API src

Found 108 results.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: anthoDiv - Organismische und genetische Diversität von Blüten-Mikrobiomen verknüpft mit Ökosystem- und funktionalen Pflanzeneigenschaften

Bakterielle Gemeinschaften die mit oberirdischen Pflanzenteilen assoziiert sind spielen eine entscheidende Rolle für die Gesundheit der Wirtspflanze. Es wird vermutet, dass die Zusammensetzung dieser zu einem großen Teil durch das Ursprungsmaterial für Besiedelung (z.B. Erde) determiniert wird, aber auch dass Pflanzen-Charakteristika wie die Verfügbarkeit von Stickstoff und Kohlenstoff, sowie Sekundärmetabolite entscheidend sind. Obwohl Blüten direkt an die Gesundheit und Reproduktion von Pflanzen gekoppelt sind, sind die bakteriellen Kolonisierer der Anthosphäre derzeit deutlich weniger charakterisiert und verstanden als Blatt-assoziierte Bakterien. Dies betrifft auch deren ökologische Rolle und wie sich Umgebungsgradienten, wie z.B. Landnutzung auf Zusammensetzung und Funktion dieser Organismen auswirken. Wir planen mit Hilfe des hierarchischen Designs der Exploratorien organismische und genetische alpha-, beta- und gamma-Diversität von Blüten-Microbiomen zu erfassen. Wir zielen darauf hin, diese in Zusammenhang mit Landnutzung, Pflanzendiversität sowie Blütencharakteristika (Düfte, C- und N-Verfügbarkeit) zu bringen und die Verknüpfung der verschiedenen Biodiversitäts-Ebenen untereinander zu verstehen. Diese Daten werden uns erlauben, die jeweilige Bedeutung von Umgebungs- und Pflanzenfaktoren abzuschätzen. Damit werden die Ergebnisse eine neue Perspektive auf die Assoziation von Bakterien und Blüten ermöglichen und auch die Einflüsse anthropogener Veränderungen auf deren organismische und genetische Diversität zu verstehen.

Kontextabhängigkeit der gesellschaftlichen und ökologischen Ergebnisse von Gewässerrenaturierungen

Gewässerrenaturierungsprojekte zielten bisher hauptsächlich darauf ab, natürliche lokale Habitatbedingungen wiederherzustellen und dadurch die Biodiversität zu erhöhen. Dieser habitatbasierte Ansatz auf lokaler Ebene vernachlässigt den starken Einfluss von großräumigen Umweltfaktoren. Außerdem sind die gesellschaftlichen Bedürfnisse und der Nutzen von Renaturierungen bislang kaum untersucht und ihre Beziehung zum lokalen und regionalen Umweltkontext unklar. In letzter Zeit wurden Konzepte zu den relevanten räumlichen Skalen für die Gewässerrenaturierung entwickelt, diese wurden aber noch nicht an großen Datensätzen getestet. Das COSAR-Projekt untersucht den Einfluss des gegenwärtigen und historischen räumlichen Kontextes von Renaturierungsprojekten auf die ökologischen und gesellschaftlichen Renaturierungsergebnisse. Die Projektpartner kombinieren ihre vorhandenen ökologischen Monitoringdaten von 200 Restaurierungsprojekten aus Mittel- und Nordeuropa. Zusätzlich werden Social-Media-Posts von renaturierten Standorten analysiert, um Rückschlüsse auf Ökosystemleistungen und die Interaktion der Menschen mit renaturierten Standorten zu ziehen. Das Projekt besteht aus drei Arbeitsschritten. Erstens definieren und quantifizieren wir ökologische und gesellschaftliche Indikatoren für den Erfolg von Renaturierungen und untersuchen ihre Synergien und Zielkonflikte. Zweitens kontextualisieren wir die ökologischen und gesellschaftlichen Restaurierungsergebnisse mit biotischen und abiotischen Umwelt- und sozioökonomischen Daten auf verschiedenen räumlichen Skalen, um die relevanten Treiber und Skalen zu identifizieren, die den Renaturierungserfolg fördern oder verhindern. In diesen Analysen berücksichtigen wir auch historische Umweltbedingungen. Drittens entwickeln und verbreiten wir ein interaktives Online-Werkzeug, das während der Restaurierungsplanung genutzt werden kann, um das in den ersten beiden Stufen gewonnene Wissen auf eigene Restaurierungsszenarien anzuwenden. Zusätzlich stellen wir Faktenblätter zur Verfügung und zeigen Best-Practice-Beispiele für die Renaturierungsplanung auf. Wir wenden einen transdisziplinären Ansatz an und legen großen Wert auf die Einbindung von Stakeholdern in allen Projektphasen. Diese Stakeholder vertreten verschiedene Interessengruppen aus allen am Projekt beteiligten Nationalitäten. Sie helfen bei der Identifizierung der relevanten Erfolgsindikatoren, gestalten den Fokus der Kontextanalysen, geben Ratschläge, um die Relevanz und Benutzerfreundlichkeit der Projektergebnisse sicherzustellen und fungieren als Botschafter bei der Verbreitung der Projektergebnisse. Mit diesem Projektdesign stellen wir neues Wissen und Werkzeuge zur Verfügung, um den ökologischen und gesellschaftlichen Nutzen von Renaturierungsprojekten zu fördern, die Planung vielversprechender Renaturierungsprojekte zu erleichtern um die Ziele der Wasserrahmenrichtlinie und die Sustainable Development Goals 3, 6, 14 &15 zu erreichen.

Sonderforschungsbereich (SFB) 1127: Chemische Mediatoren in komplexen Biosystemen, Teilprojekt C01: Algizide Bakterien in Plankton-Konsortien: Resistenz, Lyse und Heterotrophie

Organismen im Plankton bilden komplexe Gemeinschaften die substanziell zur globalen Primärproduktion beitragen und die Grundlage des marinen Nahrungsnetzes bilden. Dieses Projekt adressiert die Rolle von Sekundärmetaboliten in der Organisation von komplexen Plankton Gemeinschaften. Wir untersuchen den Einfluss des Bakteriums Kordia algicida das Mikroalgen lysieren kann auf das Plankton Microbiom. Die Regulation der Interaktion und die kaskadierenden Effekte auf die Lebensgemeinschaften im Meer werden in Labor- und Felduntersuchungen adressiert.

Überwachung des Beitrags des europäischen Grünlands zur Erhaltung der biologischen Vielfalt des Bodens und der Funktion des Ökosystems unter den verschiedenen Stressfaktoren des globalen Wandels

Anders als bei Pflanzen und Tieren ist die Fähigkeit der europäischen Schutzgebiete, die biologische Vielfalt des Bodens und die Ökosystemleistungen unter den verschiedenen Stressfaktoren des globalen Wandels zu erhalten, praktisch unbekannt. Natürliches und landwirtschaftlich genutztes Grünland spielt eine grundlegende Rolle für die Erhaltung der biologischen Vielfalt und die nachhaltige Nahrungsmittelproduktion. Die verschiedenen Arten von Grünland (Schutzgebiete, naturnahes Grünland und Ackerland) erfüllen eine Vielzahl von Ökosystemfunktionen, aber es gibt auch wichtige Kompromisse (z. B. Nahrungsmittelproduktion vs. Kohlenstoffbindung im Boden). Es ist auch immer noch nicht ganz klar, welches Grünlandsystem besser gegen Störungen und den Klimawandel schützt. Dieser Wissensmangel ist vor allem vor dem Hintergrund der anthropogenen Klimaerwärmung und als Reaktion auf andere, gleichzeitig auftretende Stressfaktoren, die die Erhaltung der biologischen Vielfalt und der Funktion des Bodens bedrohen, wie Trockenheit, Pestizide und Überdüngung, von Bedeutung. GRASS4FUN zielt darauf ab, die biologische Vielfalt des Bodens, die ökologischen Netzwerke und die Ökosystemleistungen, die von Grünland über einen Gradienten der Landnutzungsintensität und als Reaktion auf Landschaftsmerkmale unterstützt werden, zu vergleichen und ihren Erhaltungszustand (zeitliche Dynamik) und ihre Widerstandsfähigkeit gegen mehrere Stressfaktoren des globalen Wandels zu untersuchen. Zu diesem Zweck werden wir bestehende europäische Erhebungen mit der Überwachung der biologischen Vielfalt und der Funktion des Bodens auf 300 Grünlandflächen (geschütztes Grünland, naturnahes Grünland und Ackerland) über einen europaweiten Gradienten kombinieren und die Zukunft der biologischen Vielfalt des Bodens, der Ökosystemleistungen und der grundlegenden Kompromisse zwischen den drei Landnutzungsarten unter verschiedenen Szenarien des globalen Wandels und auf europäischer Ebene modellieren. Anschließend werden Gewächshausexperimente durchgeführt, um die Reaktionen der biologischen Vielfalt und der Funktionen des Bodens auf verschiedene globale Stressfaktoren wie Trockenheit, Pestizideinsatz, Stickstoffverschmutzung und Schwermetalle zu testen. Wir werden insbesondere auch prüfen, ob Landschaftsmerkmale (z. B. Landschaftsheterogenität) die ober- und unterirdische Biodiversität und ihre Fähigkeit zur Abfederung von Belastungen durch den globalen Wandel beeinflussen. GRASS4FUN wird von Hand zu Hand mit mehreren Interessengruppen durchgeführt, um den Transfer zu Interessengruppen, politischen Entscheidungsträgern und der Gesellschaft zu erleichtern, mit dem grundlegenden Ziel, bahnbrechendes Wissen bereitzustellen, um Ökosysteme widerstandsfähiger gegen globale Stressfaktoren zu machen und die biologische Vielfalt in Europa zu schützen, einschließlich der in Böden lebenden Organismen.

Grundlagen der Phytoremediation von Mikroplastik aus Böden und Sedimenten

Forschungsthema: Die Beschreibung der Anreicherungen von Mikroplastik (MP) an und in Pflanzenwurzeln lässt hoffen, dass das für Umweltschadstoffe etablierte Prinzip der Phytoremediation zur Entfernung von MP aus der Umwelt genutzt werden kann. Jedoch sind die zur Gestaltung der Technologie notwendigen Grundlagen nur ansatzweise untersucht und verstanden. Daher wollen wir als Voraussetzung für die Entwicklung von Phytoremediationsverfahren die Grundlagen der Wirkung von MP auf Bodenqualität und -prozesse an der Schnittstelle von Vegetation und Gewässerdynamik am Beispiel von Flussauen untersuchen. Ziel des Projekts ist ein Verständnis von Prozessen in Böden und Sedimenten, die durch Anreicherung von MP an und in Vegetationsbeständen verändert werden. Dies umfasst am Beispiel ausgewählter Flussauen einer stark anthropogen beeinflussten Bundeswasserstraße (Elbe) im Vergleich zum einzigen erhaltenen Wildflusssystem Europas, der Vjosa, die Einflüsse von MP auf Kohlenstoffumsatz, räumliche und zeitliche Verteilung und Verhaltensdynamik von MP in Flussauen sowie die Bedeutung von Pflanzen für eine Entfernung von MP, einschließlich der dafür notwendigen Adaption, Entwicklung und Optimierung erforderlicher Analysemethoden.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: EXClAvE - Landnutzungseffekte auf Pflanzen- und Bakteriengemeinschaften in einem experimentellen 'common garden' Ansatz

In der nächsten Phase der Biodiversitäts Exploratorien sollen Experimente dabei helfen die Effekte verschiedener Landnutzungskomponenten auf Ökosysteme zu ermitteln. 'Common garden' Experimente werden genutzt, um die Umweltheterogenität zu minimieren, die ansonsten interessante Effekte verschleiert. Wir planen Grasnarben, die von n = 42 Plots der Biodiversitäts Exploratorien entnommen werden, in einem 'common garden' auszubringen wo die Intensität der Mahd und der Düngung manipuliert werden soll. In den nächsten drei bis 15 Jahren werden die Veränderungen in den Pflanzen- und Bakteriengemeinschaften auf den Grasnarben verfolgt. Hierfür wird die Zusammensetzung und Diversität der Pflanzen und Bakterien (next-generation 16S rRNA gene amplicon sequencing) ermittelt. Zusätzlich werden noch 3D-Modelle der Pflanzengemeinschaften, die durch multispektrale Information ergänzt werden, erstellt (PlantEye F500, Phenospex, Heerlen, The Netherlands). Diese Modelle erlauben die Errechnung von Parametern, die ganze Pflanzengemeinschaften charakterisieren. Änderungen in den Pflanzen- und Bakteriengemeinschaften werden mit der Landnutzung der Plots in den vergangenen Jahren ins Verhältnis gesetzt. Wir erwarten, dass Gemeinschaften, die aus verschiedenen Plots stammen, aber die gleiche Landnutzung erfahren in Ihrer Zusammensetzung und Diversität konvergieren; Gemeinschaften aus den gleichen Plots, die aber unterschiedliche Landnutzung erfahren, sollten divergieren. Das Projekt nutzt das Vorwissen zu den einzelnen Plots in Bezug auf Landnutzung und Artenzusammensetzung, liefert neuartige Daten für die Biodiversitäts Exploratorien, und stellt einen unabhängigen und neuartigen Beitrag zu der Frage, wie Landnutzug Ökosysteme beeinflusst, dar.

Management alpiner Mähwiesen: Best practices zur Wahrung eines günstigen Erhaltungszustandes angesichts von Unternutzung im Kontext unterschiedlicher Eigentumsregime innerhalb und außerhalb von Schutzgebieten

Berg-Mähwiesen sind ein über die EU-FFH-Richtlinie geschützter Lebensraumtyp (Code 6520) und beheimaten viele Pflanzen- und Tierarten, die ebenfalls über EU-Richtlinien (FFH, Vogelschutz) geschützt sind. Der günstige Erhaltungszustand dieser Wiesen und Arten, sowohl innerhalb wie außerhalb von Schutzgebieten (Natura 2000-Gebiete), ist oftmals durch eine landwirtschaftliche Nutzungsaufgabe oder verminderte menschliche Nutzungsaktivitäten (Unternutzung) gefährdet. Politische Ansätze werden dieser Problematik kaum gerecht, da sie hauptsächlich auf Übernutzung fokussieren, wohingegen Unternutzung und Nutzungsaufgabe weit weniger adressiert werden. Der gegenwärtige qualitative und quantitative Verschlechterungstrend für Berg-Mähwiesen und eine aktuelle EU-Klage gegen Deutschland wegen unzureichender Aktivitäten zur Erhaltung dieses Lebensraums belegen die hohe Dringlichkeit, die verbleibenden Flächen mit günstigem Erhaltungszustand zu schützen und von zuträglichen Managementpraktiken („best practices“) zu lernen. Das übergeordnete Ziel von ALPMEMA ist es, „best practices“ zu identifizieren, die dem Trend zur Unternutzung von Berg-Mähwiesen gegensteuern und zur Wahrung eines günstigen Erhaltungszustandes beitragen. Dabei soll der Einfluss verschiedener Eigentumsregime sowie des Status als Schutzgebiet erklärt werden. Über eine transnationale, vergleichend angelegte Metaanalyse und Feldarbeiten innerhalb und außerhalb von Schutzgebieten in Schweden, Österreich, Deutschland und Armenien wird ein interdisziplinär zusammengesetztes Team in enger Zusammenarbeit mit lokalen Stakeholdern a) auf der Grundlage von Erfahrungswissen in den Untersuchungsgebieten aktuelle transnationale, inter- und transdisziplinäre Ansätze zur Erhaltung von Berg-Mähwiesen identifizieren (“best practices”), b) weitere innovative Management-Instrumente, Akteurskoalitionen und andere neuartige Praktiken identifizieren, die dazu geeignet sind, den Herausforderung der Unternutzung von Berg-Mähwiesen zu begegnen und deren Ausdehnung sogar zu erhöhen, c) den Einfluss erklären, den verschiedene Eigentumsregime und die Berücksichtigung von Berg-Mähwiesen als Schutzgebiete auf „best practices“ haben, d) durch den Einsatz von Fernerkundung und bodengebundenen Überprüfungsverfahren den Grad der Nutzungsintensität von Berg-Mähwiesen sichtbar machen, sowie die wesentlichen aktuellen und potenziellen räumliche Ausprägungen von Unternutzung auf deren günstigen Erhaltungszustand aufzeigen, e) Szenarien für Berg-Mähwiesen für die Jahre 2030 und 2050 über spielerische Ansätze gemeinsam mit Stakeholdern entwickeln. ALPMEMA wird das Potenzial für sozial-ökologische Synergien von Praktiken zur Erhaltung von Berg-Mähwiesen herausarbeiten, innerhalb und außerhalb von Schutzgebieten und für verschiedene eigentumsrechtliche Konstellationen, um im Kontext der Gefahr der Unternutzung zur Erhaltung dieses Lebensraumtyps und der an ihn gebundenen Arten sowie zur biokulturellen Diversität beitragen.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Resilienz der Invertebratengemeinschaften in Grünlandböden

Den Ausgangspunkt für RESOILIENCE bildet das Konzept der Resilienz als Voraussetzung für die Entwicklung nachhaltiger Managementstrategien. Vor diesem Hintergrund sollen die bislang völlig unbekannten Mechanismen der Resilienz und Resistenz von Bodentiergemeinschaften erforscht werden. Wesentliche Ziele sind: (1) die Eröffnung innovativer Wege zum wissenschaftlichen Verständnis struktureller und funktioneller Reaktionen der Bodenfauna auf Management-bedingte Störungen, und (2) die Analyse grundlegender Prozesse, welche die Strukturierung von Invertebratengemeinschaften unter den variablen Umweltbedingungen im Boden steuern. Die Untersuchungen konzentrieren sich auf das Spektrum der Managementintensitäten, die auf den Grünlandflächen der DFG Biodiversitätsexploratorien auftreten. Dies bietet die einmalige Chance für eine großflächige Langzeituntersuchung, weil wir so die Ergebnisse unserer Freilanderfassungen aus den Jahren 2009 und 2011 mit den Ergebnissen einer erneuten Erfassung, die für das Jahr 2018 geplant ist, vergleichen können. Aufwändige Feld- und Mikrokosmos-Experimente zur gezielten Analyse wichtiger Aspekte der Erholung nach Bodenstörungen dienen der Spezifizierung, Generalisierung und Validierung der Befunde aus den Freilanduntersuchungen. Der für RESOILIENCE entwickelte konzeptionelle Rahmen basiert auf drei Bausteinen: Merkmalsbasierte Assembly Analyse, die Ergän-zung störungsbedingter Assembly-Prozesse um die zeitliche Dimension ('successional assembly') und Transient Population Dynamics. Die wesentlichen Messgrößen umfassen nahezu alle Taxa der Bodenfauna (überwiegend auf Artniveau), Struktur des Bodennahrungsnetzes, Isotopensignatur der Konsumenten, Bodenprozesse (z.B. Spurengasfreisetzung, C- und N-Umsatz) und mikrobielle Parameter (PLFA). Ein inhärentes Ziel ist es, die Möglichkeiten, die sich aus dem beispiellosen Datensatz von RESOILIENCE ergeben, für die Weiterentwicklung statistischer Verfahren und Messgrößen zur Analyse biologischer Erholungsprozesse im Boden zu nutzen.

Sonderforschungsbereich (SFB) 1537: Skalenübergreifende Quantifizierung von Ökosystemprozessen in ihrer räumlich-zeitlichen Dynamik mittels smarter autonomer Sensornetzwerke, Teilprojekt B01: Drahtlose, energieautarke Chlorophyll Fluoreszenz Messung in Baumkronen mit flexiblen, multifunktionalen und hochintegrierten Mikrosensorsonden

B1.1 Räumlich-zeitliche Heterogenität der Blattchlorophyll Fluoreszenz Wir werden die räumlich-zeitliche Heterogenität von Chlorophyll Fluoreszenz als sensitiver Parameter für Stresseffekte zusammen mit mikroklimatischen Parametern auf Blattebene messen. Durch multiple Mikro-Sensoren erreichen wir eine neue Dimension von räumlichen Analyse um sowohl innerhalb einzelner Baumkronen und Baumgruppen Hot Spots und Hot Moments stressbedingter Veränderungen der photosynthetischen Effizienz zu identifizieren.B1.2 Minimalinvasive und energiebewusste multifunktionale Blattsensoren Wir entwickeln neuartige drahtlose, energieautarke ChlF-Sensoren, die flexible, multifunktionale (Mikroklima) und hochintegrierte Mikrosensoren verwenden. Die neuartigen Blattsensoren (<1cm²) werden den höchsten Grad an Miniaturisierung aufweisen, um die geringste Störung bei den Blättern zu gewährleisten. Diese Sensoren fungieren als unabhängige Sensorknoten, da sie dank Solarenergie ihre Daten drahtlos übermitteln. Sie können im Rahmen einer "Deploy and forget"-Strategie installiert werden.

Entkopplung stomatärer CO2- und H2O-Flüsse durch hygroskopischen Feinstaub

Die CO2 - Aufnahme höherer Pflanzen erfolgt diffusiv über kleine Öffnungen der Blattoberfläche, die Stomata. Gleichzeitig geht auf demselben Weg Wasserdampf verloren, angetrieben vom atmosphärischen Sättigungsdefizit (VPD). Die Flüsse beider Gase werden durch die stomatäre Öffnungsweite bestimmt. Seit mehreren Jahrzehnten ist daher die wechselseitige Skalierung der Flüsse von Wasserdampf und CO2 ein zentraler Teil aller wichtigen Gaswechsel-Modelle - erkennbar am Faktor 1.6, dem Verhältnis der Diffusionskonstanten. Allerdings wird die Gültigkeit dieser Annahme in Frage gestellt, wenn sich Feinstaubablagerungen auf den Blättern befinden. Hygroskopische Feinstaubbestandtteile lösen sich in der feuchten Blattgrenzschicht auf, kriechen als dünne Filme in die substomatäre Höhle und verbinden sich dort mit apoplastischem Wasser. Durch diese „hydraulische Aktivierung der Stomata“ (HAS) transportieren die Stomata sowohl flüssiges als auch gasförmiges Wasser vom Blattinneren in die Atmosphäre. Wir konnten zeigen, dass bereits moderate Luftverschmutzung die stomatäre Transpiration bei Tag, die minimale Leitfähigkeit bei Nacht, sowie das Verhältnis zwischen Transpiration und Blattöffnungsweite signifikant beeinflusste. Diese Effekte werden durch den klimawandelbedingten Anstieg von VPD noch verstärkt: Wassernutzungseffizienz und Trockentoleranz nehmen ab und die Modellentwicklung auf Basis der gegenseitigen Skalierung von CO2 und H2O wird unzuverlässiger. In diesem Projekt soll in Labor, Gewächshaus und Freiland der HAS-Einfluss auf den pflanzlichen Gaswechsel und die Hydraulik quantifiziert werden, wobei iso- und anisohydrische Arten unterschiedlich auf Feinstaubablagerungen reagieren. Sowohl experimentelle Erhöhung als auch Verringerung der Feinstaubkonzentration werden als Versuchsansätze genutzt, gemeinsam mit aktuellen Gaswechsel-, optischen und Isotopen-Techniken. Die Ergebnisse sind bedeutsam für das Verständnis der Atmosphäre/Pflanze-Interaktion auf allen Skalen von der Schließzelle bis zum Pflanzenbestand.

1 2 3 4 59 10 11