Landnutzung und Niederschlagsbedingungen sind wichtige Faktoren für die Diversität und Ökosystemfunktion von Grassländern weltweit, und sind zwei der wichtigsten Treiber des globalen Wandels. Ökosysteme werden gleichzeitig Änderungen von Bodennährstoffen (z.B. durch Düngung) und im Rahmen des Klimawandels häufigeren und intensiveren Trockenheitereignissen ausgesetzt sein. In Kombination können die beiden Faktoren additiv wirken, oder sich gegenseitig verstärken oder abschwächen. Demzufolge variiert die Gemeinschafts- und Ökosystemreaktion auf Trockenheit je nach den Nährstoffbedingungen. Die Mechanismen von Interaktionen von Nährstoffen und Trockenheit bleiben bisher unverstanden, und wir können daher derzeit nicht vorhersagen, bei welcher Landnutzung Grassländer mehr oder weniger sensitiv auf Trockenheit reagieren.Das Hauptziel des Projektes ist es, unsere Vorhersagen für die Konsequenzen von Globalem Wandel auf Grassländer zu verbessern. Dazu werden die kombinierten Effekte von Nährstoffen und Trockenheit auf der Ebene von einzelnen Pflanzenmerkmalen und von Gesamtpflanzen untersucht, und integriert mit Effekten von Trockenheit auf die Zusammensetzung und Produktivität von Pflanzengemeinschaften entlang von Landnutzungsgradienten in Grassländern.In einem Gewächshausexperiment werden wir für 16 Arten, die in den Exploratorien häufig sind, vergleichend die Plastizität im Hinblick auf Nährstoffe für einen umfassenden Satz von mehr als 20 physiologischen, morphologischen und Gesamtpflanzen-Merkmalen untersuchen, die relevant für den Wasserhaushalt von Pflanzen sind. In einem 'common garden' Experiment werden wir die kombinierten Effekte von Nährstoffen und Trockenheit (und ihre Interaktionen) für Gesamtpflanzen dieser Arten quantifizieren. Zusätzlich werden wir die Effekte von experimenteller und natürlicher Trockenheit entlang von Gradienten der Nährstoffverfügbarkeit und Landnutzung (insbesondere Düngung) in den Exploratorien bestimmen. Die direkte Verknüpfung der Daten auf Ebene von Merkmalen, Gesamtpflanzen, Gemeinschaften und Ökosystemen wird unser mechanistisches Verständnis von kombinierten Effekten von Nährstoffen und Trockenheit auf Grassländer unter derzeitigen und zukünftigen Bedingungen verbessern. Die Ergebnisse werden sowohl in angewandter als auch in wissenschaftlicher Hinsicht wichtige neue Erkenntnisse liefern.
Räumliche Heterogenität in Standorteigenschaften ist ein Hauptfaktor für das Entstehen von Biodiversität, er wurde jedoch in den Biodiversitätsexploratorien kaum untersucht. Wir wollen diese Lücke füllen, indem wir theoretische, experimentelle und beobachtenden Studien integrieren, um die Mechanismen zu untersuchen, durch welche Habitatheterogenität von Landnutzung und Heterogenität durch Landnutzung Artenvielfalt im Grünland beeinflussen. Ein zugrunde liegendes Modell ist, dass Heterogenität sowohl positive als auch negative Effekte hat, bewirkt durch einen immanenten trade-off zwischen dem Heterogenitätsniveau und der effektiven Fläche, welche für Individuen in der Gemeinschaft zur Verfügung steht (AHTO-area-heterogeneity trade-off). In Phase 1 verwenden wir analytische Modelle, um einige simplifizierende Annahmen voriger AHTO-Modelle zu erweitern. Gleichzeitig diente ein einmaliges neues experimentelles System dem Test einiger Grundvorhersagen der Modelle. In Phase 2 erweitern wir unsere Arbeit in 3 Richtungen. 1) Wir skalieren unsere Modelle sowohl hoch (durch Erweitern des lokalen Modells zu einem Meta-Gemeinschaftsmodell) als auch herunter (durch explizite Modellierung von ober- und unterirdischen Konkurrenzeffekten bei individuellen Pflanzen). Die größere Skala wird das Modell an die Struktur der empirischen Arbeiten angleichen, die kleine Skala erfasst die eigentlichen Mechanismen, welche Landnutzung (insbesondere Düngung, Mahd, Beweidung) mit Konkurrenz und Artenvielfalt verbindet. 2) Um die empirisch beobachteten Diversitätsmuster besser zu verstehen, etablieren wir ein neues Experiment, in welchem wir das Wachstum der Zielarten ohne Konkurrenz messen, sowie unter Simulation von Düngung, Mahd und Tritt auf flachen und tiefen Böden. Die Ergebnisse gehen auch als realistischere Parameter in unsere Modelle ein. 3) Wir etablieren ein neues skalenübergreifendes Beobachtungssystem, um Landnutzung, Habitatheterogenität und Diversität zu verknüpfen. Die Untersuchungseinheit entspricht dabei derjenigen in den Experimenten, und das Design umfasst einen sehr großen Bereich von Skalen (vom Zentimeterbereich bis hin zu vielen Hundert Kilometern). Zudem nutzen wir neue Kooperationen in den Exploratorien, insbesondere mit CP3, um mit Fernerkundungsmethoden umfassende Daten zu kleinskaliger Habitatheterogenität und beta-Diversität für alle Grünland-EPs zu generieren. Die skalenübergreifenden theoretischen, experimentellen, beobachtenden und Fernerkundungsmethoden tragen signifikant zum Kausalverständnis darüber bei, wie Landnutzung Biodiversität indirekt, nämlich durch Modifikation von Habitatheterogenität, beeinflusst. Zudem liefern wir Daten für umfassende neue Syntheseprojekte.
Da sich der Klimawandel und die menschlichen Aktivitäten verstärken, wird es erwartet, dass die terrestrischen Einträge von gelöstem organischem Material (Disssolved Organic Matter, DOM) in Seen zunehmen. Diese erhöhten Einträge führt zu einer braunen Verfärbung des Wassers und einer verringerten Lichtdurchlässigkeit in der Wassersäule, was Herausforderungen für die Seenökosysteme darstellt sowie ihren gesellschaftlichen Wert beeinträchtigt. Aquatische Mikroorganismen können besonders anfällig für die Verfärbung von Seen sein, mit Folgen für die Primärproduktion, Nahrungsnetze und das Auftreten von giftigen Algenblüten. Unsere Fähigkeit, die ökologischen Folgen der Verfärbung von Seen vorherzusagen, wird jedoch durch begrenztes Wissen über die Reaktionen der mikrobiellen Gemeinschaft, sowie die Widerstandsfähigkeit dieser Gemeinschaften gegenüber Umweltveränderungen beeinträchtigt. Wir schlagen vor, dass die Reaktion der aquatischen Mikroorganismen auf Umweltstress stark von Interaktionen mit anderen Mitgliedern der Gemeinschaft beeinflusst wird. Daher wird dieses Projekt ökologische Interaktionen zwischen einzelligen Algen (Phytoplankton) und Bakterien in Seen untersuchen, die erhöhte DOM Einträge und reduzierte Lichtverfügbarkeit erleben. Während mikrobielle Interaktionen hauptsächlich in vereinfachten Modelsystemen untersucht wurden, bleibt die Empfindlichkeit von algenassoziierten Bakteriengemeinschaften gegenüber Umweltstressoren und deren Auswirkungen auf die physiologischen Eigenschaften der Algen weitgehend unerforscht. Um diese Lücke zu schließen, unser Ziel ist es, zu untersuchen, wie sich die Verfärbung des Wassers auf Folgendes auswirkt: 1. die physiologischen Reaktionen des Phytoplanktons, 2. den Transfer von DOM zwischen Algen und assoziierten Bakterien und 3. die Zusammensetzung der algenassoziierten Bakteriengemeinschaften. Damit wollen wir die wechselseitigen Einflüsse zwischen Phytoplankton und zugehörigen Bakterien sowie die Kohlenstoffaufnahme von interessanten bakteriellen Taxa unter sich ändernder Licht- und DOM-Verfügbarkeit entschlüsseln. Messungen der natürlichen Isotopenhäufigkeit und Labeling Experimente mit stabilen Isotopen werden verwendet, um die Primärproduktion, die Atmung und die Aufnahme des durch die Algen produzierten Kohlenstoffs quantitativ zu erfassen. Darüber hinaus werden wir Mikroskopie und genomische Analysen verwenden, um die räumliche Strukturierung und die Zusammensetzung der algenassoziierten Gemeinschaft von Mikroorganismen zu erfassen. Unsere Experimente werden uns helfen zu verstehen, ob die grundlegende Funktionalität trotz der Veränderungen der Gemeinschaft erhalten bleibt, und welche bakteriellen Taxa und Funktionen voraussichtlich stärker auf die Veränderungen reagieren werden. Dieses Projekt wird das Wissen über Interaktionen auf zellulärer Ebene in eine ökosystemweite Perspektive von Süßwasserseen integrieren.
Pflanzen passen sich mit erstaunlicher morphologischer Plastizität an Umweltveränderungen an, wie sie z.B. durch landwirtschaftliche Nutzung erzeugt werden. Die diesen morphologischen Veränderungen zugrundeliegenden molekulargenetischen Prozesse und hieraus resultierende Verschiebungen in genetischer Diversität sind jedoch größtenteils unbekannt. In dem hier beantragten Projekt wollen wir deshalb die molekulargenetischen Reaktionen auf Störungen und Umweltveränderungen untersuchen (Mahd und Düngung im Grünland). Rotklee (Trifolium pratense) ist als wertvoller Proteinlieferant eine der wichtigsten Nutzpflanzen im Grünland und trägt durch N2-Fixierung zur Reduktion der Stickstoffdüngung in Böden bei, sodass er die Ökobilanz landwirtschaftlich genutzter Grünlandflächen nachaltig verbessern kann. T. pratense findet sich auf allen Grünlandflächen der Biodiversitätsexploratorien und wir konnten in TRATSCH I zeigen, dass T. pratense (i) verschiedene morphologische Reaktionen auf Mahd zeigt. (ii) Wir identifizierten Mahd-spezifisch differenziell exprimierte Entwicklungskontrollgene und Gene, die standortspezifisch differenziell exprimiert werden, und (iii) etablierten ein mRNA-seq-Fingerprinting Protokoll. Mit diesem kann eine große Zahl an Individuen auf vielen Plots unter unterschiedlichen Landnutzungsbedingungen analysiert werden. Durch Korrelation mit diversen Umweltdaten können Effekte der Umwelt von denjenigen der Landnutzung unterschieden werden. Damit verknüpfen wir Landscape Genetics mit Landscape Genomics, um die Genomfunktionalität einzelner Arten im Umweltzusammenhang zu analysieren. In TRATSCH II beabsichtigen wir unsere Datenaufnahme auf alle Exploratorien auszudehnen, um die Störungs- und Umweltspezifität der exprimierten Transkriptom-Fingerprints in größerem Zusammenhang zu analysieren. Expressionsstudien und funktionelle Studien der Mahd-spezifischen Entwicklungskontrollgene werden Aufschluss darüber geben, wie Pflanzen auf molekulargenetischer Ebene die Veränderung des Morphotypus und das Nachwachsen nach der Mahd steuern. Um die Ökobilanz im Grünlandanbau zu optimieren, untersuchen wir experimentell verschiedene Anbauverfahren, um hohe Proteinerträge mit möglichst niedrigen Düngergaben zu erhalten. Ferner überprüfen wir die Hypothese, dass epigenetische Modifikationen für die Regulation der morphologischen Veränderungen mit verantwortlich sind durch temporäre und quantitative Analyse von Methylierungsmustern der genomischen Loci von Entwicklungskontrollgenen.
Bakterielle Gemeinschaften die mit oberirdischen Pflanzenteilen assoziiert sind spielen eine entscheidende Rolle für die Gesundheit der Wirtspflanze. Es wird vermutet, dass die Zusammensetzung dieser zu einem großen Teil durch das Ursprungsmaterial für Besiedelung (z.B. Erde) determiniert wird, aber auch dass Pflanzen-Charakteristika wie die Verfügbarkeit von Stickstoff und Kohlenstoff, sowie Sekundärmetabolite entscheidend sind. Obwohl Blüten direkt an die Gesundheit und Reproduktion von Pflanzen gekoppelt sind, sind die bakteriellen Kolonisierer der Anthosphäre derzeit deutlich weniger charakterisiert und verstanden als Blatt-assoziierte Bakterien. Dies betrifft auch deren ökologische Rolle und wie sich Umgebungsgradienten, wie z.B. Landnutzung auf Zusammensetzung und Funktion dieser Organismen auswirken. Wir planen mit Hilfe des hierarchischen Designs der Exploratorien organismische und genetische alpha-, beta- und gamma-Diversität von Blüten-Microbiomen zu erfassen. Wir zielen darauf hin, diese in Zusammenhang mit Landnutzung, Pflanzendiversität sowie Blütencharakteristika (Düfte, C- und N-Verfügbarkeit) zu bringen und die Verknüpfung der verschiedenen Biodiversitäts-Ebenen untereinander zu verstehen. Diese Daten werden uns erlauben, die jeweilige Bedeutung von Umgebungs- und Pflanzenfaktoren abzuschätzen. Damit werden die Ergebnisse eine neue Perspektive auf die Assoziation von Bakterien und Blüten ermöglichen und auch die Einflüsse anthropogener Veränderungen auf deren organismische und genetische Diversität zu verstehen.
The importance of data and their re-use in synthesis and long-term studies is very well acknowledged in the Biodiversity Exploratories. A data policy was already adopted at the start of the project and a central database was implemented at the beginning of the first phase. The early provision of the database and a consistent observance and incorporation of user needs and requirements have resulted in high acceptance. The central data management provides an environment for data interchange and simple data re-use, stimulating and facilitating synthesis. The central database also provides the IT- infrastructure for efficient field resource management needed by the local management teams and the Biodiversity Exploratory Office, as well as a tool to provide information about species occurrence to landowners and a tool to compute the Land Use Intensity Index, LUI, for grasslands, a parameter that is used by many groups. The database secures the interpretability of data and provides the means for data quality control. It functions both as a work-in-progress storage and as a temporary archive. This proposal shall secure the continuation of this strong and, for the overall success of the Exploratories, essential work. In addition to continued provisioning of the infrastructure and user support (in particular with respect to synthesis) the work in the new funding period will focus on the following topcis: development of further research supporting tools, development of features for scientific communication, ensuring FAIRness of data and the repository itself.
Plastik wurde in einer Vielzahl von Umweltkompartimenten nachgewiesen, überwiegend als Mikroplastik, d.h. Kunststoffteile kleiner als 5 mm. Erste Untersuchungen wurden in marinen und aquatischen Systemen durchgeführt; Böden sind hingegen erst kürzlich in Bezug auf Mikroplastik in den Fokus gerückt, wobei Daten zeigen, dass es sich um eine verbreitete Kontamination der Böden handelt, mit potenziellen Folgen für bodenphysikalische, -chemische und -biologische Parameter. Angesichts der Vielzahl von Eintragspfaden, zu denen Plastikmüll, Kompost, Ablagerung aus der Luft und Straßen gehören, ist davon auszugehen, dass Mikroplastik in Böden der Biodiversitäts-Exploratorien vorhanden ist. Unsere Forschung hat zwei Ziele: Erstens wollen wir wissen, ob Mikroplastik (Vorhandensein und/oder Typ) die Intensität der Landnutzung widerspiegeln kann. Dafür werden wir Böden aus allen 150 EPs im Grünland beproben und mit Extraktions- und Identifikationsmethoden (Fourier-Transform-Infrarot-Spektroskopie-Mikroskopie) auf Mikroplastikgehalt, -art und -zusammensetzung untersuchen. Wir können diese Daten dann mit Komponenten der Landnutzungsintensität (LUI) sowie mit Bodeneigenschaften verknüpfen. Zweitens wollen wir die Auswirkungen einer experimentellen Mikroplastik-Zugabe im Feld entlang des Landnutzungsgradienten testen. Wir werden dies mit dem Einsatz und der Wiederentnahme (nach einem Jahr) von kleinen Mesh-Beuteln mit Mikroplastik-kontaminiertem Boden angehen, die in allen VPs im Grünland vergraben werden (mit dem Boden der jeweiligen VPs). Wir verwende hierfür Polyesterfasern, von denen wir bereits wissen, dass sie klare und konsistente Auswirkungen auf bodenphysikalische Eigenschaften und Bodenprozesse haben. Unsere Messvariablen umfassen pilzbezogene Bodenprozesse (Zersetzung, Bodenaggregation) und Pilz-Lebensgemeinschaften, die mittels Illumina MiSeq Hochdurchsatzsequenzierung erfasst werden. Mit unserem Feldversuch wollen wir testen, wie sich Mikroplastik-Effekte zwischen Bodenart und Umweltkontext sowie der Intensität der Landnutzung unterscheiden. Alle experimentellen Objekte werden anschließend aus dem Feld entfernt, um sicherzustellen, dass es keine dauerhafte Kontamination der Exploratorien-Böden gibt. Da wir in diesem Bereich nur einen Mikroplastik-Typ verwenden werden und die Mikroplastik-Verschmutzung aber ein vielschichtiges Thema ist, werden wir auch ein komplementäres Laborexperiment durchführen, bei dem wir nur einen Bodentyp pro Exploratorium verwenden, aber zusätzlich zu den Mikrofasern eine Reihe von verschiedenen Mikroplastik-Typen testen. Insgesamt wird dieses Projekt Einblicke in die Verbreitung und Wirkung von Mikroplastik in Böden liefern, indem sie die einzigartige Fülle der für die Exploratorien verfügbaren Informationen nutzt und gleichzeitig eine neue Variable bietet, die für andere Forscher (z.B. in Syntheseprojekten), aber auch für Stakeholder von Interesse sein kann.
Viele Prozesse, die an der Verbreitung von Pflanzenarten und der Funktion von Ökosystemen beteiligt sind, finden unter der Erde statt. Da sich jedoch die meisten Studien mit oberirdischen Pflanzenmerkmalen auseinandersetzten, wurden die unterirdischen Merkmale bislang weitestgehend ignoriert. Die Biodiversitätsforschung bedarf demnach noch großer Mengen an Wurzeldaten vieler Pflanzenarten. Deshalb möchten wir Wurzelmerkmale und Daten über Pilzendophyten für die ca. 350 Blütenpflanzen, die in den 150 experimentellen Grasslandflächen (EPs) der Biodiversitätsexploratorien vorkommen, aufnehmen. In mehreren Experimenten sollen Pflanzen dieser Arten kultiviert und Daten zu Wurzelmorphologie, Plastizität der Wurzelmorphologie (in Abhängigkeit von Düngerzugabe), Aufnahmekapazität von Stickstoff in unterschiedlicher Form sowie Infektion durch Pilzendophyten bestimmt werden. Wir möchten die so erhobenen Daten gemeinsam mit anderen Daten aus den Biodiversitätsexploratorien nutzen, um zu untersuchen, inwieweit das Auftreten und die Abundanz der betrachteten Arten durch ihre Wurzelmerkmale bestimmt werden. Dabei interessiert uns der Zusammenhang der Wurzelmerkmale mit Umweltfaktoren wie der Landnutzung und die Frage, inwieweit die unterirdische Merkmalsdiversität mit der oberidischen Merkmalsdiversität und den Ökosystemfunktionen zusammenhängt.
Im Rahmen von Kili-SES befasst sich SP6 mit Landnutzung, Management und Naturschutz als Triebkräfte der biologischen Vielfalt. In Kili-SES-1 erwiesen sich Landnutzungsveränderungen durch Bevölkerungswachstum als Schlüsselfaktoren an den unteren Hängen des Kilimandscharo. Es bleibt die Frage, ob die jüngsten Wald- und Buschbrände in den oberen Regionen auf veränderte klimatische Bedingungen hinweisen. Wir wollen den Ursprung und die Folgen dieser Brände als potenziell schädliche NCP auf Landschaftsebene untersuchen. Dabei konzentrieren wir uns auf die biologische Vielfalt und die Wasserbilanz im Nationalpark (zusammen mit SP1) und prüfen, ob solche Brände in den letzten Jahrzehnten zugenommen haben. Da die NCPs stark von der biologischen Vielfalt und dem Funktionieren der Ökosysteme abhängen, untersuchen wir, wie der Mensch die biologische Vielfalt, das Funktionieren der Ökosysteme und folglich das menschliche Wohlbefinden verbessern kann. Konkret wollen wir (zusammen mit SP1 und 2) das ökologische Potenzial für eine Transformierung durch Anpflanzung einheimischer Bäume prüfen, ergänzend zu den Studien von SP3-5. Der Fokus soll auf Auwäldern als wichtige Biodiversitätskorridore und traditionellen Agroforstsystemen als nachhaltige Landnutzungsformen liegen. Während in Kili-SES-1 der Kilimandscharo als isoliertes System betrachtet wurde, planen wir nun eine Erweiterung unserer Perspektive unter Einbeziehung des umliegenden Landschaftskontextes. Der Kilimandscharo war einst mit anderen Bergen durch Waldkorridore verbunden, die als Wanderwege dienten und die biologische Vielfalt beeinflussten, entscheidend für die Widerstandsfähigkeit gegenüber Umweltveränderungen. Ziel ist die Analyse der ökologischen Konnektivität und Telekopplung im Hinblick auf Naturschutzpolitik. Hierzu wollen wir mit umfangreichen Daten zu Pflanzen, Arthropoden und Kleinsäugern die frühere biologische Vielfalt ohne menschlichen Einfluss modellieren, um die ungleiche Verteilung endemischer Arten zu untersuchen, eine kontroverse biogeographische Frage in Ostafrika. Der Kilimandscharo und die umliegenden Berge sind unterschiedlich geschützt (Nationalparks, Natur- und Waldreservate), mit zunehmend fragmentierten Schutzgebieten. Durch Hochskalierung und Modellierung der Biodiversität unter Verwendung von Hyperspektralbildern (zusammen mit SP7) planen wir die sich daraus ergebenden Biodiversitätsniveaus und Bedrohungen zu vergleichen, einschließlich der Auswirkungen der Einbeziehung der Waldgürtel des Kilimandscharo und Meru in Nationalparks im Jahr 2006, die möglicherweise illegale Aktivitäten in die umliegenden Berge verlagert haben. Zusätzlich zu diesen Themen wollen wir weiterhin langfristige Klima- und Dendrometriedaten erheben und umfassendes Monitoring von Gefäßpflanzen, Flechten und Moosen durch (ergänzt durch Pilze) durchführen. So hoffen wir ein Niveau und eine Qualität ökologischer Daten zu erreichen, die für Kili-SES wichtig und für ein tropisches Gebirge einzigartig sind.
Die Ökonomie von Pflanzen wird als Kompromiss zwischen Nährstoffaufnahme und -erhalt angesehen. Wurzeln sind in unserem Verständnis der gesamten Pflanze jedoch immer noch unterrepräsentiert. Wurzeltraits scheinen aufgrund ihrer Interaktion mit Bodenbiota multidimensional zu sein. Kompromisse zwischen der Investition in die Oberfläche der Wurzel bzw. der arbuskulären Mykorrhiza Pilze (AMF) wurden bislang anhand der spezifischen Wurzellänge untersucht. Allerdings sind auch Wurzelhaare dafür bekannt die Phosphoraufnahme zu erhöhen. Diese sind bislang in Konzepten der Wurzelökonomie nicht enthalten. In Gewächshausversuchen zeigte sich, dass Wurzelhaarlänge und -häufigkeit negativ mit der AMF-Kolonisation korrelieren. Dieser Gradient zwischen einer Strategie zur Vergrößerung der Wurzelhaaroberfläche und der AMF-Symbiose erwies sich als unabhängig von der spezifischen Wurzellänge, was auf eine bislang unberücksichtigte Varianz in Wurzeltraits hindeutet. Studien zeigen, dass die AMF-Oberfläche - gemessen als extraradikale Hyphenlänge - mit der Landnutzungsintensität zunimmt, wobei die Bodennährstoff-Stöchiometrie einen Einfluss haben könnte. Daher sind zur Untersuchung der Komplexität des Wurzel-Pilz-Oberflächen-Gradienten Daten von Flächen mit unterschiedlichen Böden erforderlich. In diesem Projekt möchte ich das Konzept eines Wurzel-Pilz-Oberflächen-Gradienten unter Beachtung von Wurzelhaaren und extraradikalen Hyphen erstmals testen. Ich werde Individuen der dominantesten Pflanzenarten im Feld (VIP-Ebene) entlang eines Landnutzungsgradienten untersuchen. Dabei gehe ich von einer Verlagerung hin zu AMF Oberfläche mit zunehmender Landnutzungsintensität aus. Aufgrund von Artenüberschneidungen zwischen den Feldern werde ich sowohl inter- als auch intraspezifische Muster testen können. Die AMF-Gemeinschaft in der Rhizosphäre wird analysiert, um zu testen, ob Veränderungen in der Hyphenlänge auf Veränderungen der AMF-Lebensgemeinschaft zurückzuführen sind. In einem mechanistischen Gewächshausexperiment wird die direkte Wirkung der Bodennährstoff-Stöchiometrie untersucht. Die AMF-Gemeinschaft in der Rhizosphäre sowie der Wurzel soll analysiert werden, um Veränderungen der AMF-Lebensgemeinschaft sowie die Plastizität von Pilzarten bei der Biomasseallokation zu testen. Die Daten werden mit morphologischen, anatomischen und chemischen Wurzeltraits aus früheren Projekten der Biodiversitäts-Exploratorien kombiniert, um die Erkenntnisse in bestehende pflanzenökonomische Konzepte zu integrieren. Der Rahmen der Exploratorien ermöglicht es, dieses verbesserte Verständnis von Wurzeltraits mit Ökosystemprozessen wie Pflanzenproduktivität, Nährstoffkreisläufen oder Bodenaggregation zu verbinden. Dieses Projekt wird das mechanistische Verständnis von Wurzelökonomie verbessern und dazu beitragen, deren Bedeutung für die Vorhersage von Veränderungen in Pflanzengemeinschaften und Ökosystemen bei zunehmender Landnutzung und globalem Wandel zu untersuchen.
| Origin | Count |
|---|---|
| Bund | 90 |
| Type | Count |
|---|---|
| Förderprogramm | 90 |
| License | Count |
|---|---|
| offen | 90 |
| Language | Count |
|---|---|
| Deutsch | 70 |
| Englisch | 87 |
| Resource type | Count |
|---|---|
| Webseite | 90 |
| Topic | Count |
|---|---|
| Boden | 79 |
| Lebewesen und Lebensräume | 89 |
| Luft | 48 |
| Mensch und Umwelt | 90 |
| Wasser | 53 |
| Weitere | 90 |