Semi-natural grasslands are among the most species-rich habitats in Europe but have sharply declined in spatial extent and biodiversity in recent decades. Within Europe, the grasslands of the Alps and the Carpathians harbour extraordinary plant diversity but their biodiversity varies significantly due to local environmental conditions and management intensities. Thus, there is general agreement that, in order to prevent further grassland biodiversity loss, the protection, enhancement and potential expansion of species-rich grasslands is necessary. Knowledge of the areas suitable for protection, enhancement and potential expansion comes largely from vegetation samples and experimental studies. However, these are unaffordable and unfeasible for systematic evaluation of biodiversity patterns over large areas. Further, existing monitoring programs generally lack information on grassland management regimes and a historical perspective, both of which can strongly influence current biodiversity. Fortunately, the availability of earth observational data over large areas now allows extrapolation of field measurements over time and space with acceptable accuracy. Combining these data with biodiversity datasets and an understanding of the socioeconomic context offers powerful opportunities for reaching conservation targets. The aims of the proposed project are to (1) identify diversity-rich grasslands and their distribution in the Alps and Carpathians; (2) identify diversity-supporting grassland management practices and their change and persistence; (3) identify the areas suitable for expanding the grassland protection network; and (4) propose new protection areas and their management across Alps and Carpathians. By addressing these aims we will cooperate with stakeholders to (i) identify effective methods for extrapolation of vegetation samples across the mountain ranges; (ii) identify the grassland management drivers and legacy effects on grassland diversity; (iii) identify constraints and motivations for biodiversity-supporting management practices (iv) provide scientific background for expanding the protection area network in the Alps and Carpathians. The proposed research provides a great opportunity to strengthen the cooperation, data and knowledge exchange between the researchers and stakeholders across the two largest mountain ranges in Europe: the Alps and the Carpathians.
RECONNECT konzentriert sich auf die Entkopplung der Erhaltung der biologischen Vielfalt von anderen Anliegen an Landschaften und Gesellschaften. Fragmentierung, Konflikt und Entkopplung können institutioneller, ökologischer und sozialer Natur sein. Dies äußert sich in unterbrochenen ökologischen Strömen durch Habitatnetzwerke, in isolierter sektoraler Planung und in pluralen Lebensstilen und Werten - was zu Spannungen zwischen Erhaltungs-, Gerechtigkeits- und Produktionszielen führt. Wir werden mit Stakeholdern zusammenarbeiten, um anhand von vier Fallbeispielen fundiertes Wissen über die Möglichkeiten des Umgangs mit institutionellen, ökologischen und sozialen Grenzen zu gewinnen. Untersuchungsgebiete in Frankreich, Deutschland, Südafrika und Schweden erstrecken sich entlang von Stadt-/Land-Gradienten mit kontrastierenden Arten des Managements von Schutzgebieten und umliegenden Landschaften. Der inter- und transdisziplinäre "Wiederverkopplungs"-Ansatz wird erreicht durch 1) die Entwicklung eines kohärenten Satzes von Instrumenten und Prozessen zur systematischen Identifizierung und Bewertung der Verbindungen zwischen Ökosystemen, gemeinschaftlichen Werten und verschiedenen institutionellen Arrangements; und 2) die Entwicklung von Governance-Modellen und -Praktiken zum Offenlegen und zur Bewältigung von Spannungen sowie zur Verbindung von Menschen und Ökosystemen. Sozial-ökologische System- und Governance-Forscher werden im Arbeitspaket (WP) 1 den sozial-ökologischen Kontext für den Schutz der biologischen Vielfalt bewerten und integrierte Governance-Optionen für die Durchführung wirksamer Erhaltungsmaßnahmen identifizieren. Naturschutzbiologen und funktionelle Ökologen nutzen in WP2 ihre Fähigkeiten in der Modellierung von Biodiversität und Ökosystemdienstleistungen, um die verschiedenen Dimensionen der funktionellen Konnektivität zu quantifizieren. In WP3 erforschen Landschaftsökologen und Geographen die Werte der Natur und identifizieren Synergien und Bereiche für die Wiedervernetzung. In WP4 versuchen Experten für institutionelle Analyse und Wissenskooperation, verschiedene Bereiche für Zusammenarbeit und Konfliktmanagement zu bewerten. In WP5 führen Experten für Nachhaltigkeitswissenschaften und transdisziplinäre Deliberation die Synthese der Projektergebnisse durch. Spezialisten für Naturschutzpolitik und Kommunikation werden in WP6 die Ergebnisse über einschlägige Kommunikationsplattformen wie PANORAMA und das EU Knowledge Centre for Biodiversity verbreiten. Gemeinsam werden die Arbeitspakete sektorübergreifende Governance in die Umsetzung des Globalen Biodiversitätsrahmens nach 2020 einbringen.
Den Ausgangspunkt für RESOILIENCE bildet das Konzept der Resilienz als Voraussetzung für die Entwicklung nachhaltiger Managementstrategien. Vor diesem Hintergrund sollen die bislang völlig unbekannten Mechanismen der Resilienz und Resistenz von Bodentiergemeinschaften erforscht werden. Wesentliche Ziele sind: (1) die Eröffnung innovativer Wege zum wissenschaftlichen Verständnis struktureller und funktioneller Reaktionen der Bodenfauna auf Management-bedingte Störungen, und (2) die Analyse grundlegender Prozesse, welche die Strukturierung von Invertebratengemeinschaften unter den variablen Umweltbedingungen im Boden steuern. Die Untersuchungen konzentrieren sich auf das Spektrum der Managementintensitäten, die auf den Grünlandflächen der DFG Biodiversitätsexploratorien auftreten. Dies bietet die einmalige Chance für eine großflächige Langzeituntersuchung, weil wir so die Ergebnisse unserer Freilanderfassungen aus den Jahren 2009 und 2011 mit den Ergebnissen einer erneuten Erfassung, die für das Jahr 2018 geplant ist, vergleichen können. Aufwändige Feld- und Mikrokosmos-Experimente zur gezielten Analyse wichtiger Aspekte der Erholung nach Bodenstörungen dienen der Spezifizierung, Generalisierung und Validierung der Befunde aus den Freilanduntersuchungen. Der für RESOILIENCE entwickelte konzeptionelle Rahmen basiert auf drei Bausteinen: Merkmalsbasierte Assembly Analyse, die Ergän-zung störungsbedingter Assembly-Prozesse um die zeitliche Dimension ('successional assembly') und Transient Population Dynamics. Die wesentlichen Messgrößen umfassen nahezu alle Taxa der Bodenfauna (überwiegend auf Artniveau), Struktur des Bodennahrungsnetzes, Isotopensignatur der Konsumenten, Bodenprozesse (z.B. Spurengasfreisetzung, C- und N-Umsatz) und mikrobielle Parameter (PLFA). Ein inhärentes Ziel ist es, die Möglichkeiten, die sich aus dem beispiellosen Datensatz von RESOILIENCE ergeben, für die Weiterentwicklung statistischer Verfahren und Messgrößen zur Analyse biologischer Erholungsprozesse im Boden zu nutzen.
A2.1 Ökohydrologische Flüsse und Prozesse in einem Mischwald-Ökosystem. Wir wollen die Wasser- und Kohlenstoffflüsse in heterogenen Baumbeständen und deren Auswirkung auf die räumlichen Muster der Bodenwasserflüsse analysieren. Dazu untersuchen wir ökohydrologische Prozesse, die Dynamik der Wasseraufnahme durch die Wurzeln, den Saftfluss der Bäume sowie den Zuckertransport im Phloem und dessen Kohlenstoffisotope. Weiterhin analysieren wir die Rückkopplungen auf die räumlich-zeitliche Variabilität und Heterogenität der Bodenfeuchte und deren Einfluss auf die Wassernutzungseffizienz der Bäume und den Zuckertransport im Phloem. A2.2 In-situ Flow-MRI und NMR zur Messung des Wasser- und Phloemzuckertransport. Wir entwickeln eine völlig neuartige Methodik mit kompakten Magnetresonanztomographie (MRT)- / Kernspinresonanz (NMR)- Sensoren, die auf Permanentmagneten basieren. Diese ermöglichen die In-situ-Bildgebung der H2O-Flüsse an Zweigen, ohne diese zu beeinträchtigen, sowie die NMR-Analyse der Wasser- und Phloem-Saftflüsse. Kontinuierliche In-situ-NMR-Messungen des Phloemsaftes erlauben eine neue Dimension der Quantifizierung des integrierten Kohlenstofftransports in Bäumen.
Die menschliche Gesellschaft zeichnet sich durch komplexe soziale Organisationsformen aus, die im Laufe der Zeit weltweit vielfältige Siedlungsmuster hervorgebracht haben. Stadtgrenzen markieren eine willkürliche Trennung zwischen einem (urbanen) Innenraum unter starker menschlicher Kontrolle und einem (ruralen) Äußeren, das stärker natürlichen, biophysikalischen Prozessen ausgesetzt ist. Tatsächlich sind aber beide Räume seit jeher eng miteinander verknüpft, und werden mit immer intensiverer Nutzung natürlicher Ressourcen zunehmend durch rural-urbane Transformationsprozesse geprägt. Im Anthropozän haben Urbanisierung und die damit verbundenen sozialen und ökologischen Veränderungen globale Dimensionen erreicht. "Rurales" und "Urbanes" gehen dabei auf verschiedenen Skalenebenen immer wieder neue Beziehungen ein und werden zu einer sich oft selbst organisierenden Einheit von großer wissenschaftlicher, gesellschaftlicher und politischer Bedeutung. Der vorliegende Antrag zur Einrichtung der Forschungsgruppe „Nachhaltige Rurbanität“ befasst sich mit diesem Phänomen und begreift es als einen sich ständig neu erfindenden Zustand des Seins und Werdens. Geleitet von drei übergeordneten Hypothesen nutzen die 10 natur- und sozialwissenschaftlichen Projekte Fallstudien in rurbanen Ballungsgebieten Indiens, Westafrikas und Marokkos, um Wirkmechanismen, Folgen und Steuerungsprozesse von Rurbanität beispielhaft zu untersuchen. Ein interdisziplinärer, sozial-ökologischer Forschungsansatz erlaubt die Schaffung von Synergien zwischen den Fachkulturen und verschiedenen Wissenschaftsdisziplinen, unter Einbeziehung von Perspektiven des Globalen Südens. Dieser gemeinsame Rahmen ist Voraussetzung dafür, kontextuelle empirische Forschung mit theoriegeleiteten analytischen Vergleichen zu verbinden, sowie innovative Methoden für die Systemanalyse und die Synthese der Ergebnisse zu nutzen. Dadurch lassen sich rural-urbane Transformation und das daraus abgeleitete Phänomen der Rurbanität in seiner skalen- und regionsübergreifenden Komplexität verstehen und dessen zentrale Implikationen für eine nachhaltige Landnutzungs- und Gesellschaftsentwicklung bewerten.
Bestäubung ist ein essenzieller regulatorischer Ökosystemdienst, der bei Kulturpflanzen vor allem von Insekten erbracht wird und der bei 75% aller global von Menschen genutzten Kulturpflanzen erforderlich ist. In den vergangenen Jahren lag der Fokus vieler Studien auf Bienen und anderen tagaktiven Bestäubern aufgrund der drastischen globalen Rückgänge. Die nachtaktiven Gruppen, wie Macrolepidoptera, haben trotz ihrer potenziellen Rolle bei der Ergänzung der tagaktiven Blütenbesucher und deren Bestäuberleistungen nicht viel Aufmerksamkeit erhalten. Diese Studie wird die Komplexität der Pollentransportnetze und der Bestäubung von Kaffee (Coffea arabica: Rubiaceae) und Papaya (Carica papaya: Caricaceae) durch nächtliche Macrolepidoptera und tagaktiven Bestäubern entlang eines Gradienten der Landnutzungsintensivierung in Taita Hills Biodiversitäts-Hotspots, Kenia, von Februar 2023 bis Januar 2026 untersuchen. Gemeinschaften von nachtaktiven Macrolepidoptera werden mit Lichtfallen und zeitgefristeten visuellen Zählungen erfasst, während Pollen mit DNA-Metabarcoding-Techniken untersucht werden, um Pflanzen-Pollinator-Netzwerke zu erstellen. Tagaktive Blütenbesucher werden anhand von Pfannenfallen und zeitabhängigen visuellen Zählungen auf Kulturpflanzen beprobt, um Vergleiche zwischen tag- und nachtabhängigen Pflanzen-Bestäuer-Netzwerken zu ermöglichen. Die Studie wird die entscheidende Rolle von nachtaktiven Macrolepidoptera beim Pollentransport und ihren wirtschaftlichen Beitrag zur Kulturpflanzenproduktion ermitteln.
Im vorliegenden Projekt konzentrieren wir uns auf die Auswirkungen der drei Pflanzenmetaboliten Benzoxazolinon (BOA), Gramin und Quercetin auf die Struktur der Bakteriengemeinschaft in landwirtschaftlichen Böden. Während des vorherigen Förderzeitraums wurden die drei Metaboliten direkt dem Boden zugesetzt, und Änderungen der Bakterienzusammensetzung wurden durch Sequenzierung von PCR-Amplikons (next generation sequencing) ermittelt. Die Ergebnisse zeigen, dass die Häufigkeit vieler Bakteriengattungen durch BOA, Gramin oder Quercetin verändert wurde. Die Behandlung mit BOA führte zu einer Zunahme der Häufigkeit von nur wenigen Gattungen, hauptsächlich Actinobacteria, während viele Gattungen verringert wurden. Andererseits verursachte die Behandlung mit Gramin und Quercetin den Anstieg vieler Proteobaktera. Zusätzlich wurden mehr als 110 Bakterienstämme isoliert und nach Behandlung mit den Pflanzenmetaboliten kultiviert. Die Stämme werden derzeit einzeln auf ihre Sensitivität gegenüber BOA, Gramin oder Quercetin getestet. Mehrere BOA-tolerante Bakterien können BOA in nitrierte oder nitrosylierte Verbindungen umwandeln, von denen einige polymerisiert werden können, um farbige Substanzen zu erzeugen. Ein Gramin-toleranter Stamm, Arthrobacter GB1, kann Gramin zu Indol-3-carbaldehyd und anderen Produkten abbauen. Wir werden nach den Genen, die am Graminabbau im Stamm GB1 beteiligt sind, suchen und diese charakterisieren. Darüber hinaus isolierten wir drei Stämme, die gegenüber Quercetin tolerant sind. Die bakterielle Plasmamembran stellt die erste Barriere der Bakterien gegen schädliche Pflanzenmetaboliten dar. Lipidanalysen zeigten, dass die Häufigkeit eines Diglycosyllipids in Gegenwart von Gramin in Arthrobacter GB1 stark erhöht war. Wir werden die Struktur und die Menge des Diglycosyllipids in GB1 analysieren, um die Funktion des zugrunde liegenden Lipid-Anpassungsprozesses zu verstehen. Wir werden Lipid-Veränderungen in anderen isolierten Bakterien untersuchen, die gegenüber BOA, Gramin oder Quercetin tolerant sind. Wir analysieren derzeit die Struktur der Abbauprodukte der Pflanzenmetaboliten und ihre Auswirkungen auf Arabidopsis und Gerste. Wir werden auch die wachstumsfördernden Eigenschaften der isolierten Stämme auf Arabidopsis oder Gerstenpflanzen testen.
Die Verschmutzung durch Kunststoffe hat sich zu einer anerkannten Bedrohung für terrestrische Ökosysteme entwickelt. Sobald Kunststoffe in die Umwelt gelangen, kommt es zu einem Abbau, der die Eigenschaften des Plastikmülls verändert (z. B. Sorptionsfähigkeit, Sprödigkeit, Flexibilität), was Auswirkungen auf Pflanzen-Boden-Systeme haben kann. Die Photodegradation kann als einer der häufigsten Prozesse des Kunststoffabbaus weltweit angesehen werden. Dadurch wird Kunststoff spröde und zersplittert in kleine Stücke (Mikroplastik), erhöht seine Sorptionskapazität für Metalle und organische Verbindungen und kann potenziell das Sickerwasser oder gefährliche Chemikalien in den Boden erhöhen. Der Abbau von Mikroplastik kann nicht nur die Bodenfunktionalität und die Struktur von Lebensgemeinschaften verändern, sondern auch die Leistung von Pflanzen, so dass die jüngsten Forschungen, die scheinbar positive Auswirkungen von Mikroplastik auf die Pflanzenproduktivität und die Bodeneigenschaften beschreiben, möglicherweise nur einen Teil der Wahrheit erfassen, da sie nur die Auswirkungen von unberührtem Mikroplastik (bevor es abgebaut wurde) auf Pflanzen-Boden-Systeme berücksichtigen. Das Ziel dieses Projekts ist es zu verstehen, wie abgebautes Mikroplastik (das echte Mikroplastik, das tatsächlich in die Bodenmatrix gelangt) die Pflanzen-Boden-Funktionalität unter Verwendung von Mikrokosmen beeinflusst. Konkret möchte ich i) die Mechanismen entwirren, durch die sich der Abbau von Mikroplastik (Mikroplastik, Form, Polymertyp, Größe und Sickerwasser) auf Pflanzen-Boden-Systeme auswirkt, und ii) die Auswirkungen auf die Struktur der Pflanzengemeinschaften testen, die sie haben können. Um dies zu wissen, werde ich eine Reihe von Experimenten entwickeln, um dies zu untersuchen. Zunächst möchte ich den Abbau von Mikroplastik in Abhängigkeit von der Form des Mikroplastiks (Fasern, Folien, Schäume) und dem Polymertyp (z.B. Polyethylen, Polypropylen) untersuchen. Dann möchte ich die Mechanismen des Mikroplastikabbaus in Abhängigkeit von der Größe des Mikroplastiks und den chemischen Sickerstoffen entschlüsseln, und schließlich möchte ich verstehen, welche Auswirkungen die Form des Mikroplastiks, der Polymertyp, die Größe und die Sickerstoffe auf wichtige Lebensstadien der Pflanzenentwicklung haben. Das heißt, Samenkeimung, Pflanzenwachstum und Pflanzenfitness. Darüber hinaus möchte ich die potenziellen Auswirkungen verstehen, die all dies auf die Konkurrenzfähigkeit von Pflanzenarten haben kann.
Die CO2 - Aufnahme höherer Pflanzen erfolgt diffusiv über kleine Öffnungen der Blattoberfläche, die Stomata. Gleichzeitig geht auf demselben Weg Wasserdampf verloren, angetrieben vom atmosphärischen Sättigungsdefizit (VPD). Die Flüsse beider Gase werden durch die stomatäre Öffnungsweite bestimmt. Seit mehreren Jahrzehnten ist daher die wechselseitige Skalierung der Flüsse von Wasserdampf und CO2 ein zentraler Teil aller wichtigen Gaswechsel-Modelle - erkennbar am Faktor 1.6, dem Verhältnis der Diffusionskonstanten. Allerdings wird die Gültigkeit dieser Annahme in Frage gestellt, wenn sich Feinstaubablagerungen auf den Blättern befinden. Hygroskopische Feinstaubbestandtteile lösen sich in der feuchten Blattgrenzschicht auf, kriechen als dünne Filme in die substomatäre Höhle und verbinden sich dort mit apoplastischem Wasser. Durch diese „hydraulische Aktivierung der Stomata“ (HAS) transportieren die Stomata sowohl flüssiges als auch gasförmiges Wasser vom Blattinneren in die Atmosphäre. Wir konnten zeigen, dass bereits moderate Luftverschmutzung die stomatäre Transpiration bei Tag, die minimale Leitfähigkeit bei Nacht, sowie das Verhältnis zwischen Transpiration und Blattöffnungsweite signifikant beeinflusste. Diese Effekte werden durch den klimawandelbedingten Anstieg von VPD noch verstärkt: Wassernutzungseffizienz und Trockentoleranz nehmen ab und die Modellentwicklung auf Basis der gegenseitigen Skalierung von CO2 und H2O wird unzuverlässiger. In diesem Projekt soll in Labor, Gewächshaus und Freiland der HAS-Einfluss auf den pflanzlichen Gaswechsel und die Hydraulik quantifiziert werden, wobei iso- und anisohydrische Arten unterschiedlich auf Feinstaubablagerungen reagieren. Sowohl experimentelle Erhöhung als auch Verringerung der Feinstaubkonzentration werden als Versuchsansätze genutzt, gemeinsam mit aktuellen Gaswechsel-, optischen und Isotopen-Techniken. Die Ergebnisse sind bedeutsam für das Verständnis der Atmosphäre/Pflanze-Interaktion auf allen Skalen von der Schließzelle bis zum Pflanzenbestand.
Die Aufforstung und Restauration von Waldlandschaften haben viel Aufmerksamkeit als wichtige Möglichkeit zur Eindämmung des Klimawandels (KW) erhalten. Daher spielen sie in vielen politischen Initiativen (Grüne Deal der EU; Bonn Challenge) eine wichtige Rolle. Doch die anhaltende Zunahme des durch den KW hervorgerufenen Stresses bedroht die Wälder. Angesichts des KW sind Anpassung und Klimaschutz durch Wälder eng miteinander verknüpft, denn ihre Fähigkeit, Kohlenstoff (C) langfristig zu binden, hängt von der Fähigkeit ab, vielfältigen Belastungen standzuhalten. Es gibt zunehmende Evidenz dafür, dass gemischte Plantagen aus mehreren Baumarten, C effizienter speichern und resilienter sind gegenüber KW-bedingtem Stress. Gemischte Plantagen stellen somit eine wichtige Möglichkeit dar, um auf natürliche Weise Klimaschutz und -anpassung zu betreiben. Weltweit werden jedoch die Baumplantagen von Monokulturen dominiert. Die Gründe für diese Ablehnung von Mischplantagen durch Waldbesitzer und Stakeholder müssen daher ermittelt und in künftigen Forstpolitiken angegangen werden, um eine weite Verbreitung von KW-resistenteren Mischwaldplantagen zu fördern. Ein möglicher Hinderungsfaktor sind unzureichende Kenntnisse der Praktiker und politischen Entscheidungsträger. Mittels eines globalen Netzwerks von Experimenten zur Artenvielfalt in Wäldern (TreeDivNet) werden wir ein mechanistisches Verständnis darüber entwickeln, wie Baumartenvielfalt, Baumarteneigenschaften und Bewirtschaftung (Durchforstung und Düngung) sowohl das Potenzial von gemischten Plantagen zum Klimaschutz (C-Sequestrierung) als auch zur Anpassung (Dürre- und Schädlingsresistenz) in einem Win-Win-Ansatz beeinflussen können. Darüber hinaus wird dieses Wissen in Richtlinien für Praktiker und Entscheidungsträger übersetzt.TreeDivNet umfasst weltweit 26 Experimente mit ca. 1,2 Millionen gepflanzten Bäumen. Diese Experimente basieren auf einem gemeinsamen, statistisch fundierten Design, das es erlaubt, kausale Zusammenhänge zwischen Baumdiversität, Management und Ökosystemfunktionen (inkl. C-Sequestrierung) zu analysieren. Der funktionelle und mechanistische Schwerpunkt von MixForChange und die unterschiedlichen Umweltkontexte der Experimente werden es ermöglichen, unsere Ergebnisse über Fallstudien hinaus zu extrapolieren und evidenzbasierte Richtlinien für die Bewirtschaftung von Mischplantagen zu entwickeln. Darüber hinaus wird MixForChange im Rahmen eines gemeinsamen analytischen Ansatzes Synergien und Zielkonflikte zwischen Klimaschutz- und Anpassungspotenzial von Mischplantagen einerseits und Erfüllung der Ziele der beteiligten Stakeholder andererseits analysieren. Der Einfluss von MixForChange auf die Gesellschaft wird durch einen starken Fokus auf Wissenstransfer und Kapazitätsaufbau auf allen Ebenen von Management und Governance gewährleistet. MixForChange wird einen wichtigen Beitrag zur Förderung von Mischwaldplantagen als natürliche Lösungen zur Bekämpfung des Klimawandels leisten.
| Origin | Count |
|---|---|
| Bund | 128 |
| Type | Count |
|---|---|
| Förderprogramm | 128 |
| License | Count |
|---|---|
| offen | 128 |
| Language | Count |
|---|---|
| Deutsch | 107 |
| Englisch | 125 |
| Resource type | Count |
|---|---|
| Webseite | 128 |
| Topic | Count |
|---|---|
| Boden | 101 |
| Lebewesen und Lebensräume | 124 |
| Luft | 57 |
| Mensch und Umwelt | 128 |
| Wasser | 48 |
| Weitere | 128 |