Organismen im Plankton bilden komplexe Gemeinschaften die substanziell zur globalen Primärproduktion beitragen und die Grundlage des marinen Nahrungsnetzes bilden. Dieses Projekt adressiert die Rolle von Sekundärmetaboliten in der Organisation von komplexen Plankton Gemeinschaften. Wir untersuchen den Einfluss des Bakteriums Kordia algicida das Mikroalgen lysieren kann auf das Plankton Microbiom. Die Regulation der Interaktion und die kaskadierenden Effekte auf die Lebensgemeinschaften im Meer werden in Labor- und Felduntersuchungen adressiert.
Die CO2 - Aufnahme höherer Pflanzen erfolgt diffusiv über kleine Öffnungen der Blattoberfläche, die Stomata. Gleichzeitig geht auf demselben Weg Wasserdampf verloren, angetrieben vom atmosphärischen Sättigungsdefizit (VPD). Die Flüsse beider Gase werden durch die stomatäre Öffnungsweite bestimmt. Seit mehreren Jahrzehnten ist daher die wechselseitige Skalierung der Flüsse von Wasserdampf und CO2 ein zentraler Teil aller wichtigen Gaswechsel-Modelle - erkennbar am Faktor 1.6, dem Verhältnis der Diffusionskonstanten. Allerdings wird die Gültigkeit dieser Annahme in Frage gestellt, wenn sich Feinstaubablagerungen auf den Blättern befinden. Hygroskopische Feinstaubbestandtteile lösen sich in der feuchten Blattgrenzschicht auf, kriechen als dünne Filme in die substomatäre Höhle und verbinden sich dort mit apoplastischem Wasser. Durch diese „hydraulische Aktivierung der Stomata“ (HAS) transportieren die Stomata sowohl flüssiges als auch gasförmiges Wasser vom Blattinneren in die Atmosphäre. Wir konnten zeigen, dass bereits moderate Luftverschmutzung die stomatäre Transpiration bei Tag, die minimale Leitfähigkeit bei Nacht, sowie das Verhältnis zwischen Transpiration und Blattöffnungsweite signifikant beeinflusste. Diese Effekte werden durch den klimawandelbedingten Anstieg von VPD noch verstärkt: Wassernutzungseffizienz und Trockentoleranz nehmen ab und die Modellentwicklung auf Basis der gegenseitigen Skalierung von CO2 und H2O wird unzuverlässiger. In diesem Projekt soll in Labor, Gewächshaus und Freiland der HAS-Einfluss auf den pflanzlichen Gaswechsel und die Hydraulik quantifiziert werden, wobei iso- und anisohydrische Arten unterschiedlich auf Feinstaubablagerungen reagieren. Sowohl experimentelle Erhöhung als auch Verringerung der Feinstaubkonzentration werden als Versuchsansätze genutzt, gemeinsam mit aktuellen Gaswechsel-, optischen und Isotopen-Techniken. Die Ergebnisse sind bedeutsam für das Verständnis der Atmosphäre/Pflanze-Interaktion auf allen Skalen von der Schließzelle bis zum Pflanzenbestand.
Auf Grund ihrer Bedeutung für die Anpassung der Wälder an Umweltänderungen und ihrer Widerstandsfähigkeit gegenüber Störungen ist die Naturverjüngung zu einem Schwerpunkt der ökologischen Waldforschung geworden. Trotz der jüngsten technologischen Entwicklungen bleibt dies eine große Herausforderung. Insbesondere sehr kleine Pflanzen mit einer Höhe von weniger als 1,30 m und entsprechend kleinen Durchmessern sind mit photogrammetrischen Methoden schwer zu identifizieren. Manuelle Inventurmethoden, wie z. B. die klassische Vollinventur sind aber arbeitsintensiv und zu teuer, um sie auf großen Flächen anzuwenden. Das Projekt möchte dazu beitragen, dieses Problem zu lösen, in dem es ein Simulationswerkzeug zur Rekonstruktion von Punktmustern vorstellt und seine Qualität systematisch untersucht. Es basiert auf einem Forschungsansatz der drei Arbeitsschritte umfasst (1) die Erfassung der räumlichen Daten aller Bäume einschließlich der Verjüngung auf einer kleinen Teilfläche (= Referenzfläche), (2) die Erfassung des Oberstandes im gesamten Bestand (=Untersuchungsfläche) und (3) die Rekonstruktion der Verjüngung im gesamten Untersuchungsgebiet, wobei davon ausgegangen wird, dass überall die gleichen Beziehungen zwischen den Bäumen des Oberstandes und der Verjüngung wie in der Referenzfläche bestehen. Dieser Ansatz erlaubt es, die heutigen logistischen Möglichkeiten zu kombinieren: (a) die manuelle Erfassung der Verjüngung auf kleiner Fläche ist machbar, und (b) die Inventur des Oberstandes mit modernen Fernerkundungs- oder photogrammetrischen Methoden ist relativ einfach und weniger arbeitsintensiv. Indem das Projekt einen vorhanden und in den Forstwissenschaften bekannten Datensatz nutzt (Trainingsgrundlage wird der Datensatz des saisonalen tropischen Regenwaldes der Insel Barro Colorado (BCI) in Panama sein), kann es sich auf Schritt (3) beschränken. Ziel ist es systematisch zu untersuchen, welchen Einfluss eine höhere Strukturvielfalt und das Größenverhältnis von Referenz- und Prädiktionsflächen (= die gesamte Untersuchungsfläche) auf die Ergebnisse der Punktmuster-Rekonstruktion von Verjüngungspflanzen (=Unterstand) hat und welche räumlichen Statistiken besonders geeignet sind, diesen Einfluss quantitativ oder qualitativ zu bewerten. Die numerischen Methoden werden in einem dokumentierten R-Skript (bzw. R-Package) als zuverlässiges und effizientes Werkzeug für die Waldökologie und die forstliche Praxis zur Verfügung gestellt.
Die Aufforstung und Restauration von Waldlandschaften haben viel Aufmerksamkeit als wichtige Möglichkeit zur Eindämmung des Klimawandels (KW) erhalten. Daher spielen sie in vielen politischen Initiativen (Grüne Deal der EU; Bonn Challenge) eine wichtige Rolle. Doch die anhaltende Zunahme des durch den KW hervorgerufenen Stresses bedroht die Wälder. Angesichts des KW sind Anpassung und Klimaschutz durch Wälder eng miteinander verknüpft, denn ihre Fähigkeit, Kohlenstoff (C) langfristig zu binden, hängt von der Fähigkeit ab, vielfältigen Belastungen standzuhalten. Es gibt zunehmende Evidenz dafür, dass gemischte Plantagen aus mehreren Baumarten, C effizienter speichern und resilienter sind gegenüber KW-bedingtem Stress. Gemischte Plantagen stellen somit eine wichtige Möglichkeit dar, um auf natürliche Weise Klimaschutz und -anpassung zu betreiben. Weltweit werden jedoch die Baumplantagen von Monokulturen dominiert. Die Gründe für diese Ablehnung von Mischplantagen durch Waldbesitzer und Stakeholder müssen daher ermittelt und in künftigen Forstpolitiken angegangen werden, um eine weite Verbreitung von KW-resistenteren Mischwaldplantagen zu fördern. Ein möglicher Hinderungsfaktor sind unzureichende Kenntnisse der Praktiker und politischen Entscheidungsträger. Mittels eines globalen Netzwerks von Experimenten zur Artenvielfalt in Wäldern (TreeDivNet) werden wir ein mechanistisches Verständnis darüber entwickeln, wie Baumartenvielfalt, Baumarteneigenschaften und Bewirtschaftung (Durchforstung und Düngung) sowohl das Potenzial von gemischten Plantagen zum Klimaschutz (C-Sequestrierung) als auch zur Anpassung (Dürre- und Schädlingsresistenz) in einem Win-Win-Ansatz beeinflussen können. Darüber hinaus wird dieses Wissen in Richtlinien für Praktiker und Entscheidungsträger übersetzt.TreeDivNet umfasst weltweit 26 Experimente mit ca. 1,2 Millionen gepflanzten Bäumen. Diese Experimente basieren auf einem gemeinsamen, statistisch fundierten Design, das es erlaubt, kausale Zusammenhänge zwischen Baumdiversität, Management und Ökosystemfunktionen (inkl. C-Sequestrierung) zu analysieren. Der funktionelle und mechanistische Schwerpunkt von MixForChange und die unterschiedlichen Umweltkontexte der Experimente werden es ermöglichen, unsere Ergebnisse über Fallstudien hinaus zu extrapolieren und evidenzbasierte Richtlinien für die Bewirtschaftung von Mischplantagen zu entwickeln. Darüber hinaus wird MixForChange im Rahmen eines gemeinsamen analytischen Ansatzes Synergien und Zielkonflikte zwischen Klimaschutz- und Anpassungspotenzial von Mischplantagen einerseits und Erfüllung der Ziele der beteiligten Stakeholder andererseits analysieren. Der Einfluss von MixForChange auf die Gesellschaft wird durch einen starken Fokus auf Wissenstransfer und Kapazitätsaufbau auf allen Ebenen von Management und Governance gewährleistet. MixForChange wird einen wichtigen Beitrag zur Förderung von Mischwaldplantagen als natürliche Lösungen zur Bekämpfung des Klimawandels leisten.
Die Verschmutzung durch Kunststoffe hat sich zu einer anerkannten Bedrohung für terrestrische Ökosysteme entwickelt. Sobald Kunststoffe in die Umwelt gelangen, kommt es zu einem Abbau, der die Eigenschaften des Plastikmülls verändert (z. B. Sorptionsfähigkeit, Sprödigkeit, Flexibilität), was Auswirkungen auf Pflanzen-Boden-Systeme haben kann. Die Photodegradation kann als einer der häufigsten Prozesse des Kunststoffabbaus weltweit angesehen werden. Dadurch wird Kunststoff spröde und zersplittert in kleine Stücke (Mikroplastik), erhöht seine Sorptionskapazität für Metalle und organische Verbindungen und kann potenziell das Sickerwasser oder gefährliche Chemikalien in den Boden erhöhen. Der Abbau von Mikroplastik kann nicht nur die Bodenfunktionalität und die Struktur von Lebensgemeinschaften verändern, sondern auch die Leistung von Pflanzen, so dass die jüngsten Forschungen, die scheinbar positive Auswirkungen von Mikroplastik auf die Pflanzenproduktivität und die Bodeneigenschaften beschreiben, möglicherweise nur einen Teil der Wahrheit erfassen, da sie nur die Auswirkungen von unberührtem Mikroplastik (bevor es abgebaut wurde) auf Pflanzen-Boden-Systeme berücksichtigen. Das Ziel dieses Projekts ist es zu verstehen, wie abgebautes Mikroplastik (das echte Mikroplastik, das tatsächlich in die Bodenmatrix gelangt) die Pflanzen-Boden-Funktionalität unter Verwendung von Mikrokosmen beeinflusst. Konkret möchte ich i) die Mechanismen entwirren, durch die sich der Abbau von Mikroplastik (Mikroplastik, Form, Polymertyp, Größe und Sickerwasser) auf Pflanzen-Boden-Systeme auswirkt, und ii) die Auswirkungen auf die Struktur der Pflanzengemeinschaften testen, die sie haben können. Um dies zu wissen, werde ich eine Reihe von Experimenten entwickeln, um dies zu untersuchen. Zunächst möchte ich den Abbau von Mikroplastik in Abhängigkeit von der Form des Mikroplastiks (Fasern, Folien, Schäume) und dem Polymertyp (z.B. Polyethylen, Polypropylen) untersuchen. Dann möchte ich die Mechanismen des Mikroplastikabbaus in Abhängigkeit von der Größe des Mikroplastiks und den chemischen Sickerstoffen entschlüsseln, und schließlich möchte ich verstehen, welche Auswirkungen die Form des Mikroplastiks, der Polymertyp, die Größe und die Sickerstoffe auf wichtige Lebensstadien der Pflanzenentwicklung haben. Das heißt, Samenkeimung, Pflanzenwachstum und Pflanzenfitness. Darüber hinaus möchte ich die potenziellen Auswirkungen verstehen, die all dies auf die Konkurrenzfähigkeit von Pflanzenarten haben kann.
Aquatische Pilze (AF) sorgen für Gesundheit, Funktion und Widerstandsfähigkeit von aquatischen Ökosystemen; doch ist ihre biologische Vielfalt weitgehend unbekannt. AF sind von allen wichtigen Erhaltungsplänen und -strategien unbeachtet und die derzeitigen Schutzgebiete (PAs), z. B. Natura-2000-Netz und Ramsar-Konvention beinhalten keine strategischen Überlegungen zur AF-Vielfalt und -Funktionalität. Dank enormer Fortschritte in der Sequenzierung und des kombinierten transdisziplinären Fachwissens der FUNACTION-Partner werden wir zum ersten Mal Wissen zur taxonomischen, phylogenetischen und funktionellen Vielfalt von AF aufbauen, um AF-fokussierte Strategien für ihre Erhaltung zu entwickeln. FUNACTION wird i) eine paneuropäische Karte der Pilzbiodiversität erstellen, um Muster und Triebkräfte der AF-Vielfalt auf europäischer Ebene zu identifizieren, die für eine datengestützte Erhaltung benötigt werden (WP1; THEME1); ii) die AF-Vielfalt über die verschiedenen räumlich-zeitlichen Skalen in PA vs. Nicht-PA auf ihre Eignung testen und bewerten (taxonomisch, phylogenetisch und funktionell), z.B. die Wirksamkeit beim Schutz der AF-Vielfalt, -Funktionen und -Dienstleistungen (WP2; THEME1,2,3); iii) Aufbau von Wissen und Strategien zur Überwachung (z. B. im Rahmen der Wasserrahmenrichtlinie 2000/60/EG) und Erhaltung von AF (Planung neuer PA im Rahmen der EU Biodiversitätsstrategie für 2030) und der damit verbundenen Ökosystemfunktionen (WP3,4; THEMA1,3) sowie Leitlinien zu deren Ausweitung auf globaler Ebene und iv) Sicherstellung einer effektiven Einbindung, Kommunikation und Informationsweitergabe an die Öffentlichkeit, Interessengruppen (nationale, europäische und globale Manager und politische Entscheidungsträger) und die wissenschaftliche Gemeinschaft (WP5). Die Identifizierung paneuropäischer Muster der AF-Diversität (WP1) in 16 Ländern wird ergänzt durch Datensätze von ca. 500 Standorten aus 26 europäischen Ländern (estnische FunAqua-Projektpartnern). Um eine breite geografische Streuung innerhalb Europas und repräsentative bioklimatische und Umweltgradienten zu gewährleisten, werden Fallstudien in allen Partnerländern (Estland, Deutschland, Italien, Portugal, Schweden und der Schweiz) (WP2) durchgeführt. Unsere Metabarcoding- und Metagenomanalysen erlauben einzigartige Einblicke in die Pilz- und Eukaryontenvielfalt und -funktion, die zusammen mit Klima, Landnutzung und anderen wichtigen Umweltvariablen in harmonisierte Leitlinien und Beispiele für eine wirksame Bewirtschaftungs- und Erhaltungsplanung in Europa eingesetzt werden. Um diese Ziele zu erreichen, fördert FUNACTION (Konsortium transnationaler, interdisziplinärer Experten (incl. IUCN)) den Austausch von Wissen, die Mobilität und Ausbildung der nächsten Generation von Wissenschaftlern und Managern und somit die europäische Kompetenz in diesem Bereich. FUNACTION baut ein effektives, langfristiges Kooperationsnetz zur Bewertung und zum Erhalt der AF-Diversität in Europa auf.
Landnutzung und Niederschlagsbedingungen sind wichtige Faktoren für die Diversität und Ökosystemfunktion von Grassländern weltweit, und sind zwei der wichtigsten Treiber des globalen Wandels. Ökosysteme werden gleichzeitig Änderungen von Bodennährstoffen (z.B. durch Düngung) und im Rahmen des Klimawandels häufigeren und intensiveren Trockenheitereignissen ausgesetzt sein. In Kombination können die beiden Faktoren additiv wirken, oder sich gegenseitig verstärken oder abschwächen. Demzufolge variiert die Gemeinschafts- und Ökosystemreaktion auf Trockenheit je nach den Nährstoffbedingungen. Die Mechanismen von Interaktionen von Nährstoffen und Trockenheit bleiben bisher unverstanden, und wir können daher derzeit nicht vorhersagen, bei welcher Landnutzung Grassländer mehr oder weniger sensitiv auf Trockenheit reagieren.Das Hauptziel des Projektes ist es, unsere Vorhersagen für die Konsequenzen von Globalem Wandel auf Grassländer zu verbessern. Dazu werden die kombinierten Effekte von Nährstoffen und Trockenheit auf der Ebene von einzelnen Pflanzenmerkmalen und von Gesamtpflanzen untersucht, und integriert mit Effekten von Trockenheit auf die Zusammensetzung und Produktivität von Pflanzengemeinschaften entlang von Landnutzungsgradienten in Grassländern.In einem Gewächshausexperiment werden wir für 16 Arten, die in den Exploratorien häufig sind, vergleichend die Plastizität im Hinblick auf Nährstoffe für einen umfassenden Satz von mehr als 20 physiologischen, morphologischen und Gesamtpflanzen-Merkmalen untersuchen, die relevant für den Wasserhaushalt von Pflanzen sind. In einem 'common garden' Experiment werden wir die kombinierten Effekte von Nährstoffen und Trockenheit (und ihre Interaktionen) für Gesamtpflanzen dieser Arten quantifizieren. Zusätzlich werden wir die Effekte von experimenteller und natürlicher Trockenheit entlang von Gradienten der Nährstoffverfügbarkeit und Landnutzung (insbesondere Düngung) in den Exploratorien bestimmen. Die direkte Verknüpfung der Daten auf Ebene von Merkmalen, Gesamtpflanzen, Gemeinschaften und Ökosystemen wird unser mechanistisches Verständnis von kombinierten Effekten von Nährstoffen und Trockenheit auf Grassländer unter derzeitigen und zukünftigen Bedingungen verbessern. Die Ergebnisse werden sowohl in angewandter als auch in wissenschaftlicher Hinsicht wichtige neue Erkenntnisse liefern.
Totholzabhängige Pilze und Bakterien gehören zu den artenreichsten Gruppen in Wäldern und tragen aufgrund ihrer Beteiligung am Umsatz organischer Stoffe wesentlich zum Funktionieren unserer Ökosysteme bei. Bisher konzentrierten sich die meisten Studien auf die Beziehung zwischen Pilz- und Bakterienvielfalt und ressourcen- und wirtsbezogenen Faktoren, wie z. B. das Volumen des Totholzes oder die Identität der Baumarten. Unser Verständnis, wie abiotische Faktoren wie z.B. das Mikroklima holzabhängige Artengemeinschaften und damit verbundene Ökosystemprozesse einschließlich der Zersetzung beeinflussen, ist jedoch äußerst rudimentär. Darüber hinaus sind mögliche Anpassungsmechanismen von Arten an eine Änderung der mikroklimatischen Bedingungen nicht gut verstanden. Gegenwärtig sind unsere Wälder in einem beispiellos großen räumlichen Ausmaß durch klimabedingtes Absterben geprägt. Störungen in Wäldern verändern sehr stark die mikroklimatischen Bedingungen. Das Mikroklima in Waldökosystemen wird aber auch durch reguläre forstwirtschaftliche Maßnahmen verändert (z.B. durch Hiebsmaßnahmen). Um Vorhersagen zu verbessern und Klimaschutzkonzepte in Zeiten des Klimawandels bereitzustellen, benötigen wir ein besseres Verständnis der Beziehung zwischen Mikroklima, holzabhängiger biologischer Vielfalt und damit verbundenen Zersetzungsprozessen. Wir planen die Nutzung eines bestehenden großen Langzeit-Totholzexperiment und ein neues Add-On-Experiment, um Hypothesen zu testen, die sich auf den Einfluss des Mikroklimas auf die Bildungsprozesse von Pilz- und Bakteriengemeinschaften und die damit verbundenen Zersetzungsprozesse beziehen. Wir werden insbesondere molekularbiologische Methoden verwenden, um Pilz- und Bakteriengemeinschaften zu charakterisieren und mehr über ihre Anpassungsmechanismen zu erfahren. Unsere Ergebnisse liefern ein tieferes mechanistisches Verständnis der Beziehung zwischen Mikroklima und Totholz und ihren funktionellen Konsequenzen, die die Entwicklung oder Verbesserung von Waldbewirtschaftungskonzepten unterstützen und dazu beitragen, ein Gleichgewicht zwischen Holzproduktion und biologischer Vielfalt in Wäldern zu finden. Dies ist besonders wichtig im Zusammenhang mit dem globalen Wandel, der zunehmenden Häufigkeit und Schwere klimabedingter Störungsereignisse und den laufenden Diskussionen über klimafreundliche Forstpraktiken.
Viele Prozesse, die an der Verbreitung von Pflanzenarten und der Funktion von Ökosystemen beteiligt sind, finden unter der Erde statt. Da sich jedoch die meisten Studien mit oberirdischen Pflanzenmerkmalen auseinandersetzten, wurden die unterirdischen Merkmale bislang weitestgehend ignoriert. Die Biodiversitätsforschung bedarf demnach noch großer Mengen an Wurzeldaten vieler Pflanzenarten. Deshalb möchten wir Wurzelmerkmale und Daten über Pilzendophyten für die ca. 350 Blütenpflanzen, die in den 150 experimentellen Grasslandflächen (EPs) der Biodiversitätsexploratorien vorkommen, aufnehmen. In mehreren Experimenten sollen Pflanzen dieser Arten kultiviert und Daten zu Wurzelmorphologie, Plastizität der Wurzelmorphologie (in Abhängigkeit von Düngerzugabe), Aufnahmekapazität von Stickstoff in unterschiedlicher Form sowie Infektion durch Pilzendophyten bestimmt werden. Wir möchten die so erhobenen Daten gemeinsam mit anderen Daten aus den Biodiversitätsexploratorien nutzen, um zu untersuchen, inwieweit das Auftreten und die Abundanz der betrachteten Arten durch ihre Wurzelmerkmale bestimmt werden. Dabei interessiert uns der Zusammenhang der Wurzelmerkmale mit Umweltfaktoren wie der Landnutzung und die Frage, inwieweit die unterirdische Merkmalsdiversität mit der oberidischen Merkmalsdiversität und den Ökosystemfunktionen zusammenhängt.
Räumliche Heterogenität in Standorteigenschaften ist ein Hauptfaktor für das Entstehen von Biodiversität, er wurde jedoch in den Biodiversitätsexploratorien kaum untersucht. Wir wollen diese Lücke füllen, indem wir theoretische, experimentelle und beobachtenden Studien integrieren, um die Mechanismen zu untersuchen, durch welche Habitatheterogenität von Landnutzung und Heterogenität durch Landnutzung Artenvielfalt im Grünland beeinflussen. Ein zugrunde liegendes Modell ist, dass Heterogenität sowohl positive als auch negative Effekte hat, bewirkt durch einen immanenten trade-off zwischen dem Heterogenitätsniveau und der effektiven Fläche, welche für Individuen in der Gemeinschaft zur Verfügung steht (AHTO-area-heterogeneity trade-off). In Phase 1 verwenden wir analytische Modelle, um einige simplifizierende Annahmen voriger AHTO-Modelle zu erweitern. Gleichzeitig diente ein einmaliges neues experimentelles System dem Test einiger Grundvorhersagen der Modelle. In Phase 2 erweitern wir unsere Arbeit in 3 Richtungen. 1) Wir skalieren unsere Modelle sowohl hoch (durch Erweitern des lokalen Modells zu einem Meta-Gemeinschaftsmodell) als auch herunter (durch explizite Modellierung von ober- und unterirdischen Konkurrenzeffekten bei individuellen Pflanzen). Die größere Skala wird das Modell an die Struktur der empirischen Arbeiten angleichen, die kleine Skala erfasst die eigentlichen Mechanismen, welche Landnutzung (insbesondere Düngung, Mahd, Beweidung) mit Konkurrenz und Artenvielfalt verbindet. 2) Um die empirisch beobachteten Diversitätsmuster besser zu verstehen, etablieren wir ein neues Experiment, in welchem wir das Wachstum der Zielarten ohne Konkurrenz messen, sowie unter Simulation von Düngung, Mahd und Tritt auf flachen und tiefen Böden. Die Ergebnisse gehen auch als realistischere Parameter in unsere Modelle ein. 3) Wir etablieren ein neues skalenübergreifendes Beobachtungssystem, um Landnutzung, Habitatheterogenität und Diversität zu verknüpfen. Die Untersuchungseinheit entspricht dabei derjenigen in den Experimenten, und das Design umfasst einen sehr großen Bereich von Skalen (vom Zentimeterbereich bis hin zu vielen Hundert Kilometern). Zudem nutzen wir neue Kooperationen in den Exploratorien, insbesondere mit CP3, um mit Fernerkundungsmethoden umfassende Daten zu kleinskaliger Habitatheterogenität und beta-Diversität für alle Grünland-EPs zu generieren. Die skalenübergreifenden theoretischen, experimentellen, beobachtenden und Fernerkundungsmethoden tragen signifikant zum Kausalverständnis darüber bei, wie Landnutzung Biodiversität indirekt, nämlich durch Modifikation von Habitatheterogenität, beeinflusst. Zudem liefern wir Daten für umfassende neue Syntheseprojekte.
| Origin | Count |
|---|---|
| Bund | 123 |
| Type | Count |
|---|---|
| Förderprogramm | 123 |
| License | Count |
|---|---|
| offen | 123 |
| Language | Count |
|---|---|
| Deutsch | 102 |
| Englisch | 120 |
| Resource type | Count |
|---|---|
| Webseite | 123 |
| Topic | Count |
|---|---|
| Boden | 97 |
| Lebewesen und Lebensräume | 119 |
| Luft | 54 |
| Mensch und Umwelt | 123 |
| Wasser | 45 |
| Weitere | 123 |