API src

Found 128 results.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Wissenstransfer 2.0 - Biodiversitätsforschung zum Schutz der Biodiversität wirksam werden lassen

Die zunehmende Sensibilisierung der Bevölkerung für das Thema Biodiversitätsverlust erhöht den Druck auf Politik und Forstwirtschaft, den Wald unter besonderer Berücksichtigung der Biodiversität zu bewirtschaften. Um Synergien oder Zielkonflikte zwischen unterschiedlichen Ökosystemfunktionen zu identifizieren, ist eine transdisziplinäre Forschung und ein beidseitiger Wissenstransfer von Forschungsergebnissen und praktischen Erfahrungen zwischen Wissenschaft und Praxis notwendig. Vor allem bei Zielkonflikten sollte die Wissenschaft die Folgen von unterschiedlichen Bewirtschaftungsoptionen für unterschiedliche Funktionen und auf unterschiedlichen räumlichen Skalen aufzeigen, um so der Praxis Entscheidungshilfen geben zu können. Das beantragte Projekt baut direkt auf den Ergebnissen der ersten Projektphase (hier Wissenstransfer 1.0) auf, in der ein beidseitiger Wissenstransfer zwischen den Biodiversitäts-Exploratorien (BE) und Wald-Akteuren in den drei BE-Regionen initiiert wurde. Diesen Transfer möchten wir in der nächsten Phase verstetigen, intensivieren und ausbauen. In Wissenstransfer 1.0 fragten wir zudem nach wichtigen praxis-relevanten Fragen der Akteure und ihren Vorschlägen zur Verbesserung eines Transfers. Darauf aufbauend wollen wir nun in enger Zusammenarbeit mit den Anwendungspartnern transdisziplinäre Forschungsprojekte etablieren, die die Wirksamkeit der BE Ergebnisse für Forstwirtschaft und Biodiversitätsschutz erhöhen:Im Einzelnen werden wir dabei erstens die Rolle von Habitatbäumen in den BE-Flächen für die Biodiversität und die Holzproduktion analysieren, Baumarten in den BE-Flächen hinsichtlich der mit ihnen assoziierten Biodiversität und ihrer Vitalität vor dem Hintergrund des Klimawandels untersuchen, und wissenschaftliche Daten, die außerhalb der BE-Flächen in Schutzgebieten von zwei BE-Regionen erfasst wurden, mit denen der BE-Flächen vergleichen. Ergebnisse der BE zeigten, dass die Waldbewirtschaftung ein wichtiger Treiber der Biodiversität auf Landschaftsebene ist. Interviews mit Akteuren in den drei Regionen in Wissenstransfer 1.0 verdeutlichten aber auch, dass Bewirtschaftungsentscheidungen häufig von naturräumlichen Gegebenheiten oder sozio-ökonomischen Faktoren bestimmt werden. Durch die Verschneidung der Vielfalt von Bewirtschaftung, Landschaftsvariablen und Besitzverhältnissen wollen wir zweitens die wichtigsten Treiber der Biodiversität in den Regionen identifizieren. Praxis-relevante Ergebnisse sollen regelmäßig der forstlichen und naturschutzfachlichen Praxis durch eine Wissenstransfer-Webseite und mit Hilfe eines Netzwerkes an Multiplikatoren zur Verfügung gestellt. Wir werden dabei Bewirtschaftungsoptionen und ihre Konsequenzen für die Biodiversität ebenso aufzeigen, wie Grenzen der Übertragbarkeit der Ergebnisse. Wichtige Fragen der Akteure sollen drittens an wissenschaftliche Experten der BE weitergeleitet werden und die Grundlage für zukünftige transdisziplinäre Forschungsprojekte bilden.

Entwicklung einer neuen Methodik zur Vorhersage kaskadierender Stressoren in aquatischen Ökosystemen: Posterior Predictive Meta-analytic Networks

Stressoren kaskadieren in komplexer Art und Weise durch Ökosysteme. Zum Beispiel führt Nährstoffeintrag in Seen zu erhöhten Chlorophyll-a-Konzentrationen; in der Folge entstehen Trübungen und kleine Makrophyten können durch Beschattung verschwinden; gleichzeitig nimmt die Kohlendioxidkonzentration durch Photosynthese ab, wodurch Makrophyten, die ausschließlich Kohlendioxid verwenden können, beeinträchtigt werden. Viele Studien behandeln einzelne Teile solcher komplexen Beziehungen, aber bisher ist es nicht möglich, aus Einzelstudien resultierende Funktionen meta-analytisch zu einem kausalen Netzwerk zu kombinieren. Dieses Projekt wird eine neue Methode entwickeln um die Ergebnisse zahlreicher Studien zu integrieren und so komplexe Folgen von Stressoren in Ökosysteme vorherzusagen. Zwar gibt es bereits einige prinzipiell geeignete Modelltypen, aber alle haben Schwächen: Mechanistische Modelle treffen Vorhersagen, aber ihnen fehlt ein meta-analytischer Ansatz; Bayesische Strukturgleichungsmodelle integrieren Pfade, aber ebenfalls ohne meta-analytische Komponente; Bayesian Belief Networks sind zwar flexibel, können aber nichtlineare Funktionen nicht integrieren; Bayesische meta-analytische Strukturgleichungsmodelle verwenden standardisierte Effektgrößen, können aber keinen Stressor-Gradienten vorhersagen. In dem beantragten Vorhaben wird ein neuer Ansatz entwickelt (Posterior Predictive Meta-Analytic Networks), der Vorteile existierender Ansätze kombiniert und ihre Schwächen umgeht. Die Methode basiert auf absoluten Effektgrößen, die meta-analytisch kombiniert werden und kann gleichermaßen lineare, Kurven- und nichtlineare Funktionen verwenden. Sie generalisiert direkte und indirekte kausale Beziehungen zwischen Stressoren und ihren Effekten und ist in der Lage, die Folgen mehrschrittige Reaktionen vorherzusagen. Die PPMN-Syntax wird in R entwickelt, auf GitHub und schließlich auf CRAN verfügbar gemacht. Ein Netzwerk zu den Folgen der Eutrophierung in flachen Seen wird aufgebaut und in zwei Richtungen (Stressorenwirkung auf Effekte; und Vorhersage der Stressorenstärke durch Indikatoren) modelliert. Die etablierte Modellstruktur ist auf viele andere ökologische Fragen anwendbar.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: HerbAdapt - Anpassung von Waldunterwuchspflanzen an Waldmanagement

HerbAdapt - Anpassung von Waldunterwuchskräuter an WaldmanagementAnpassung von Pflanzen an Landnutzung wurde häufig im Kontext von Grünländern untersucht, während Studien über die Anpassung von Waldunterwuchspflanzen fehlen. Das ist überraschend, da Waldmanagement einen starken Einfluss auf die Umweltbedingungen in der Krautschicht hat, vor allem auf Licht und Bodenfeuchte, welche wiederum das Waldunterwuchspflanzen stark beeinflussen. Ich vermute, dass diese Umweltvariation eine divergierende Selektionskraft ist, die zu phänotypischer Merkmalsdifferenzierung und lokaler Anpassung von Waldunterwuchspflanzen an Waldmanagement führt. In meinem Projekt HerbAdapt werde ich zwei Common Garden Experimente - eines davon mit einer Licht- und Trockenheitsbehandlung - sowie ein reziprokes Transplantationsexperiment durchführen, um diese Hypothese für mehrere weitverbreitete Waldunterwuchspflanzen (vier Kräuter, zwei Gräser), die sich in ihrer Ausbreitungsrate unterscheiden, zu testen. Ich werde Fitness- und funktionelle Merkmale untersuchen, sowie Blühphänologie, da diese in Beobachtungsstudien im Feld mit Waldmanagement korreliert. Die Mittelwerte der phänotypischen Merkmale und deren Reaktionen auf experimentelle Behandlungen werden in den Common Garden Experimenten gemessen, und mit Waldstruktureigenschaften und mikroklimatische Variablen korreliert. Mit dem reziproken Transplantationsexperiment werde ich explizit die Anpassung an Waldmanagement testen, in dem ich ein Transplantationsdesign auf Ebene der Exploratorien entlang eines Managementintensitäts-Gradienten anwende.Damit wird mein Projekt zum Verständnis der Auswirkungen von Waldmanagement auf phänotypische Merkmalsvariation in Waldunterwuchskräutern beitragen. Als wichtige Ebene der Biodiversität ist phänotypische Merkmalsvariation innerhalb dieser Arten entscheidend für die Anpassung an zukünftige Veränderungen des Waldmanagements und den voranschreitenden globalen Wandel.

Forschergruppe (FOR) 5064: Die Rolle der Natur für das menschliche Wohlergehen im sozial-ökologischen System des Kilimandscharo, Teilprojekt: Biodiversität und Bereitstellung materieller und immaterieller NCP

Materielle sowie immateriellen Beiträge der Natur zu Menschen (nature’s contributions to people, NCP) sind wichtige Bestandteile des menschlichen Wohlbefindens, werden jedoch selten gemeinsam untersucht. Wichtig hierbei ist, dass derzeit ein gutes Verständnis der Beziehungen und Mechanismen fehlt, die die biologische Vielfalt und materielle und immaterielle NCP verbinden. Dies gilt insbesondere für tropische Gebirgsökosysteme. Das übergeordnete Ziel von KiLi-SES SP2 besteht darin, Komponenten der biologischen Vielfalt zu identifizieren und zu quantifizieren, die die Versorgung mit materiellen und immateriellen NCP unterstützen, und die Auswirkungen von Klima- und Landnutzungsgradienten auf die Beziehungen zwischen biologischer Vielfalt und NCP zu untersuchen. Für materielle NCP werden wir uns auf die Produktion von Brennholz und Holzkohle (Energie), Pflanzen, Lebensmittel aus der Natur, Viehfutter und schädliche Arten (für Lebensmittel und Futtermittel), Ethnopharmazie (medizinische Ressourcen), Holzproduktion und Kleidung (Materialien) konzentrieren. Für immateriellen NCP werden wir Freizeitaktivitäten, Klanglandschaften, Landschaftsästhetik und psychologisch nützliche und schädliche Arten (physische und psychologische Erfahrungen) sowie die Zufriedenheit mit dem Kennen bestimmter Arten und heiliger Orte (unterstützende Identitäten) untersuchen. Wir werden uns zum einen auf Datensätze stützen, die in KiLi 1 auf der Ebene von 65 Untersuchungsflächen entlang des Höhengradienten am Kilimandscharo gesammelt wurden. Zum anderen werden wir weitere Datenerhebungen durchführen, um Biodiversitätskomponenten auf der Ebene der Arten, über taxonomische, phylogenetische und funktionelle Vielfalt, bis hin zur Vielfalt von Ökosystemen zu erfassen. Insbesondere sind zusätzliche Daten erforderlich, um spezifische Biodiversitätskomponenten zu quantifizieren, die materielle NCP (z. B. Sorten, Ernteertrag) und nicht-materielle NCP (z. B. Landschaftsästhetik, Klanglandschaften) unterstützen. Unsere spezifischen Ziele sind: (1) Die Bewertung des Angebots an materiellen und immateriellen NCP am Kilimandscharo, (2) Die Untersuchung, welche Biodiversitätskomponenten für materielles und immaterielles NCP und deren Beziehung zu Klima- und Landnutzungsgradienten verantwortlich sind, und (3) die Untersuchung der Synergien und Zielkonflikte beim Angebot multipler materieller und immaterieller NCP in Bezug auf die verschiedenen am Kilimandscharo anwesende Akteursgruppen. KiLi-SES SP2 wird daher wichtige Informationen zur Versorgung mit materiellen und immateriellen NCP und deren Treibern liefern, die zusätzlich zu den Daten zur Regulierung von NCP in KiLi-SES SP1 zu einem grundlegenden Verständnis dessen beitragen, wie die Natur zum Wohlbefinden von Menschen in tropischen Gebirgsökosystemen beiträgt.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Kernprojekt 5: Pflanzen

Das Kernprojekt 5 - Pflanzen - wird weiterhin wichtige Hintergrundinformationen für die anderen Kern- und Beitragsprojekte liefern und die grossen Multi-Site Experimente unterstützen. Dazu werden wir das Monitoring der Vielfalt und Abundanz der Gefäßpflanzen in allen Wald- und Grünland-EPs fortsetzen. Im neuen Multi-Site-Experiment in Wiesen und in der krautigen Vegetation im neuen Multi-Site-Experiment in Wäldern werden Pflanzenvielfalt, -abundanz und -produktivität weiter gemonitored. Darüber hinaus werden wir die Biomasseproduktion in allen Grünland-EPs und im Unterwuchs aller Wald-EPs als wichtige Ökosystemleistung monitoren und Informationen zu den verschiedenen Nutzungswerten von Pflanzenarten (z. B. medizinisch, als Baumaterial, Energie, Zierpflanzen) als weitere wichtige Ökosystemleistung zusammenstellen. Wir bieten Daten zur intraspezifischen Variation der funktionalen Merkmale der Pflanzen und berechnen auf Grundlage dieser individuellen Merkmale für jedes Diagramm die funktionalen Diversitätsmaße. Darüber hinaus werden wir Klima- und Landnutzungsdaten verwenden, um extreme Klima- oder Landnutzungsereignisse als Abweichungen von langfristigen Durchschnittswerten zu identifizieren und deren Auswirkungen auf die Pflanzenvielfalt zu analysieren. Schließlich werden wir langfristige Änderungen in der Vegetationszusammensetzung in Bezug auf Landnutzungsänderungen, Klima und Waldstruktur analysieren. Insgesamt wird dieses Projekt Daten und Erkenntnisse zu allen Untersuchungsflächen liefern, die für alle anderen Projekte wichtig sind.

Ein neuartiges Werkzeug zur Punktmuster-Rekonstruktion zur vereinfachten Bewertung der natürlichen Verjüngung in Waldbeständen auf der Grundlage kleiner Referenzdatensätze

Auf Grund ihrer Bedeutung für die Anpassung der Wälder an Umweltänderungen und ihrer Widerstandsfähigkeit gegenüber Störungen ist die Naturverjüngung zu einem Schwerpunkt der ökologischen Waldforschung geworden. Trotz der jüngsten technologischen Entwicklungen bleibt dies eine große Herausforderung. Insbesondere sehr kleine Pflanzen mit einer Höhe von weniger als 1,30 m und entsprechend kleinen Durchmessern sind mit photogrammetrischen Methoden schwer zu identifizieren. Manuelle Inventurmethoden, wie z. B. die klassische Vollinventur sind aber arbeitsintensiv und zu teuer, um sie auf großen Flächen anzuwenden. Das Projekt möchte dazu beitragen, dieses Problem zu lösen, in dem es ein Simulationswerkzeug zur Rekonstruktion von Punktmustern vorstellt und seine Qualität systematisch untersucht. Es basiert auf einem Forschungsansatz der drei Arbeitsschritte umfasst (1) die Erfassung der räumlichen Daten aller Bäume einschließlich der Verjüngung auf einer kleinen Teilfläche (= Referenzfläche), (2) die Erfassung des Oberstandes im gesamten Bestand (=Untersuchungsfläche) und (3) die Rekonstruktion der Verjüngung im gesamten Untersuchungsgebiet, wobei davon ausgegangen wird, dass überall die gleichen Beziehungen zwischen den Bäumen des Oberstandes und der Verjüngung wie in der Referenzfläche bestehen. Dieser Ansatz erlaubt es, die heutigen logistischen Möglichkeiten zu kombinieren: (a) die manuelle Erfassung der Verjüngung auf kleiner Fläche ist machbar, und (b) die Inventur des Oberstandes mit modernen Fernerkundungs- oder photogrammetrischen Methoden ist relativ einfach und weniger arbeitsintensiv. Indem das Projekt einen vorhanden und in den Forstwissenschaften bekannten Datensatz nutzt (Trainingsgrundlage wird der Datensatz des saisonalen tropischen Regenwaldes der Insel Barro Colorado (BCI) in Panama sein), kann es sich auf Schritt (3) beschränken. Ziel ist es systematisch zu untersuchen, welchen Einfluss eine höhere Strukturvielfalt und das Größenverhältnis von Referenz- und Prädiktionsflächen (= die gesamte Untersuchungsfläche) auf die Ergebnisse der Punktmuster-Rekonstruktion von Verjüngungspflanzen (=Unterstand) hat und welche räumlichen Statistiken besonders geeignet sind, diesen Einfluss quantitativ oder qualitativ zu bewerten. Die numerischen Methoden werden in einem dokumentierten R-Skript (bzw. R-Package) als zuverlässiges und effizientes Werkzeug für die Waldökologie und die forstliche Praxis zur Verfügung gestellt.

Untersuchung der Stabilität der topografischen Auswirkungen auf die Kohlenstoffverteilung in den borealen Wäldern des Tundra-Taiga-Ökotons in der Klimakrise

Ein erheblicher Teil des Kohlenstoffs im Tundra-Taiga-Ökoton (engl. ‚Tundra Taiga Ecotone‘, TTE) wird als oberirdische Biomasse (engl. ‚Above-Ground Biomass‘, AGB) in Bäumen und Sträuchern durch Photosynthese gespeichert, wobei Kohlenstoffdioxid aus der Atmosphäre während der kurzen Wachstumsperiode in hohen Breiten entzogen wird. Dies führt zu geringer Kohlenstoffspeicherung im TTE. Der Klimawandel könnte die Produktivität beeinflussen und Vegetationsmuster verändern. Die Rolle abiotischer Faktoren in der Kohlenstoffspeicherung borealer Wälder ist ungenügend verstanden. Eine Neubewertung der Vegetationsorganisation muss hinsichtlich statischer Modulatoren erfolgen. Topografie, ein wichtiger Faktor für Wasser- und Nährstoffverfügbarkeit, ist ein statischer abiotischer Faktor, der die lokalen Wachstumsbedingungen beeinflusst. Mit steigenden Temperaturen wird erwartet, dass Niederschlag intensiver und häufiger wird, was zu Wasserstau oder Nährstoffauswaschung an bestimmten topografischen Positionen führen kann und den Rückgang bestimmter Baumarten zur Folge haben könnte. Daher könnte der Klimawandel lokale Reaktionen auf die topografische Position verändern und Wechselwirkungen mit Wetterbedingungen beeinflussen. Die Topografie könnte die Auswirkungen des Klimawandels mildern und anpassungsfähigen Arten zugutekommen, während andere unter veränderten Bedingungen leiden. Das Verständnis der Beziehung zwischen Topografie und Biomasseakkumulation ist entscheidend für die Bewertung der zukünftigen Rolle borealer Wälder im globalen Kohlenstoffhaushalt. Das BToBE-Projekt zielt darauf ab, Wissenslücken hinsichtlich des Einflusses der Topografie auf die Biomasseakkumulation im TTE zu schließen und deren Auswirkungen durch Vorwärtssimulation mit einem prozessbasierten Vegetationsmodell zu bewerten. Die zentrale Hypothese ist, dass sich die Reaktionen der Vegetation auf topografische Bedingungen im TTE aufgrund starker globaler Erwärmung verändert haben. Kürzlich wurden drohnenbasiert 3D-Punktwolken gesammelt, die verarbeitet werden, um Waldbiomasse zu ermitteln. Diese hochauflösenden Referenzdaten erfassen den bioklimatischen Gradienten des TTE, wobei die nördliche Baumgrenze in Niederungen mit Permafrost und im gebirgigen Terrain verläuft. Die drohnenbasierten AGB-Daten werden verwendet, um ein AGB-Modell für das großflächige Ableiten (engl. ‚upscaling‘) mit Landsat- und Sentinel-2-Multispektralsensoren zu entwickeln. Das Ziel ist dreistufig: Erstens sollen die Beziehungen zwischen AGB und Topografie mithilfe von verallgemeinerten additiven Modellen aufgeklärt werden; zweitens soll die Stabilität dieser Abhängigkeiten durch Rekonstruktion langfristiger AGB-Daten aus den vergangenen Jahrzehnten untersucht werden. Dies wird für die Verbesserung und Implementierung des Individuen-basierten und räumlich expliziten borealen Waldvegetationsmodells LAVESI genutzt, zur Ableitung von AGB-Trajektorien im TTE in den kommenden Jahrzehnten.

Vorhersagen und Verständnis der Diversitätsvorteile von Sortenmischungen

Die Landwirtschaft steht vor enormen Herausforderungen: Die Erträge müssen gesteigert werden, während der Einsatz von Düngemitteln und Pestiziden reduziert werden muss, und das in einer Zeit zunehmender klimatischer Unsicherheit. Diversifizierung im landwirtschaftlichen Anbau ist eine der wenigen bekannten Möglichkeiten, alle diese Herausforderungen gleichzeitig zu bewältigen. Traditionell wird die Diversifizierung "zeitlich" in Form von Fruchtfolgen erreicht. Dagegen wird die "räumliche" Diversifizierung auf dem Feld, z. B. in Form von Mischkulturen, seltener angewandt, weil sie selten mit den gängigen mechanisierten Verfahren kompatibel ist. Sortenmischungen stellen einen interessanten Mittelweg zwischen Rein- und Mischkulturen dar, da sie es ermöglichen, die genetische Vielfalt und die Merkmalsvielfalt innerhalb des Feldes zu erhöhen, während sie in Bezug auf die Verarbeitung mit Reinkulturen vergleichbar sind. Derzeit ist jedoch noch nicht genau bekannt, wie Mischungen zusammengesetzt sein müssen, um den Ertrag und die ökologische Funktion zu optimieren. In diesem Projekt wollen wir die positiven Auswirkungen der Sortenvielfalt in Weizenmischungen untersuchen und einfache, aber wirksame Vorhersagemethoden für eine optimale Mischungszusammenstellung entwickeln. Wir werden das Fachwissen, die Ideen und die technologischen Ressourcen von fünf Forschungsteams aus den Bereichen molekulare Züchtung, Ökologie, Computerwissenschaften, Genetik und Phänomik zusammenführen. Im Rahmen einer internationalen Zusammenarbeit werden wir die Mechanismen untersuchen, die den Vorteilen von Sortenmischungen zugrunde liegen - insbesondere Ertrag und Krankheitsunterdrückung -, und zwar auf verschiedenen Ebenen: (1) mit nischenbasierten Ansätzen, die von der Koexistenztheorie inspiriert sind, (2) unter Verwendung von Hochdurchsatz-phänotypisierung und so-genannten "trait-based" methods, (3) mit Schwerpunkt auf der Pflanzenproduktivität durch Mischung von Komponenten mit unterschiedlichen Umweltoptima (d.h. Reaktions-Normen) und (4) auf der Ebene von Genen und Gen-Umwelt-Interaktionen. Die Prüfung von Hypothesen und die Entwicklung von Modellen werden sowohl durch große historische Felddatensätze als auch durch neue, systematisch angelegte Feldexperimente unterstützt. Das Projekt besteht aus mehreren Arbeitspaketen (WP), die sich auf eine gemeinsame Plattform von Daten und Experimenten sowie auf fortschrittliche Methoden zur Phänotypisierung im Feld stützen. Die Kombination von Ressourcen, Analysemethoden und synergetischem Fachwissen wird es uns ermöglichen, die wissenschaftlichen und logistischen Herausforderungen dieses Projekts zu meistern und wichtige ungelöste ökologische und agronomische Fragen anzugehen. Es ist zu hoffen, dass dieses ehrgeizige Projekt den Grundstein für die Förderung leistungsfähiger Sortenmischungen als Schlüsselkomponente des agrarökologischen Anbaus legt.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Die Rolle von Nährstoffen für die Variabilität der Auswirkungen von Trockenheit auf die Zusammensetzung und Produktivität von Grassländern entlang von Landnutzungsgradienten - ein Merkmals-basierter Ansatz (BEtol2)

Landnutzung und Niederschlagsbedingungen sind wichtige Faktoren für die Diversität und Ökosystemfunktion von Grassländern weltweit, und sind zwei der wichtigsten Treiber des globalen Wandels. Ökosysteme werden gleichzeitig Änderungen von Bodennährstoffen (z.B. durch Düngung) und im Rahmen des Klimawandels häufigeren und intensiveren Trockenheitereignissen ausgesetzt sein. In Kombination können die beiden Faktoren additiv wirken, oder sich gegenseitig verstärken oder abschwächen. Demzufolge variiert die Gemeinschafts- und Ökosystemreaktion auf Trockenheit je nach den Nährstoffbedingungen. Die Mechanismen von Interaktionen von Nährstoffen und Trockenheit bleiben bisher unverstanden, und wir können daher derzeit nicht vorhersagen, bei welcher Landnutzung Grassländer mehr oder weniger sensitiv auf Trockenheit reagieren.Das Hauptziel des Projektes ist es, unsere Vorhersagen für die Konsequenzen von Globalem Wandel auf Grassländer zu verbessern. Dazu werden die kombinierten Effekte von Nährstoffen und Trockenheit auf der Ebene von einzelnen Pflanzenmerkmalen und von Gesamtpflanzen untersucht, und integriert mit Effekten von Trockenheit auf die Zusammensetzung und Produktivität von Pflanzengemeinschaften entlang von Landnutzungsgradienten in Grassländern.In einem Gewächshausexperiment werden wir für 16 Arten, die in den Exploratorien häufig sind, vergleichend die Plastizität im Hinblick auf Nährstoffe für einen umfassenden Satz von mehr als 20 physiologischen, morphologischen und Gesamtpflanzen-Merkmalen untersuchen, die relevant für den Wasserhaushalt von Pflanzen sind. In einem 'common garden' Experiment werden wir die kombinierten Effekte von Nährstoffen und Trockenheit (und ihre Interaktionen) für Gesamtpflanzen dieser Arten quantifizieren. Zusätzlich werden wir die Effekte von experimenteller und natürlicher Trockenheit entlang von Gradienten der Nährstoffverfügbarkeit und Landnutzung (insbesondere Düngung) in den Exploratorien bestimmen. Die direkte Verknüpfung der Daten auf Ebene von Merkmalen, Gesamtpflanzen, Gemeinschaften und Ökosystemen wird unser mechanistisches Verständnis von kombinierten Effekten von Nährstoffen und Trockenheit auf Grassländer unter derzeitigen und zukünftigen Bedingungen verbessern. Die Ergebnisse werden sowohl in angewandter als auch in wissenschaftlicher Hinsicht wichtige neue Erkenntnisse liefern.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Unterirdische Pflanzenmerkmale und ihr Einfluss auf die Biodiversität und Ökosystemfunktionen

Viele Prozesse, die an der Verbreitung von Pflanzenarten und der Funktion von Ökosystemen beteiligt sind, finden unter der Erde statt. Da sich jedoch die meisten Studien mit oberirdischen Pflanzenmerkmalen auseinandersetzten, wurden die unterirdischen Merkmale bislang weitestgehend ignoriert. Die Biodiversitätsforschung bedarf demnach noch großer Mengen an Wurzeldaten vieler Pflanzenarten. Deshalb möchten wir Wurzelmerkmale und Daten über Pilzendophyten für die ca. 350 Blütenpflanzen, die in den 150 experimentellen Grasslandflächen (EPs) der Biodiversitätsexploratorien vorkommen, aufnehmen. In mehreren Experimenten sollen Pflanzen dieser Arten kultiviert und Daten zu Wurzelmorphologie, Plastizität der Wurzelmorphologie (in Abhängigkeit von Düngerzugabe), Aufnahmekapazität von Stickstoff in unterschiedlicher Form sowie Infektion durch Pilzendophyten bestimmt werden. Wir möchten die so erhobenen Daten gemeinsam mit anderen Daten aus den Biodiversitätsexploratorien nutzen, um zu untersuchen, inwieweit das Auftreten und die Abundanz der betrachteten Arten durch ihre Wurzelmerkmale bestimmt werden. Dabei interessiert uns der Zusammenhang der Wurzelmerkmale mit Umweltfaktoren wie der Landnutzung und die Frage, inwieweit die unterirdische Merkmalsdiversität mit der oberidischen Merkmalsdiversität und den Ökosystemfunktionen zusammenhängt.

1 2 3 4 511 12 13