API src

Found 95 results.

Renaturierung von Mooren der nemoralen Zone unter Bedingungen variabler Wasserverfügbarkeit und -qualität

Die Funktionen von Mooren in Wasser- und Elementkreisläufen, als Kohlenstoffspeicher und in der Bewahrung der Biodiversität sind zunehmend im Fokus wissenschaftlicher und öffentlicher Debatte. Insbesondere im Verlauf des Klimawandels sind renaturierte Hochmoore Klimaextremen ausgesetzt, zum Beispiel Dürren, mit Langzeiteffekten für Boden und Pflanzengemeinschaften, und somit auch für den Kohlenstoffkreislauf. Der Klimawandel erschwert damit zusätzlich die Hochmoorrenaturierung zu bereits vorhandenen Grenzen. Damit verbunden ist ein unzureichender Wissensstand bezüglich potentieller Indikatoren für Degradation und Renaturierungserfolge, z.B. die Dynamiken und Bilanzen von Gasflüssen, Biodiversitätsniveaus oder Wasserbilanzen. Moordegradierung verändert die Wasserspeicherfähigkeit und reduziert die Fähigkeit Wasserschwankungen abzupuffern, was die Renaturierung weiter beeinflusst. Paläoökologische Daten erlauben Schlussfolgerungen über Feuchtebedingungen für Torfwachstum und potentielle Resilienz gegenüber in der Vergangenheit aufgetretenen Schwankungen der Umweltbedingungen. Somit können aus ihnen Grundlageninformationen abgeleitet werden, die helfen Renaturierungsziele zu formulieren, aber auch mögliche Einschränkungen aufzeigen. Der voranschreitenden Klimawandel mit häufigen auftretenden Hitzewellen und Dürren bedeutet insbesondere für die Re-Etablierung von Hochmoorvegetation eine ernste Bedrohung, die auf nährstoffarmes Niederschlagswasser angewiesen ist. Das Projekt verbindet Schlüsselmethoden von verwandten Disziplinen in bisher nicht gekannter Weise: In Unterprojekten behandeln wir i) die paläoökologische Rekonstruktion von Referenzbedingungen und Indikatoren für Degradation, ii) aktuelle Hydrologie, Niveaus von Biodiversität, Mikrobielle Gemeinschaften, iii) CO2 und CH4 Bilanzen mit Hauben- und Eddy-Covariance Technik und vorhandenen Langzeitdaten, iv) neuste Fernerkundungsmethoden inklusive dem Upscaling von Plotniveau bis auf das Landschaftsniveau, unterstützt von künstlicher Intelligenz, v) Negative Auswirkungen und Wechselbeziehungen zwischen Biodiversität, Kohlenstoffbilanzen, Treibhausgasemissionen und Resilienz wenn Zielniveaus nicht erreicht werden können, vi) Wissenstransfer in enger Zusammenarbeit mit Torfindustrie, Naturschutzakteuren, Akteuren der Land- und Wasserwirtschaft und der Administration.Wir untersuchen erstmalig Hochmoorrenaturierungsverläufe basierend auf neusten Bewertungsmethoden der Paläoökologie und Biogeochemie von Torfproben und ordnet diese Daten in einen landschaftsökologischen Kontext ein, um mit leistungsstarken Fernerkundungswerkzeugen das zukünftige Monitoring von degradierten und renaturierten Hochmoorflächen zu ermöglichen. Die enge Verbindung der Arbeitspakete und die Anwendung von in der Renaturierungsökologie wenig betrachteter Daten machen dieses Projekt innovativ und lassen wichtige Ergebnisse erwarten für die Hochmoorrenaturierung unter sich verändernden hydro-klimatischen Bedingungen.

Sonderforschungsbereich (SFB) 1537: Skalenübergreifende Quantifizierung von Ökosystemprozessen in ihrer räumlich-zeitlichen Dynamik mittels smarter autonomer Sensornetzwerke, Teilprojekt A03: Blattküvetten-Laserspektrometer-System zur Analyse der Photosynthese, ihrer 13C-Isotopen-diskriminierung, und Emissionen flüchtiger organischer Verbindungen (VOC)

A3.1 Räumliche und zeitliche Auflösung der 13CO2- und VOC-Flüsse im BlattWir erfassen die räumliche und zeitliche Dynamik des Gaswechsels in Blättern innerhalb Baumkronen und Baumarten in einem Mischbestand. Durch die Messung der natürliche 13C-Isotopen Diskrimination können Anpassungen der Wassernutzungseffizienz und Umwelteinflüsse auf die Photosynthese entschlüsselt werden. Blattemissionen flüchtiger organischer Verbindungen (VOC) sind weitere Indikatoren für biotische und abiotische Stresse, so dass Hot Spots und Hot Moments in Echtzeit erfasst werden können. A3.2 Entwicklung von miniaturisierten Blattküvetten und kompakten Laser-spektroskopen für 13CO2-IsotopeWir entwickeln Mikro-Gasküvetten, welche in großer Zahl eingesetzt werden sollen, um die 3D-Variabilität der 13CO2-Isotope innerhalb des Kronendachs zu überwachen. Sie sind mit einem integrierten Öffnungs- und Schließ-mechanismus ausgestattet und werden mit mehreren kleinen, kostengünstigen Kohlenstoffisotopen-Laserspektroskopen verbunden, die auch die H2O-Flüsse in den Blättern messen werden. Da die Laserspektroskope nicht in ähnlichem Maße miniaturisiert werden können wie die Blattküvetten, werden sie an einer zentralen Stelle platziert und durch Schläuche verbunden.

Sonderforschungsbereich (SFB) 1537: Skalenübergreifende Quantifizierung von Ökosystemprozessen in ihrer räumlich-zeitlichen Dynamik mittels smarter autonomer Sensornetzwerke, Teilprojekt B01: Drahtlose, energieautarke Chlorophyll Fluoreszenz Messung in Baumkronen mit flexiblen, multifunktionalen und hochintegrierten Mikrosensorsonden

B1.1 Räumlich-zeitliche Heterogenität der Blattchlorophyll Fluoreszenz Wir werden die räumlich-zeitliche Heterogenität von Chlorophyll Fluoreszenz als sensitiver Parameter für Stresseffekte zusammen mit mikroklimatischen Parametern auf Blattebene messen. Durch multiple Mikro-Sensoren erreichen wir eine neue Dimension von räumlichen Analyse um sowohl innerhalb einzelner Baumkronen und Baumgruppen Hot Spots und Hot Moments stressbedingter Veränderungen der photosynthetischen Effizienz zu identifizieren.B1.2 Minimalinvasive und energiebewusste multifunktionale Blattsensoren Wir entwickeln neuartige drahtlose, energieautarke ChlF-Sensoren, die flexible, multifunktionale (Mikroklima) und hochintegrierte Mikrosensoren verwenden. Die neuartigen Blattsensoren (<1cm²) werden den höchsten Grad an Miniaturisierung aufweisen, um die geringste Störung bei den Blättern zu gewährleisten. Diese Sensoren fungieren als unabhängige Sensorknoten, da sie dank Solarenergie ihre Daten drahtlos übermitteln. Sie können im Rahmen einer "Deploy and forget"-Strategie installiert werden.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Koordinationsfonds

Das DFG Infrastruktur-Schwerpunktprogramm 'Exploratories for large-scale and long-term functional biodiversity research' ist eine erfolgreich etablierte Forschungsplattform, die substantielle Infrastruktur und Unterstützung für Biodiversitäts- und Ökosystemforschende aus ganz Deutschland bereitstellt. Das Biodiversity Exploratory Office (BEO) ist die zentrale Koordinationseinheit für Administration, wissenschaftliche Koordination und Kommunikation. Das BEO unterstützt den Leitungsausschuss, die Lokalen Management Teams, das Zentrale Datenbankteam und alle weiteren Projekte in Kommunikation, Administration, Feldarbeit und Wissenstransfer. Es organisiert die jährliche Vollversammlung und viele spezifische Workshops und Kurse, die die Zusammenarbeit zwischen den Projekten fördern, und erreicht Stakeholder, Medien und die Öffentlichkeit. Insgesamt stellt das BEO eine unabdingbare Dienstleistung für alle Projekte der Biodiversitätsexploratorien dar.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Die Rolle von Nährstoffen für die Variabilität der Auswirkungen von Trockenheit auf die Zusammensetzung und Produktivität von Grassländern entlang von Landnutzungsgradienten - ein Merkmals-basierter Ansatz (BEtol2)

Landnutzung und Niederschlagsbedingungen sind wichtige Faktoren für die Diversität und Ökosystemfunktion von Grassländern weltweit, und sind zwei der wichtigsten Treiber des globalen Wandels. Ökosysteme werden gleichzeitig Änderungen von Bodennährstoffen (z.B. durch Düngung) und im Rahmen des Klimawandels häufigeren und intensiveren Trockenheitereignissen ausgesetzt sein. In Kombination können die beiden Faktoren additiv wirken, oder sich gegenseitig verstärken oder abschwächen. Demzufolge variiert die Gemeinschafts- und Ökosystemreaktion auf Trockenheit je nach den Nährstoffbedingungen. Die Mechanismen von Interaktionen von Nährstoffen und Trockenheit bleiben bisher unverstanden, und wir können daher derzeit nicht vorhersagen, bei welcher Landnutzung Grassländer mehr oder weniger sensitiv auf Trockenheit reagieren.Das Hauptziel des Projektes ist es, unsere Vorhersagen für die Konsequenzen von Globalem Wandel auf Grassländer zu verbessern. Dazu werden die kombinierten Effekte von Nährstoffen und Trockenheit auf der Ebene von einzelnen Pflanzenmerkmalen und von Gesamtpflanzen untersucht, und integriert mit Effekten von Trockenheit auf die Zusammensetzung und Produktivität von Pflanzengemeinschaften entlang von Landnutzungsgradienten in Grassländern.In einem Gewächshausexperiment werden wir für 16 Arten, die in den Exploratorien häufig sind, vergleichend die Plastizität im Hinblick auf Nährstoffe für einen umfassenden Satz von mehr als 20 physiologischen, morphologischen und Gesamtpflanzen-Merkmalen untersuchen, die relevant für den Wasserhaushalt von Pflanzen sind. In einem 'common garden' Experiment werden wir die kombinierten Effekte von Nährstoffen und Trockenheit (und ihre Interaktionen) für Gesamtpflanzen dieser Arten quantifizieren. Zusätzlich werden wir die Effekte von experimenteller und natürlicher Trockenheit entlang von Gradienten der Nährstoffverfügbarkeit und Landnutzung (insbesondere Düngung) in den Exploratorien bestimmen. Die direkte Verknüpfung der Daten auf Ebene von Merkmalen, Gesamtpflanzen, Gemeinschaften und Ökosystemen wird unser mechanistisches Verständnis von kombinierten Effekten von Nährstoffen und Trockenheit auf Grassländer unter derzeitigen und zukünftigen Bedingungen verbessern. Die Ergebnisse werden sowohl in angewandter als auch in wissenschaftlicher Hinsicht wichtige neue Erkenntnisse liefern.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Unterirdische Pflanzenmerkmale und ihr Einfluss auf die Biodiversität und Ökosystemfunktionen

Viele Prozesse, die an der Verbreitung von Pflanzenarten und der Funktion von Ökosystemen beteiligt sind, finden unter der Erde statt. Da sich jedoch die meisten Studien mit oberirdischen Pflanzenmerkmalen auseinandersetzten, wurden die unterirdischen Merkmale bislang weitestgehend ignoriert. Die Biodiversitätsforschung bedarf demnach noch großer Mengen an Wurzeldaten vieler Pflanzenarten. Deshalb möchten wir Wurzelmerkmale und Daten über Pilzendophyten für die ca. 350 Blütenpflanzen, die in den 150 experimentellen Grasslandflächen (EPs) der Biodiversitätsexploratorien vorkommen, aufnehmen. In mehreren Experimenten sollen Pflanzen dieser Arten kultiviert und Daten zu Wurzelmorphologie, Plastizität der Wurzelmorphologie (in Abhängigkeit von Düngerzugabe), Aufnahmekapazität von Stickstoff in unterschiedlicher Form sowie Infektion durch Pilzendophyten bestimmt werden. Wir möchten die so erhobenen Daten gemeinsam mit anderen Daten aus den Biodiversitätsexploratorien nutzen, um zu untersuchen, inwieweit das Auftreten und die Abundanz der betrachteten Arten durch ihre Wurzelmerkmale bestimmt werden. Dabei interessiert uns der Zusammenhang der Wurzelmerkmale mit Umweltfaktoren wie der Landnutzung und die Frage, inwieweit die unterirdische Merkmalsdiversität mit der oberidischen Merkmalsdiversität und den Ökosystemfunktionen zusammenhängt.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: HEDGE 2- Von der Landnutzung über Habitatheterogenität bis hin zur Biodiversität in Grünlandökosystemen: Eine kombinierte theoretische, experimentelle und beobachtende Studie

Räumliche Heterogenität in Standorteigenschaften ist ein Hauptfaktor für das Entstehen von Biodiversität, er wurde jedoch in den Biodiversitätsexploratorien kaum untersucht. Wir wollen diese Lücke füllen, indem wir theoretische, experimentelle und beobachtenden Studien integrieren, um die Mechanismen zu untersuchen, durch welche Habitatheterogenität von Landnutzung und Heterogenität durch Landnutzung Artenvielfalt im Grünland beeinflussen. Ein zugrunde liegendes Modell ist, dass Heterogenität sowohl positive als auch negative Effekte hat, bewirkt durch einen immanenten trade-off zwischen dem Heterogenitätsniveau und der effektiven Fläche, welche für Individuen in der Gemeinschaft zur Verfügung steht (AHTO-area-heterogeneity trade-off). In Phase 1 verwenden wir analytische Modelle, um einige simplifizierende Annahmen voriger AHTO-Modelle zu erweitern. Gleichzeitig diente ein einmaliges neues experimentelles System dem Test einiger Grundvorhersagen der Modelle. In Phase 2 erweitern wir unsere Arbeit in 3 Richtungen. 1) Wir skalieren unsere Modelle sowohl hoch (durch Erweitern des lokalen Modells zu einem Meta-Gemeinschaftsmodell) als auch herunter (durch explizite Modellierung von ober- und unterirdischen Konkurrenzeffekten bei individuellen Pflanzen). Die größere Skala wird das Modell an die Struktur der empirischen Arbeiten angleichen, die kleine Skala erfasst die eigentlichen Mechanismen, welche Landnutzung (insbesondere Düngung, Mahd, Beweidung) mit Konkurrenz und Artenvielfalt verbindet. 2) Um die empirisch beobachteten Diversitätsmuster besser zu verstehen, etablieren wir ein neues Experiment, in welchem wir das Wachstum der Zielarten ohne Konkurrenz messen, sowie unter Simulation von Düngung, Mahd und Tritt auf flachen und tiefen Böden. Die Ergebnisse gehen auch als realistischere Parameter in unsere Modelle ein. 3) Wir etablieren ein neues skalenübergreifendes Beobachtungssystem, um Landnutzung, Habitatheterogenität und Diversität zu verknüpfen. Die Untersuchungseinheit entspricht dabei derjenigen in den Experimenten, und das Design umfasst einen sehr großen Bereich von Skalen (vom Zentimeterbereich bis hin zu vielen Hundert Kilometern). Zudem nutzen wir neue Kooperationen in den Exploratorien, insbesondere mit CP3, um mit Fernerkundungsmethoden umfassende Daten zu kleinskaliger Habitatheterogenität und beta-Diversität für alle Grünland-EPs zu generieren. Die skalenübergreifenden theoretischen, experimentellen, beobachtenden und Fernerkundungsmethoden tragen signifikant zum Kausalverständnis darüber bei, wie Landnutzung Biodiversität indirekt, nämlich durch Modifikation von Habitatheterogenität, beeinflusst. Zudem liefern wir Daten für umfassende neue Syntheseprojekte.

Forschergruppe (FOR) 5064: Die Rolle der Natur für das menschliche Wohlergehen im sozial-ökologischen System des Kilimandscharo, Teilprojekt: Naturschutz, biologische Vielfalt und Ökosystem-Funktionen

Im Rahmen von Kili-SES befasst sich SP6 mit Landnutzung, Management und Naturschutz als Triebkräfte der biologischen Vielfalt. In Kili-SES-1 erwiesen sich Landnutzungsveränderungen durch Bevölkerungswachstum als Schlüsselfaktoren an den unteren Hängen des Kilimandscharo. Es bleibt die Frage, ob die jüngsten Wald- und Buschbrände in den oberen Regionen auf veränderte klimatische Bedingungen hinweisen. Wir wollen den Ursprung und die Folgen dieser Brände als potenziell schädliche NCP auf Landschaftsebene untersuchen. Dabei konzentrieren wir uns auf die biologische Vielfalt und die Wasserbilanz im Nationalpark (zusammen mit SP1) und prüfen, ob solche Brände in den letzten Jahrzehnten zugenommen haben. Da die NCPs stark von der biologischen Vielfalt und dem Funktionieren der Ökosysteme abhängen, untersuchen wir, wie der Mensch die biologische Vielfalt, das Funktionieren der Ökosysteme und folglich das menschliche Wohlbefinden verbessern kann. Konkret wollen wir (zusammen mit SP1 und 2) das ökologische Potenzial für eine Transformierung durch Anpflanzung einheimischer Bäume prüfen, ergänzend zu den Studien von SP3-5. Der Fokus soll auf Auwäldern als wichtige Biodiversitätskorridore und traditionellen Agroforstsystemen als nachhaltige Landnutzungsformen liegen. Während in Kili-SES-1 der Kilimandscharo als isoliertes System betrachtet wurde, planen wir nun eine Erweiterung unserer Perspektive unter Einbeziehung des umliegenden Landschaftskontextes. Der Kilimandscharo war einst mit anderen Bergen durch Waldkorridore verbunden, die als Wanderwege dienten und die biologische Vielfalt beeinflussten, entscheidend für die Widerstandsfähigkeit gegenüber Umweltveränderungen. Ziel ist die Analyse der ökologischen Konnektivität und Telekopplung im Hinblick auf Naturschutzpolitik. Hierzu wollen wir mit umfangreichen Daten zu Pflanzen, Arthropoden und Kleinsäugern die frühere biologische Vielfalt ohne menschlichen Einfluss modellieren, um die ungleiche Verteilung endemischer Arten zu untersuchen, eine kontroverse biogeographische Frage in Ostafrika. Der Kilimandscharo und die umliegenden Berge sind unterschiedlich geschützt (Nationalparks, Natur- und Waldreservate), mit zunehmend fragmentierten Schutzgebieten. Durch Hochskalierung und Modellierung der Biodiversität unter Verwendung von Hyperspektralbildern (zusammen mit SP7) planen wir die sich daraus ergebenden Biodiversitätsniveaus und Bedrohungen zu vergleichen, einschließlich der Auswirkungen der Einbeziehung der Waldgürtel des Kilimandscharo und Meru in Nationalparks im Jahr 2006, die möglicherweise illegale Aktivitäten in die umliegenden Berge verlagert haben. Zusätzlich zu diesen Themen wollen wir weiterhin langfristige Klima- und Dendrometriedaten erheben und umfassendes Monitoring von Gefäßpflanzen, Flechten und Moosen durch (ergänzt durch Pilze) durchführen. So hoffen wir ein Niveau und eine Qualität ökologischer Daten zu erreichen, die für Kili-SES wichtig und für ein tropisches Gebirge einzigartig sind.

Schwerpunktprogramm (SPP) 1006: Bereich Infrastruktur - Internationales Kontinentales Bohrprogramm, Teilprojekt: Kalibrierte, Pollen-basierte Rekonstruktion der ostafrikanischen Vegetations- und Landschaftsveränderungen während der gesamten Existenz von anatomisch modernen Menschen aus den ~ 250.000 Jahre alten Challa-See-Sedimenten

Lange, kontinuierliche Aufzeichnungen über paläoökologische Veränderungen in Afrika sind selten, obwohl diese für die Aufklärung paläoklimatischer, biogeografischer und evolutionärer Kontroversen in den Tropen von großer Bedeutung sind.Dieses Projekt ist Teil eines internationalen Projekts namens DeepCHALLA, für welches die Bohrarbeiten bereits im Rahmen des DFG Schwerpunktprogramms 1006 International Continental Drilling Programm (ICDP) gefördert wurden. Das übergreifende wissenschaftliche Ziel von ICDP DeepCHALLA ist es, unser Verständnis über die zeitliche Verteilung und die Ursachen der Klimavariabilität sowie die Auswirkungen auf die Vegetation im äquatorialen Ostafrika in der Zwischenzeit bis zur tausendjährigen Zeit zu verbessern. Der bereits erbohrte ca. 215 m lange Sedimentkern aus dem Challa-See, an der Grenze von Tansania und Kenia am Fuße des Kilimandscharo, umfasst mit seinen 250.000 Jahren zwei komplette Glazial-Interglazial-Zyklen sowie die gesamte Existenz des modernen Homo sapiens. Während das DeepCHALLA-Projekt eine detaillierte Klimarekonstruktion erzielt, konzentriert sich dieses Projekt auf die Paläoumwelt und langfristige Vegetationsveränderungen als Reaktion auf vergangene Klimaveränderungen, mit dem Ziel die Kombination von Klimafaktoren herauszufiltern, welche die zeitliche Vegetationsdynamik und damit auch die räumliche Verteilung in bestimmten Zeitfenstern am stärksten beeinflussten. Das Hauptziel besteht somit darin, ein kalibriertes Pollenarchiv der kontinentalen Ökosystemdynamik in der Nähe des Äquators zu erstellen. Die Kalibrierung (1) der paläoökologischen Daten wird durch die Berechnung von Pollenregen-Vegetation und Pollen-Klima-Beziehungen in verschiedenen Savannen-Vegetationstypen erreicht. Darauf basierend werden Transferfunktionen berechnet, mithilfe derer dann kalibrierte, quantitative Vegetations- und Klimarekonstruktionen aus dem Challa-See Archiv erstellt werden. Darüber hinaus wird diese Vegetationsrekonstruktion die Untersuchung von langfristigen Biodiversitätsmustern und ökologischen Dynamiken eines tropischen Savannen- (Grünland-Wald-) Ökosystems als Reaktion auf Veränderungen von atmosphärischem CO2, Temperatur, Feuchtigkeitshaushalt sowie Feuer für die letzten 250.000 Jahren ermöglichen.Die Ergebnisse dieses Projektes werden genau zeigen, wie oft, wann und in welchem Ausmaß sich die ostafrikanische Landschaft über die gesamte Existenz anatomisch moderner Menschen verändert hat. Die Dokumentation des Ausmaßes und der geographischen Verbreitung von schweren Dürre-Episoden über das tropische Afrika ist dabei besonders entscheidend, um zu rekonstruieren, warum unsere Vorfahren sich entschieden haben - oder sich gezwungen sahen -, sich vor ca. 100.000 Jahren von ihrer afrikanischen Heimat in den Nahen Osten und Eurasien hin auszubreiten.

Auswirkungen der Seeverbräunung auf die Zusammensetzung und Funktion der Phytoplankton-Mikrobiome

Da sich der Klimawandel und die menschlichen Aktivitäten verstärken, wird es erwartet, dass die terrestrischen Einträge von gelöstem organischem Material (Disssolved Organic Matter, DOM) in Seen zunehmen. Diese erhöhten Einträge führt zu einer braunen Verfärbung des Wassers und einer verringerten Lichtdurchlässigkeit in der Wassersäule, was Herausforderungen für die Seenökosysteme darstellt sowie ihren gesellschaftlichen Wert beeinträchtigt. Aquatische Mikroorganismen können besonders anfällig für die Verfärbung von Seen sein, mit Folgen für die Primärproduktion, Nahrungsnetze und das Auftreten von giftigen Algenblüten. Unsere Fähigkeit, die ökologischen Folgen der Verfärbung von Seen vorherzusagen, wird jedoch durch begrenztes Wissen über die Reaktionen der mikrobiellen Gemeinschaft, sowie die Widerstandsfähigkeit dieser Gemeinschaften gegenüber Umweltveränderungen beeinträchtigt. Wir schlagen vor, dass die Reaktion der aquatischen Mikroorganismen auf Umweltstress stark von Interaktionen mit anderen Mitgliedern der Gemeinschaft beeinflusst wird. Daher wird dieses Projekt ökologische Interaktionen zwischen einzelligen Algen (Phytoplankton) und Bakterien in Seen untersuchen, die erhöhte DOM Einträge und reduzierte Lichtverfügbarkeit erleben. Während mikrobielle Interaktionen hauptsächlich in vereinfachten Modelsystemen untersucht wurden, bleibt die Empfindlichkeit von algenassoziierten Bakteriengemeinschaften gegenüber Umweltstressoren und deren Auswirkungen auf die physiologischen Eigenschaften der Algen weitgehend unerforscht. Um diese Lücke zu schließen, unser Ziel ist es, zu untersuchen, wie sich die Verfärbung des Wassers auf Folgendes auswirkt: 1. die physiologischen Reaktionen des Phytoplanktons, 2. den Transfer von DOM zwischen Algen und assoziierten Bakterien und 3. die Zusammensetzung der algenassoziierten Bakteriengemeinschaften. Damit wollen wir die wechselseitigen Einflüsse zwischen Phytoplankton und zugehörigen Bakterien sowie die Kohlenstoffaufnahme von interessanten bakteriellen Taxa unter sich ändernder Licht- und DOM-Verfügbarkeit entschlüsseln. Messungen der natürlichen Isotopenhäufigkeit und Labeling Experimente mit stabilen Isotopen werden verwendet, um die Primärproduktion, die Atmung und die Aufnahme des durch die Algen produzierten Kohlenstoffs quantitativ zu erfassen. Darüber hinaus werden wir Mikroskopie und genomische Analysen verwenden, um die räumliche Strukturierung und die Zusammensetzung der algenassoziierten Gemeinschaft von Mikroorganismen zu erfassen. Unsere Experimente werden uns helfen zu verstehen, ob die grundlegende Funktionalität trotz der Veränderungen der Gemeinschaft erhalten bleibt, und welche bakteriellen Taxa und Funktionen voraussichtlich stärker auf die Veränderungen reagieren werden. Dieses Projekt wird das Wissen über Interaktionen auf zellulärer Ebene in eine ökosystemweite Perspektive von Süßwasserseen integrieren.

1 2 3 4 58 9 10