Das beantragte Projekt untersucht Veränderungen in der Struktur von Boden-Nahrungsnetzen mit dem Waldtyp und der Intensität der forstlicher Waldnutzung in den drei Regionen der Biodiversitäts-Exploratorien. Die geplanten Arbeiten sind in vier Arbeitspakete (WPs) gegliedert. WP1 untersucht Dichte, Biomasse und Zusammensetzung der Meso- und Makrofauna von jeweils 16 Flächen der drei Exploratorien. Die Untersuchung erlaubt die langfristige zeitliche Dynamik in der Struktur von Bodentiergemeinschaften zu analysieren und erweitert die existierende Zeitreihe auf 15 Jahre. WP2 fokussiert auf Energieflüsse durch Zersetzergemeinschaften und ihre Variation mit Waldtyp / Intensität der Waldnutzung, und quantifiziert wichtige Ökosystem-Dienstleistungen der Bodenfauna wie Zersetzung und Prädation; hierzu werden Untersuchungen mit stabilen Isotopen sowie Komponenten-spezifische Analysen von Fettsäuren und Aminosäuren durchgeführt, die es erlauben, die trophische Struktur sowie die relative Bedeutung von Energiekanälen im Boden, mit Pflanzen, Bakterien und Pilzen als basalen Ressourcen, zu quantifizieren. WP3 fokussiert auf die Analyse der Nahrungsbeziehung zwischen mikrobivoren Mikroarthropoden und ihrer mikrobiellen Beute unter Verwendung von molekularer Darminhaltsanalyse basierend auf generellen Primern für Bakterien und Pilzen. In WP 4 wird im Rahmen des neuen 'forest gap' Experiments die Reaktion der Bodenfauna auf eine starke Störung untersucht. Die Ergebnisse der Untersuchungen erlauben (1) die Struktur und zeitliche Dynamik von Bodennahrungsnetzen in bisher unerreichter Genauigkeit zu verstehen und zu modellieren (WP1, WP2, WP4); (2) allgemeine Charakteristika von Bodentiergemeinschaften zu erkennen und deren Beitrag zu Ökosystemfunktionen in Wäldern unterschiedlicher Nutzungsintensität zu quantifizieren (WP2, WP3); (3) neue Methoden zur Untersuchung der Struktur von Boden-Nahrungsnetzen zu verwenden, die ein genaueres Verständnis der relativen Bedeutung von Energiekanälen in Wäldern unterschiedlicher Nutzungsintensität ermöglichen (WP2, WP3); und (4) die Reaktion von Boden-Nahrungsnetzen auf starke Störungen zu verstehen (WP4). Insgesamt erlaubt das Projekt die Struktur von Boden-Nahrungsnetzen, deren Variation in Raum und Zeit, und deren strukturierende Größen in bisher unerreichtem Umfang und Genauigkeit zu charakterisieren. Allgemein trägt das Projekt dazu bei, Variationen in der Struktur und Funktion von Waldökosystemen mit der Intensität menschlicher Eingriffe zu verstehen, und bildet damit eine essentielle Komponente der Biodiversitäts-Exploratorien.
Die CO2 - Aufnahme höherer Pflanzen erfolgt diffusiv über kleine Öffnungen der Blattoberfläche, die Stomata. Gleichzeitig geht auf demselben Weg Wasserdampf verloren, angetrieben vom atmosphärischen Sättigungsdefizit (VPD). Die Flüsse beider Gase werden durch die stomatäre Öffnungsweite bestimmt. Seit mehreren Jahrzehnten ist daher die wechselseitige Skalierung der Flüsse von Wasserdampf und CO2 ein zentraler Teil aller wichtigen Gaswechsel-Modelle - erkennbar am Faktor 1.6, dem Verhältnis der Diffusionskonstanten. Allerdings wird die Gültigkeit dieser Annahme in Frage gestellt, wenn sich Feinstaubablagerungen auf den Blättern befinden. Hygroskopische Feinstaubbestandtteile lösen sich in der feuchten Blattgrenzschicht auf, kriechen als dünne Filme in die substomatäre Höhle und verbinden sich dort mit apoplastischem Wasser. Durch diese „hydraulische Aktivierung der Stomata“ (HAS) transportieren die Stomata sowohl flüssiges als auch gasförmiges Wasser vom Blattinneren in die Atmosphäre. Wir konnten zeigen, dass bereits moderate Luftverschmutzung die stomatäre Transpiration bei Tag, die minimale Leitfähigkeit bei Nacht, sowie das Verhältnis zwischen Transpiration und Blattöffnungsweite signifikant beeinflusste. Diese Effekte werden durch den klimawandelbedingten Anstieg von VPD noch verstärkt: Wassernutzungseffizienz und Trockentoleranz nehmen ab und die Modellentwicklung auf Basis der gegenseitigen Skalierung von CO2 und H2O wird unzuverlässiger. In diesem Projekt soll in Labor, Gewächshaus und Freiland der HAS-Einfluss auf den pflanzlichen Gaswechsel und die Hydraulik quantifiziert werden, wobei iso- und anisohydrische Arten unterschiedlich auf Feinstaubablagerungen reagieren. Sowohl experimentelle Erhöhung als auch Verringerung der Feinstaubkonzentration werden als Versuchsansätze genutzt, gemeinsam mit aktuellen Gaswechsel-, optischen und Isotopen-Techniken. Die Ergebnisse sind bedeutsam für das Verständnis der Atmosphäre/Pflanze-Interaktion auf allen Skalen von der Schließzelle bis zum Pflanzenbestand.
Auf Grund ihrer Bedeutung für die Anpassung der Wälder an Umweltänderungen und ihrer Widerstandsfähigkeit gegenüber Störungen ist die Naturverjüngung zu einem Schwerpunkt der ökologischen Waldforschung geworden. Trotz der jüngsten technologischen Entwicklungen bleibt dies eine große Herausforderung. Insbesondere sehr kleine Pflanzen mit einer Höhe von weniger als 1,30 m und entsprechend kleinen Durchmessern sind mit photogrammetrischen Methoden schwer zu identifizieren. Manuelle Inventurmethoden, wie z. B. die klassische Vollinventur sind aber arbeitsintensiv und zu teuer, um sie auf großen Flächen anzuwenden. Das Projekt möchte dazu beitragen, dieses Problem zu lösen, in dem es ein Simulationswerkzeug zur Rekonstruktion von Punktmustern vorstellt und seine Qualität systematisch untersucht. Es basiert auf einem Forschungsansatz der drei Arbeitsschritte umfasst (1) die Erfassung der räumlichen Daten aller Bäume einschließlich der Verjüngung auf einer kleinen Teilfläche (= Referenzfläche), (2) die Erfassung des Oberstandes im gesamten Bestand (=Untersuchungsfläche) und (3) die Rekonstruktion der Verjüngung im gesamten Untersuchungsgebiet, wobei davon ausgegangen wird, dass überall die gleichen Beziehungen zwischen den Bäumen des Oberstandes und der Verjüngung wie in der Referenzfläche bestehen. Dieser Ansatz erlaubt es, die heutigen logistischen Möglichkeiten zu kombinieren: (a) die manuelle Erfassung der Verjüngung auf kleiner Fläche ist machbar, und (b) die Inventur des Oberstandes mit modernen Fernerkundungs- oder photogrammetrischen Methoden ist relativ einfach und weniger arbeitsintensiv. Indem das Projekt einen vorhanden und in den Forstwissenschaften bekannten Datensatz nutzt (Trainingsgrundlage wird der Datensatz des saisonalen tropischen Regenwaldes der Insel Barro Colorado (BCI) in Panama sein), kann es sich auf Schritt (3) beschränken. Ziel ist es systematisch zu untersuchen, welchen Einfluss eine höhere Strukturvielfalt und das Größenverhältnis von Referenz- und Prädiktionsflächen (= die gesamte Untersuchungsfläche) auf die Ergebnisse der Punktmuster-Rekonstruktion von Verjüngungspflanzen (=Unterstand) hat und welche räumlichen Statistiken besonders geeignet sind, diesen Einfluss quantitativ oder qualitativ zu bewerten. Die numerischen Methoden werden in einem dokumentierten R-Skript (bzw. R-Package) als zuverlässiges und effizientes Werkzeug für die Waldökologie und die forstliche Praxis zur Verfügung gestellt.
Die Aufforstung und Restauration von Waldlandschaften haben viel Aufmerksamkeit als wichtige Möglichkeit zur Eindämmung des Klimawandels (KW) erhalten. Daher spielen sie in vielen politischen Initiativen (Grüne Deal der EU; Bonn Challenge) eine wichtige Rolle. Doch die anhaltende Zunahme des durch den KW hervorgerufenen Stresses bedroht die Wälder. Angesichts des KW sind Anpassung und Klimaschutz durch Wälder eng miteinander verknüpft, denn ihre Fähigkeit, Kohlenstoff (C) langfristig zu binden, hängt von der Fähigkeit ab, vielfältigen Belastungen standzuhalten. Es gibt zunehmende Evidenz dafür, dass gemischte Plantagen aus mehreren Baumarten, C effizienter speichern und resilienter sind gegenüber KW-bedingtem Stress. Gemischte Plantagen stellen somit eine wichtige Möglichkeit dar, um auf natürliche Weise Klimaschutz und -anpassung zu betreiben. Weltweit werden jedoch die Baumplantagen von Monokulturen dominiert. Die Gründe für diese Ablehnung von Mischplantagen durch Waldbesitzer und Stakeholder müssen daher ermittelt und in künftigen Forstpolitiken angegangen werden, um eine weite Verbreitung von KW-resistenteren Mischwaldplantagen zu fördern. Ein möglicher Hinderungsfaktor sind unzureichende Kenntnisse der Praktiker und politischen Entscheidungsträger. Mittels eines globalen Netzwerks von Experimenten zur Artenvielfalt in Wäldern (TreeDivNet) werden wir ein mechanistisches Verständnis darüber entwickeln, wie Baumartenvielfalt, Baumarteneigenschaften und Bewirtschaftung (Durchforstung und Düngung) sowohl das Potenzial von gemischten Plantagen zum Klimaschutz (C-Sequestrierung) als auch zur Anpassung (Dürre- und Schädlingsresistenz) in einem Win-Win-Ansatz beeinflussen können. Darüber hinaus wird dieses Wissen in Richtlinien für Praktiker und Entscheidungsträger übersetzt.TreeDivNet umfasst weltweit 26 Experimente mit ca. 1,2 Millionen gepflanzten Bäumen. Diese Experimente basieren auf einem gemeinsamen, statistisch fundierten Design, das es erlaubt, kausale Zusammenhänge zwischen Baumdiversität, Management und Ökosystemfunktionen (inkl. C-Sequestrierung) zu analysieren. Der funktionelle und mechanistische Schwerpunkt von MixForChange und die unterschiedlichen Umweltkontexte der Experimente werden es ermöglichen, unsere Ergebnisse über Fallstudien hinaus zu extrapolieren und evidenzbasierte Richtlinien für die Bewirtschaftung von Mischplantagen zu entwickeln. Darüber hinaus wird MixForChange im Rahmen eines gemeinsamen analytischen Ansatzes Synergien und Zielkonflikte zwischen Klimaschutz- und Anpassungspotenzial von Mischplantagen einerseits und Erfüllung der Ziele der beteiligten Stakeholder andererseits analysieren. Der Einfluss von MixForChange auf die Gesellschaft wird durch einen starken Fokus auf Wissenstransfer und Kapazitätsaufbau auf allen Ebenen von Management und Governance gewährleistet. MixForChange wird einen wichtigen Beitrag zur Förderung von Mischwaldplantagen als natürliche Lösungen zur Bekämpfung des Klimawandels leisten.
Landnutzung und Niederschlagsbedingungen sind wichtige Faktoren für die Diversität und Ökosystemfunktion von Grassländern weltweit, und sind zwei der wichtigsten Treiber des globalen Wandels. Ökosysteme werden gleichzeitig Änderungen von Bodennährstoffen (z.B. durch Düngung) und im Rahmen des Klimawandels häufigeren und intensiveren Trockenheitereignissen ausgesetzt sein. In Kombination können die beiden Faktoren additiv wirken, oder sich gegenseitig verstärken oder abschwächen. Demzufolge variiert die Gemeinschafts- und Ökosystemreaktion auf Trockenheit je nach den Nährstoffbedingungen. Die Mechanismen von Interaktionen von Nährstoffen und Trockenheit bleiben bisher unverstanden, und wir können daher derzeit nicht vorhersagen, bei welcher Landnutzung Grassländer mehr oder weniger sensitiv auf Trockenheit reagieren.Das Hauptziel des Projektes ist es, unsere Vorhersagen für die Konsequenzen von Globalem Wandel auf Grassländer zu verbessern. Dazu werden die kombinierten Effekte von Nährstoffen und Trockenheit auf der Ebene von einzelnen Pflanzenmerkmalen und von Gesamtpflanzen untersucht, und integriert mit Effekten von Trockenheit auf die Zusammensetzung und Produktivität von Pflanzengemeinschaften entlang von Landnutzungsgradienten in Grassländern.In einem Gewächshausexperiment werden wir für 16 Arten, die in den Exploratorien häufig sind, vergleichend die Plastizität im Hinblick auf Nährstoffe für einen umfassenden Satz von mehr als 20 physiologischen, morphologischen und Gesamtpflanzen-Merkmalen untersuchen, die relevant für den Wasserhaushalt von Pflanzen sind. In einem 'common garden' Experiment werden wir die kombinierten Effekte von Nährstoffen und Trockenheit (und ihre Interaktionen) für Gesamtpflanzen dieser Arten quantifizieren. Zusätzlich werden wir die Effekte von experimenteller und natürlicher Trockenheit entlang von Gradienten der Nährstoffverfügbarkeit und Landnutzung (insbesondere Düngung) in den Exploratorien bestimmen. Die direkte Verknüpfung der Daten auf Ebene von Merkmalen, Gesamtpflanzen, Gemeinschaften und Ökosystemen wird unser mechanistisches Verständnis von kombinierten Effekten von Nährstoffen und Trockenheit auf Grassländer unter derzeitigen und zukünftigen Bedingungen verbessern. Die Ergebnisse werden sowohl in angewandter als auch in wissenschaftlicher Hinsicht wichtige neue Erkenntnisse liefern.
Viele Prozesse, die an der Verbreitung von Pflanzenarten und der Funktion von Ökosystemen beteiligt sind, finden unter der Erde statt. Da sich jedoch die meisten Studien mit oberirdischen Pflanzenmerkmalen auseinandersetzten, wurden die unterirdischen Merkmale bislang weitestgehend ignoriert. Die Biodiversitätsforschung bedarf demnach noch großer Mengen an Wurzeldaten vieler Pflanzenarten. Deshalb möchten wir Wurzelmerkmale und Daten über Pilzendophyten für die ca. 350 Blütenpflanzen, die in den 150 experimentellen Grasslandflächen (EPs) der Biodiversitätsexploratorien vorkommen, aufnehmen. In mehreren Experimenten sollen Pflanzen dieser Arten kultiviert und Daten zu Wurzelmorphologie, Plastizität der Wurzelmorphologie (in Abhängigkeit von Düngerzugabe), Aufnahmekapazität von Stickstoff in unterschiedlicher Form sowie Infektion durch Pilzendophyten bestimmt werden. Wir möchten die so erhobenen Daten gemeinsam mit anderen Daten aus den Biodiversitätsexploratorien nutzen, um zu untersuchen, inwieweit das Auftreten und die Abundanz der betrachteten Arten durch ihre Wurzelmerkmale bestimmt werden. Dabei interessiert uns der Zusammenhang der Wurzelmerkmale mit Umweltfaktoren wie der Landnutzung und die Frage, inwieweit die unterirdische Merkmalsdiversität mit der oberidischen Merkmalsdiversität und den Ökosystemfunktionen zusammenhängt.
Räumliche Heterogenität in Standorteigenschaften ist ein Hauptfaktor für das Entstehen von Biodiversität, er wurde jedoch in den Biodiversitätsexploratorien kaum untersucht. Wir wollen diese Lücke füllen, indem wir theoretische, experimentelle und beobachtenden Studien integrieren, um die Mechanismen zu untersuchen, durch welche Habitatheterogenität von Landnutzung und Heterogenität durch Landnutzung Artenvielfalt im Grünland beeinflussen. Ein zugrunde liegendes Modell ist, dass Heterogenität sowohl positive als auch negative Effekte hat, bewirkt durch einen immanenten trade-off zwischen dem Heterogenitätsniveau und der effektiven Fläche, welche für Individuen in der Gemeinschaft zur Verfügung steht (AHTO-area-heterogeneity trade-off). In Phase 1 verwenden wir analytische Modelle, um einige simplifizierende Annahmen voriger AHTO-Modelle zu erweitern. Gleichzeitig diente ein einmaliges neues experimentelles System dem Test einiger Grundvorhersagen der Modelle. In Phase 2 erweitern wir unsere Arbeit in 3 Richtungen. 1) Wir skalieren unsere Modelle sowohl hoch (durch Erweitern des lokalen Modells zu einem Meta-Gemeinschaftsmodell) als auch herunter (durch explizite Modellierung von ober- und unterirdischen Konkurrenzeffekten bei individuellen Pflanzen). Die größere Skala wird das Modell an die Struktur der empirischen Arbeiten angleichen, die kleine Skala erfasst die eigentlichen Mechanismen, welche Landnutzung (insbesondere Düngung, Mahd, Beweidung) mit Konkurrenz und Artenvielfalt verbindet. 2) Um die empirisch beobachteten Diversitätsmuster besser zu verstehen, etablieren wir ein neues Experiment, in welchem wir das Wachstum der Zielarten ohne Konkurrenz messen, sowie unter Simulation von Düngung, Mahd und Tritt auf flachen und tiefen Böden. Die Ergebnisse gehen auch als realistischere Parameter in unsere Modelle ein. 3) Wir etablieren ein neues skalenübergreifendes Beobachtungssystem, um Landnutzung, Habitatheterogenität und Diversität zu verknüpfen. Die Untersuchungseinheit entspricht dabei derjenigen in den Experimenten, und das Design umfasst einen sehr großen Bereich von Skalen (vom Zentimeterbereich bis hin zu vielen Hundert Kilometern). Zudem nutzen wir neue Kooperationen in den Exploratorien, insbesondere mit CP3, um mit Fernerkundungsmethoden umfassende Daten zu kleinskaliger Habitatheterogenität und beta-Diversität für alle Grünland-EPs zu generieren. Die skalenübergreifenden theoretischen, experimentellen, beobachtenden und Fernerkundungsmethoden tragen signifikant zum Kausalverständnis darüber bei, wie Landnutzung Biodiversität indirekt, nämlich durch Modifikation von Habitatheterogenität, beeinflusst. Zudem liefern wir Daten für umfassende neue Syntheseprojekte.
Im Rahmen von Kili-SES befasst sich SP6 mit Landnutzung, Management und Naturschutz als Triebkräfte der biologischen Vielfalt. In Kili-SES-1 erwiesen sich Landnutzungsveränderungen durch Bevölkerungswachstum als Schlüsselfaktoren an den unteren Hängen des Kilimandscharo. Es bleibt die Frage, ob die jüngsten Wald- und Buschbrände in den oberen Regionen auf veränderte klimatische Bedingungen hinweisen. Wir wollen den Ursprung und die Folgen dieser Brände als potenziell schädliche NCP auf Landschaftsebene untersuchen. Dabei konzentrieren wir uns auf die biologische Vielfalt und die Wasserbilanz im Nationalpark (zusammen mit SP1) und prüfen, ob solche Brände in den letzten Jahrzehnten zugenommen haben. Da die NCPs stark von der biologischen Vielfalt und dem Funktionieren der Ökosysteme abhängen, untersuchen wir, wie der Mensch die biologische Vielfalt, das Funktionieren der Ökosysteme und folglich das menschliche Wohlbefinden verbessern kann. Konkret wollen wir (zusammen mit SP1 und 2) das ökologische Potenzial für eine Transformierung durch Anpflanzung einheimischer Bäume prüfen, ergänzend zu den Studien von SP3-5. Der Fokus soll auf Auwäldern als wichtige Biodiversitätskorridore und traditionellen Agroforstsystemen als nachhaltige Landnutzungsformen liegen. Während in Kili-SES-1 der Kilimandscharo als isoliertes System betrachtet wurde, planen wir nun eine Erweiterung unserer Perspektive unter Einbeziehung des umliegenden Landschaftskontextes. Der Kilimandscharo war einst mit anderen Bergen durch Waldkorridore verbunden, die als Wanderwege dienten und die biologische Vielfalt beeinflussten, entscheidend für die Widerstandsfähigkeit gegenüber Umweltveränderungen. Ziel ist die Analyse der ökologischen Konnektivität und Telekopplung im Hinblick auf Naturschutzpolitik. Hierzu wollen wir mit umfangreichen Daten zu Pflanzen, Arthropoden und Kleinsäugern die frühere biologische Vielfalt ohne menschlichen Einfluss modellieren, um die ungleiche Verteilung endemischer Arten zu untersuchen, eine kontroverse biogeographische Frage in Ostafrika. Der Kilimandscharo und die umliegenden Berge sind unterschiedlich geschützt (Nationalparks, Natur- und Waldreservate), mit zunehmend fragmentierten Schutzgebieten. Durch Hochskalierung und Modellierung der Biodiversität unter Verwendung von Hyperspektralbildern (zusammen mit SP7) planen wir die sich daraus ergebenden Biodiversitätsniveaus und Bedrohungen zu vergleichen, einschließlich der Auswirkungen der Einbeziehung der Waldgürtel des Kilimandscharo und Meru in Nationalparks im Jahr 2006, die möglicherweise illegale Aktivitäten in die umliegenden Berge verlagert haben. Zusätzlich zu diesen Themen wollen wir weiterhin langfristige Klima- und Dendrometriedaten erheben und umfassendes Monitoring von Gefäßpflanzen, Flechten und Moosen durch (ergänzt durch Pilze) durchführen. So hoffen wir ein Niveau und eine Qualität ökologischer Daten zu erreichen, die für Kili-SES wichtig und für ein tropisches Gebirge einzigartig sind.
Die Funktionen von Mooren in Wasser- und Elementkreisläufen, als Kohlenstoffspeicher und in der Bewahrung der Biodiversität sind zunehmend im Fokus wissenschaftlicher und öffentlicher Debatte. Insbesondere im Verlauf des Klimawandels sind renaturierte Hochmoore Klimaextremen ausgesetzt, zum Beispiel Dürren, mit Langzeiteffekten für Boden und Pflanzengemeinschaften, und somit auch für den Kohlenstoffkreislauf. Der Klimawandel erschwert damit zusätzlich die Hochmoorrenaturierung zu bereits vorhandenen Grenzen. Damit verbunden ist ein unzureichender Wissensstand bezüglich potentieller Indikatoren für Degradation und Renaturierungserfolge, z.B. die Dynamiken und Bilanzen von Gasflüssen, Biodiversitätsniveaus oder Wasserbilanzen. Moordegradierung verändert die Wasserspeicherfähigkeit und reduziert die Fähigkeit Wasserschwankungen abzupuffern, was die Renaturierung weiter beeinflusst. Paläoökologische Daten erlauben Schlussfolgerungen über Feuchtebedingungen für Torfwachstum und potentielle Resilienz gegenüber in der Vergangenheit aufgetretenen Schwankungen der Umweltbedingungen. Somit können aus ihnen Grundlageninformationen abgeleitet werden, die helfen Renaturierungsziele zu formulieren, aber auch mögliche Einschränkungen aufzeigen. Der voranschreitenden Klimawandel mit häufigen auftretenden Hitzewellen und Dürren bedeutet insbesondere für die Re-Etablierung von Hochmoorvegetation eine ernste Bedrohung, die auf nährstoffarmes Niederschlagswasser angewiesen ist. Das Projekt verbindet Schlüsselmethoden von verwandten Disziplinen in bisher nicht gekannter Weise: In Unterprojekten behandeln wir i) die paläoökologische Rekonstruktion von Referenzbedingungen und Indikatoren für Degradation, ii) aktuelle Hydrologie, Niveaus von Biodiversität, Mikrobielle Gemeinschaften, iii) CO2 und CH4 Bilanzen mit Hauben- und Eddy-Covariance Technik und vorhandenen Langzeitdaten, iv) neuste Fernerkundungsmethoden inklusive dem Upscaling von Plotniveau bis auf das Landschaftsniveau, unterstützt von künstlicher Intelligenz, v) Negative Auswirkungen und Wechselbeziehungen zwischen Biodiversität, Kohlenstoffbilanzen, Treibhausgasemissionen und Resilienz wenn Zielniveaus nicht erreicht werden können, vi) Wissenstransfer in enger Zusammenarbeit mit Torfindustrie, Naturschutzakteuren, Akteuren der Land- und Wasserwirtschaft und der Administration.Wir untersuchen erstmalig Hochmoorrenaturierungsverläufe basierend auf neusten Bewertungsmethoden der Paläoökologie und Biogeochemie von Torfproben und ordnet diese Daten in einen landschaftsökologischen Kontext ein, um mit leistungsstarken Fernerkundungswerkzeugen das zukünftige Monitoring von degradierten und renaturierten Hochmoorflächen zu ermöglichen. Die enge Verbindung der Arbeitspakete und die Anwendung von in der Renaturierungsökologie wenig betrachteter Daten machen dieses Projekt innovativ und lassen wichtige Ergebnisse erwarten für die Hochmoorrenaturierung unter sich verändernden hydro-klimatischen Bedingungen.
Die Ökonomie von Pflanzen wird als Kompromiss zwischen Nährstoffaufnahme und -erhalt angesehen. Wurzeln sind in unserem Verständnis der gesamten Pflanze jedoch immer noch unterrepräsentiert. Wurzeltraits scheinen aufgrund ihrer Interaktion mit Bodenbiota multidimensional zu sein. Kompromisse zwischen der Investition in die Oberfläche der Wurzel bzw. der arbuskulären Mykorrhiza Pilze (AMF) wurden bislang anhand der spezifischen Wurzellänge untersucht. Allerdings sind auch Wurzelhaare dafür bekannt die Phosphoraufnahme zu erhöhen. Diese sind bislang in Konzepten der Wurzelökonomie nicht enthalten. In Gewächshausversuchen zeigte sich, dass Wurzelhaarlänge und -häufigkeit negativ mit der AMF-Kolonisation korrelieren. Dieser Gradient zwischen einer Strategie zur Vergrößerung der Wurzelhaaroberfläche und der AMF-Symbiose erwies sich als unabhängig von der spezifischen Wurzellänge, was auf eine bislang unberücksichtigte Varianz in Wurzeltraits hindeutet. Studien zeigen, dass die AMF-Oberfläche - gemessen als extraradikale Hyphenlänge - mit der Landnutzungsintensität zunimmt, wobei die Bodennährstoff-Stöchiometrie einen Einfluss haben könnte. Daher sind zur Untersuchung der Komplexität des Wurzel-Pilz-Oberflächen-Gradienten Daten von Flächen mit unterschiedlichen Böden erforderlich. In diesem Projekt möchte ich das Konzept eines Wurzel-Pilz-Oberflächen-Gradienten unter Beachtung von Wurzelhaaren und extraradikalen Hyphen erstmals testen. Ich werde Individuen der dominantesten Pflanzenarten im Feld (VIP-Ebene) entlang eines Landnutzungsgradienten untersuchen. Dabei gehe ich von einer Verlagerung hin zu AMF Oberfläche mit zunehmender Landnutzungsintensität aus. Aufgrund von Artenüberschneidungen zwischen den Feldern werde ich sowohl inter- als auch intraspezifische Muster testen können. Die AMF-Gemeinschaft in der Rhizosphäre wird analysiert, um zu testen, ob Veränderungen in der Hyphenlänge auf Veränderungen der AMF-Lebensgemeinschaft zurückzuführen sind. In einem mechanistischen Gewächshausexperiment wird die direkte Wirkung der Bodennährstoff-Stöchiometrie untersucht. Die AMF-Gemeinschaft in der Rhizosphäre sowie der Wurzel soll analysiert werden, um Veränderungen der AMF-Lebensgemeinschaft sowie die Plastizität von Pilzarten bei der Biomasseallokation zu testen. Die Daten werden mit morphologischen, anatomischen und chemischen Wurzeltraits aus früheren Projekten der Biodiversitäts-Exploratorien kombiniert, um die Erkenntnisse in bestehende pflanzenökonomische Konzepte zu integrieren. Der Rahmen der Exploratorien ermöglicht es, dieses verbesserte Verständnis von Wurzeltraits mit Ökosystemprozessen wie Pflanzenproduktivität, Nährstoffkreisläufen oder Bodenaggregation zu verbinden. Dieses Projekt wird das mechanistische Verständnis von Wurzelökonomie verbessern und dazu beitragen, deren Bedeutung für die Vorhersage von Veränderungen in Pflanzengemeinschaften und Ökosystemen bei zunehmender Landnutzung und globalem Wandel zu untersuchen.
| Origin | Count |
|---|---|
| Bund | 105 |
| Type | Count |
|---|---|
| Förderprogramm | 105 |
| License | Count |
|---|---|
| offen | 105 |
| Language | Count |
|---|---|
| Deutsch | 85 |
| Englisch | 102 |
| Resource type | Count |
|---|---|
| Webseite | 105 |
| Topic | Count |
|---|---|
| Boden | 86 |
| Lebewesen und Lebensräume | 102 |
| Luft | 49 |
| Mensch und Umwelt | 105 |
| Wasser | 45 |
| Weitere | 105 |