mikroorganismen, die bestimmen, ob wiedervernässte Moore Quellen oder Senken für die Treibhausgase CO2, CH4 und N2O sind. Unser Ziel ist es, die komplexen Wechselwirkungen zwischen den physikalisch-chemischen Eigenschaften, der Artenzusammensetzung/ Aktivität der Pflanzen und der unterirdischen (Mikro-)Biota sowie der Produktion und dem Abbau von organischem Material und Treibhausgasen zu verstehen. Wir stellen die Hypothese auf, dass (1) die Dynamik des Pflanzenwachstums sowie trophische Interaktionen die THG-Produktion antreiben und (2) dass ein mikrobiombasierter Indikator für den Status der Methansenke oder -quelle von Wetscapes entwickelt werden kann.

Sonderforschungsbereich (SFB) 1076: Forschungsverbund zum Verständnis der Verknüpfungen zwischen der oberirdischen und unterirdischen Biogeosphäre, Teilprojekt B 01: Die Zusammensetzung baumbürtiger organischer Substanz und ihre Wirkung auf mikrobielle Prozesse im Untergrund: Rückkopplung auf Pflanzen und Nährstoffkreisläufe

Ziel dieser Studie ist es zu verstehen, wie sich Unterschiede im chemischen Aufbau baumbürtiger DOM (treeDOM; Kronendurchlass, Stammabfluss, Streulösungen, Wurzelexsudate) auf die Bodenvegetation und mikrobiell-ökologische Prozesse in Boden und Untergrund auswirken. Neben der Erfassung von Baumarten- und Landnutzungseffekten auf DOM und Nährstoffe vom Kronenraum bis in die Wurzelzone, werden DOM und Wurzelexsudate aus dem Freiland analysiert und ihre Wirkung auf bodenmikrobiologische Prozesse ermittelt. Mesokosmenversuche testen die Interaktionen zwischen DOM, Pflanzenwachstum und Prozessen der bodenmikrobiellen Gemeinschaft. Die Kombination dieser sich ergänzenden experimentellen Ansätze erlaubt neue Einblicke in die Beziehung zwischen treeDOM und ökologischen Prozessen am Waldboden.

Transregio (TRR) 410: neuartige Ökosysteme in wiedervernässten Niedermoorlandschaften, Teilprojekt A03: Wechselwirkungen zwischen Pflanzen und Mikrobiom in der Rhizosphäre von Niedermooren

Wir werden analysieren, wie sich die wichtigsten Pflanzen-Rhizobiom-Interaktionen in Mooren während einer langfristigen Chronosequenz der Wiedervernässung sowie während kurzfristiger Extremereignisse verändern. Wir werden die Interaktionen zwischen Pflanzen und Rhizobiomen in Moorböden mit denen in flachen Gewässern vergleichen und die Interaktionen zwischen Pflanzen und Rhizobiomen mit der Leistung des Pflanzenwachstums, den Treibhausgasemissionen und den Umweltbedingungen, einschließlich der Torfqualität, in Verbindung bringen. Dazu werden wir Metaomics-Analysen verwenden, die durch mikroskopische Techniken ergänzt werden. Auf dieser Grundlage werden wir potenzielle und realisierte Schlüsselinteraktionen und ihre Korrelation mit Umweltbedingungen identifizieren und postulieren, wie diese Interaktionen die weitere Entwicklung von Feuchtgebieten 2.0 beeinflussen könnten.

Transregio (TRR) 410: neuartige Ökosysteme in wiedervernässten Niedermoorlandschaften, Teilprojekt B03: Räumliche Variabilität und laterale Konnektivität von Niedermoor-Mikrobiomen

Wir untersuchen, wie die Mikrobiome von Mooren auf regionaler und landschaftlicher Ebene variieren und wie diese Variation zur Vorhersage der Ökosystemfunktion genutzt werden kann. Auf lokaler Ebene konzentrieren wir uns auf Flachwasserkörper, ein charakteristisches Element wiedervernässter Moore und ein Hotspot der CH4-Emissionen, und untersuchen die Rolle aquatischer Makrophyten und ihrer Mikrobiome für den Kohlenstoff- und Nährstoffkreislauf unter extremen Bedingungen wie Hochwasser und Trockenheit in dem Mesokosmen-Experiment MCExp shallow water.

Transregio (TRR) 410: neuartige Ökosysteme in wiedervernässten Niedermoorlandschaften, Teilprojekt A05: Entwicklung und Resilienz von mikrobiellen CH4-Oxidierern in wiedervernässten Niedermooren

Unser Ziel ist es, die Methanaufnahme im Boden (SMU) in der heterogenen Landschaft von Wetscapes 2.0 zu verstehen, indem wir die räumlichen und zeitlichen Zusammenhänge mit der Biogeochemie und den CH4-Flüssen im Ökosystem, die Rolle bisher wenig erforschter methanotropher Taxa und die Anfälligkeit der methanotrophen Gemeinschaften im Boden nach der Wiedervernässung untersuchen. Das Projekt erforscht speziell die methanotrophen Bodengemeinschaften und die SMU in wiedervernässten Niedermooren der gemäßigten Breiten in Abhängigkeit von ihren biotischen und abiotischen Faktoren auf verschiedenen räumlichen und zeitlichen Ebenen. Es quantifiziert die Rolle der Methanotrophen, einschließlich der anaeroben methanotrophen Taxa, bei den Treibhausgasflüssen.

Transregio (TRR) 410: neuartige Ökosysteme in wiedervernässten Niedermoorlandschaften, Teilprojekt A06: Einflussfaktoren auf die Häufigkeit und Aktivität von Methanogenen in wiedervernässten Niedermooren

Wir werden einen Zensus der Identität, Häufigkeit und Aktivität von Methanogenen in wiedervernässten Niedermooren und der abiotischen und biotischen Einflussfaktoren erstellen, indem wir die Häufigkeit und Identität von methanogenen Archaeen in den Untersuchungsgebieten kartieren. Darüber hinaus zielt A6 darauf ab, deren Rolle für den Treibhausgashaushalt in wiedervernässten Niedermooren zu bewerten, indem die räumlich-zeitliche Dynamik der Zusammensetzung und die Aktivität im Verhältnis zu den gemessenen Treibhausgasflüssen auf der Grundlage von Mikrobiomik und Prozessstudien, soweit möglich, untersucht werden. A6 wird Methanogene auf allen experimentellen Ebenen von WETSCAPES2.0 untersuchen. Unter Verwendung modernster Proteomik werden wir speziell die Ökophysiologie neuartiger, bisher kaum erforschter Methanogene, d. h. der methylotrophen Methanomassiliicoccales, untersuchen.

Transregio (TRR) 410: neuartige Ökosysteme in wiedervernässten Niedermoorlandschaften, Teilprojekt A04: Struktur und Funktion des unterirdischen (Mikro-)Bioms in wiedervernässten Niedermooren - eine trophische Sperre?

Wir werden die Struktur und Funktion des unterirdischen (Mikro-)Bioms in wiedervernässten Niedermooren analysieren. (1) Anhand von > 100 wiedervernässten Screening-Standorten werden wir den ersten umfassenden Zensus der unterirdischen Biota in wiedervernässten Niedermooren durchführen. (2) Die räumlich und zeitlich aufgelöste Beprobung und Analyse von Kernstandorten wird ein Verständnis der räumlich-zeitlichen Dynamik des Mikrobioms ermöglichen. (3) Um die Hypothese einer trophischen Sperre für die C-Mineralisierung zu überprüfen, werden wir Mikrokosmos- und Mesokosmos-Experimente mit Torfmikrobiota und Modellpflanzenarten unter oxischen und anoxischen Bedingungen durchführen. (4) NGS- und Amplikon- Profilerstellung werden für andere Teilprojekte angeboten.

Schwerpunktprogramm (SPP) 1704: Flexibilität entscheidet: Zusammenspiel von funktioneller Diversität und ökologischen Dynamiken in aquatischen Lebensgemeinschaften; Flexibility Matters: Interplay Between Trait Diversity and Ecological Dynamics Using Aquatic Communities as Model Systems (DynaTrait), Teilprojekt: Erforschung der adaptiven Prozessen bei der Algenblüten Bildung und zwischen den Blüten von heterogenen Populationen des giftigen Dinoflagellates Alexandrium ostenfeldii anhand von Feld- und Laborstudien

Merkmale, die zwischenartliche Interaktionen beeinflussen, sind von großer Bedeutung für die Stabilität von Populationen und die Koexistenz von Arten innerhalb von Gemeinschaften. Variabilität in diesen Merkmalen beeinflusst die Fitness der Art nicht nur direkt, sondern auch indirekt über die Fitness der gekoppelten, interagierenden Partner. Im Falle von antagonistischen Interaktionen wie z.B. Prädation und Konkurrenz ist daher anzunehmen, dass Variation in diesen Merkmalen selektiv aufrechterhalten wird. Daher sollte jeder Versuch Diversitäts-Stabilitäts-Zusammenhänge zu verstehen, funktionelle Variation dieser Merkmale in ökologischen Schlüsselarten als mechanistische Basis beinhalten. Mit diesem Projekt schlagen wir nun vor, die selektive Aufrecherhaltung der Diversität von allelochemischer Aktivität, einem weitverbreiteten Merkmal in Blüten von Alexandrium ostenfeldii zur Reduktion von Prädation und Konkurrenz, im Zusammenhang mit abiotischen (Nährstofflimitierung und Temperatur) und biotischen (Konkurrenz und Prädation) Stressoren zu untersuchen. Durch die Kombination von Feldbeobachtungen und Mikrokosmos- und Chemostaten-Experimenten mit der Charakterisierung der Zystenbank und experimenteller Evolution verbinden wir die Populationsdynamik innerhalb von Blüten mit der Populationsdynamik zwischen Blüten. Unsere Hypothesen sagen voraus, dass die wechselnde Selektionsdrücke und mutualistische Interaktionen zwischen allelochemisch aktiven und nicht-aktiven Linien die Populations- und Merkmalsdynamiken während der Blüte bestimmen und deren Diversität aufrechterhalten. Zwischen den Blüten ist die hohe Anzahl an kompatiblen und inkompatiblen Linien mit allelochemischer Altivität ein effizienter Mechanismus, um die Diversität und Stabilität mutulistischer Interaktionen aufrecht zu erhalten. Die Verbindung von Merkmalsvielfalt mit Populationsdynamiken in entscheidenden Phasen des Lebenszyklus erlaubt es uns daher, das Verständnis von Biodiversität und Ökosystemstabilität zu vertiefen.

1