API src

Found 128 results.

Forschergruppe (FOR) 5064: Die Rolle der Natur für das menschliche Wohlergehen im sozial-ökologischen System des Kilimandscharo, Teilprojekt: Naturschutz, biologische Vielfalt und Ökosystem-Funktionen

Im Rahmen von Kili-SES befasst sich SP6 mit Landnutzung, Management und Naturschutz als Triebkräfte der biologischen Vielfalt. In Kili-SES-1 erwiesen sich Landnutzungsveränderungen durch Bevölkerungswachstum als Schlüsselfaktoren an den unteren Hängen des Kilimandscharo. Es bleibt die Frage, ob die jüngsten Wald- und Buschbrände in den oberen Regionen auf veränderte klimatische Bedingungen hinweisen. Wir wollen den Ursprung und die Folgen dieser Brände als potenziell schädliche NCP auf Landschaftsebene untersuchen. Dabei konzentrieren wir uns auf die biologische Vielfalt und die Wasserbilanz im Nationalpark (zusammen mit SP1) und prüfen, ob solche Brände in den letzten Jahrzehnten zugenommen haben. Da die NCPs stark von der biologischen Vielfalt und dem Funktionieren der Ökosysteme abhängen, untersuchen wir, wie der Mensch die biologische Vielfalt, das Funktionieren der Ökosysteme und folglich das menschliche Wohlbefinden verbessern kann. Konkret wollen wir (zusammen mit SP1 und 2) das ökologische Potenzial für eine Transformierung durch Anpflanzung einheimischer Bäume prüfen, ergänzend zu den Studien von SP3-5. Der Fokus soll auf Auwäldern als wichtige Biodiversitätskorridore und traditionellen Agroforstsystemen als nachhaltige Landnutzungsformen liegen. Während in Kili-SES-1 der Kilimandscharo als isoliertes System betrachtet wurde, planen wir nun eine Erweiterung unserer Perspektive unter Einbeziehung des umliegenden Landschaftskontextes. Der Kilimandscharo war einst mit anderen Bergen durch Waldkorridore verbunden, die als Wanderwege dienten und die biologische Vielfalt beeinflussten, entscheidend für die Widerstandsfähigkeit gegenüber Umweltveränderungen. Ziel ist die Analyse der ökologischen Konnektivität und Telekopplung im Hinblick auf Naturschutzpolitik. Hierzu wollen wir mit umfangreichen Daten zu Pflanzen, Arthropoden und Kleinsäugern die frühere biologische Vielfalt ohne menschlichen Einfluss modellieren, um die ungleiche Verteilung endemischer Arten zu untersuchen, eine kontroverse biogeographische Frage in Ostafrika. Der Kilimandscharo und die umliegenden Berge sind unterschiedlich geschützt (Nationalparks, Natur- und Waldreservate), mit zunehmend fragmentierten Schutzgebieten. Durch Hochskalierung und Modellierung der Biodiversität unter Verwendung von Hyperspektralbildern (zusammen mit SP7) planen wir die sich daraus ergebenden Biodiversitätsniveaus und Bedrohungen zu vergleichen, einschließlich der Auswirkungen der Einbeziehung der Waldgürtel des Kilimandscharo und Meru in Nationalparks im Jahr 2006, die möglicherweise illegale Aktivitäten in die umliegenden Berge verlagert haben. Zusätzlich zu diesen Themen wollen wir weiterhin langfristige Klima- und Dendrometriedaten erheben und umfassendes Monitoring von Gefäßpflanzen, Flechten und Moosen durch (ergänzt durch Pilze) durchführen. So hoffen wir ein Niveau und eine Qualität ökologischer Daten zu erreichen, die für Kili-SES wichtig und für ein tropisches Gebirge einzigartig sind.

Auswirkungen der Seeverbräunung auf die Zusammensetzung und Funktion der Phytoplankton-Mikrobiome

Da sich der Klimawandel und die menschlichen Aktivitäten verstärken, wird es erwartet, dass die terrestrischen Einträge von gelöstem organischem Material (Disssolved Organic Matter, DOM) in Seen zunehmen. Diese erhöhten Einträge führt zu einer braunen Verfärbung des Wassers und einer verringerten Lichtdurchlässigkeit in der Wassersäule, was Herausforderungen für die Seenökosysteme darstellt sowie ihren gesellschaftlichen Wert beeinträchtigt. Aquatische Mikroorganismen können besonders anfällig für die Verfärbung von Seen sein, mit Folgen für die Primärproduktion, Nahrungsnetze und das Auftreten von giftigen Algenblüten. Unsere Fähigkeit, die ökologischen Folgen der Verfärbung von Seen vorherzusagen, wird jedoch durch begrenztes Wissen über die Reaktionen der mikrobiellen Gemeinschaft, sowie die Widerstandsfähigkeit dieser Gemeinschaften gegenüber Umweltveränderungen beeinträchtigt. Wir schlagen vor, dass die Reaktion der aquatischen Mikroorganismen auf Umweltstress stark von Interaktionen mit anderen Mitgliedern der Gemeinschaft beeinflusst wird. Daher wird dieses Projekt ökologische Interaktionen zwischen einzelligen Algen (Phytoplankton) und Bakterien in Seen untersuchen, die erhöhte DOM Einträge und reduzierte Lichtverfügbarkeit erleben. Während mikrobielle Interaktionen hauptsächlich in vereinfachten Modelsystemen untersucht wurden, bleibt die Empfindlichkeit von algenassoziierten Bakteriengemeinschaften gegenüber Umweltstressoren und deren Auswirkungen auf die physiologischen Eigenschaften der Algen weitgehend unerforscht. Um diese Lücke zu schließen, unser Ziel ist es, zu untersuchen, wie sich die Verfärbung des Wassers auf Folgendes auswirkt: 1. die physiologischen Reaktionen des Phytoplanktons, 2. den Transfer von DOM zwischen Algen und assoziierten Bakterien und 3. die Zusammensetzung der algenassoziierten Bakteriengemeinschaften. Damit wollen wir die wechselseitigen Einflüsse zwischen Phytoplankton und zugehörigen Bakterien sowie die Kohlenstoffaufnahme von interessanten bakteriellen Taxa unter sich ändernder Licht- und DOM-Verfügbarkeit entschlüsseln. Messungen der natürlichen Isotopenhäufigkeit und Labeling Experimente mit stabilen Isotopen werden verwendet, um die Primärproduktion, die Atmung und die Aufnahme des durch die Algen produzierten Kohlenstoffs quantitativ zu erfassen. Darüber hinaus werden wir Mikroskopie und genomische Analysen verwenden, um die räumliche Strukturierung und die Zusammensetzung der algenassoziierten Gemeinschaft von Mikroorganismen zu erfassen. Unsere Experimente werden uns helfen zu verstehen, ob die grundlegende Funktionalität trotz der Veränderungen der Gemeinschaft erhalten bleibt, und welche bakteriellen Taxa und Funktionen voraussichtlich stärker auf die Veränderungen reagieren werden. Dieses Projekt wird das Wissen über Interaktionen auf zellulärer Ebene in eine ökosystemweite Perspektive von Süßwasserseen integrieren.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Vergleichende Transkriptomanalyse und phänotypisches Monitoring von Trifolium pratense (Fabaceae) unter Landnutzungsaspekten (TRATSCH II)

Pflanzen passen sich mit erstaunlicher morphologischer Plastizität an Umweltveränderungen an, wie sie z.B. durch landwirtschaftliche Nutzung erzeugt werden. Die diesen morphologischen Veränderungen zugrundeliegenden molekulargenetischen Prozesse und hieraus resultierende Verschiebungen in genetischer Diversität sind jedoch größtenteils unbekannt. In dem hier beantragten Projekt wollen wir deshalb die molekulargenetischen Reaktionen auf Störungen und Umweltveränderungen untersuchen (Mahd und Düngung im Grünland). Rotklee (Trifolium pratense) ist als wertvoller Proteinlieferant eine der wichtigsten Nutzpflanzen im Grünland und trägt durch N2-Fixierung zur Reduktion der Stickstoffdüngung in Böden bei, sodass er die Ökobilanz landwirtschaftlich genutzter Grünlandflächen nachaltig verbessern kann. T. pratense findet sich auf allen Grünlandflächen der Biodiversitätsexploratorien und wir konnten in TRATSCH I zeigen, dass T. pratense (i) verschiedene morphologische Reaktionen auf Mahd zeigt. (ii) Wir identifizierten Mahd-spezifisch differenziell exprimierte Entwicklungskontrollgene und Gene, die standortspezifisch differenziell exprimiert werden, und (iii) etablierten ein mRNA-seq-Fingerprinting Protokoll. Mit diesem kann eine große Zahl an Individuen auf vielen Plots unter unterschiedlichen Landnutzungsbedingungen analysiert werden. Durch Korrelation mit diversen Umweltdaten können Effekte der Umwelt von denjenigen der Landnutzung unterschieden werden. Damit verknüpfen wir Landscape Genetics mit Landscape Genomics, um die Genomfunktionalität einzelner Arten im Umweltzusammenhang zu analysieren. In TRATSCH II beabsichtigen wir unsere Datenaufnahme auf alle Exploratorien auszudehnen, um die Störungs- und Umweltspezifität der exprimierten Transkriptom-Fingerprints in größerem Zusammenhang zu analysieren. Expressionsstudien und funktionelle Studien der Mahd-spezifischen Entwicklungskontrollgene werden Aufschluss darüber geben, wie Pflanzen auf molekulargenetischer Ebene die Veränderung des Morphotypus und das Nachwachsen nach der Mahd steuern. Um die Ökobilanz im Grünlandanbau zu optimieren, untersuchen wir experimentell verschiedene Anbauverfahren, um hohe Proteinerträge mit möglichst niedrigen Düngergaben zu erhalten. Ferner überprüfen wir die Hypothese, dass epigenetische Modifikationen für die Regulation der morphologischen Veränderungen mit verantwortlich sind durch temporäre und quantitative Analyse von Methylierungsmustern der genomischen Loci von Entwicklungskontrollgenen.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Merkmale von Samen und Keimlingen und ihre Beziehung zur Diversität und Artenzusammensetzung von Grasländern mit unterschiedlicher Landnutzungsintensität

Die Etablierung aus Samen ist ein wichtiger demographischer Prozess für die Lebensgeschichte von Pflanzen, der die Persistenz und Stabilität von Populationen und die Zusammensetzung von Pflanzengemeinschaften beeinflusst. In den letzten Jahren werden zunehmend Methoden basierend auf funktionellen Merkmalen verwendet, um zu einem mechanistischen Verständnis von Prozessen des 'community assembly' und ihrer Beziehung zu Ökosystemfunktionen zu gelangen. In den meisten Fällen basieren diese Analysen auf Merkmalen, die an adulten Pflanzen gemessen wurden, während funktionelle Merkmale von Samen und Keimlingen wenig Beachtung finden. Dieses Projekt hat daher das Vorhaben, die Merkmale von Samen und Keimlingen für eine Vielzahl von Pflanzenarten der Grasländer der Exploratorien charakterisieren. Die folgenden Ziele werden verfolgt: (1) Für die Pflanzenarten, die in den 150 experimentellen Grasland-Plots der Exploratorien vorkommen, werden morphologische und chemische Merkmale der Samen analysiert, und Merkmale der Keimung und Keimlinge werden in einem 'common garden experiment' unter standardisierten Bedingungen gemessen. (2) Die Auswirkungen von Umweltfaktoren, welche mit der Nutzungsintensität variieren, d.h. Vorkommen einer Streuauflage und Düngung, auf die Keimung und Keimlingsmerkmale werden in einem weiteren 'common garden experiment' mit einer Manipulation dieser Faktoren gemessen. Hier werden die Arten verwendet, die auch im Einsaatexperiment des neuen Grasland-Landnutzungs-Experiment ausgesät werden. (3) Die kurzfristigen Effekte der experimentellen Reduktion der Landnutzungsintensität auf die Diversität und Dichte der Diasporenbank im Oberboden werden für die Standorte des neuen Grasland-Landnutzungs-Experiment quantifiziert, um damit eine Variable des 'demographischen Speichers' beizutragen, welche ein wichtiger Aspekt ist, um Veränderungen in der Diversität und Artenzusammensetzung der Grasländer bei Landnutzungsänderung zu verstehen. (4) Schließlich werden die funktionellen Merkmale der Samen und Keimlinge in Kombination mit anderen Daten aus den Exploratorien genutzt, um zu überprüfen, in welchem Bezug das Vorkommen und die Abundanz von Pflanzenarten in Grasländer unterschiedlicher Landnutzungsintensität zu den Merkmalen der Samen und Keimlinge steht, um zu testen, welche Rolle die funktionellen Merkmale der Samen und Keimlinge bei einer Reduktion der Landnutzungsintensität und zusätzlicher Einsaat spielen, und welche Zusammenhänge zwischen der Diversität der funktionellen Merkmale der Samen und Keimlinge und der Merkmals-Diversität adulter Pflanzen besteht. Damit wird das Projekt dazu beitragen, merkmalsbasierte ökologische Untersuchungen um eine demographische Perspektive zu erweitern, indem funktionelle Merkmale von Lebensstadien berücksichtigt werden, die besonders empfindlich sind und daher wichtig sein können, um Prozesse in der Veränderung von Pflanzengemeinschaften und den Erhalt der Diversität von Grasländern zu verstehen.

Forschergruppe (FOR) 5375: Erhöhung der strukturellen Diversität zwischen Waldbeständen zur Erhöhung der Multidiversität und Multifunktionalität in Produktionswäldern, Teilprojekt: Pflanzengemeinschaften im Unterstand von Wäldern und Primärproduktion

Die Pflanzengemeinschaften der Krautschicht in Wäldern sowie die epigäischen und epiphytischen Moose und Flechten sind ein wesentlicher Bestandteil der Biodiversität temperater Wälder. Zudem spielen sie eine wichtige Rolle für zahlreiche Ökosystemfunktionen, z.B. Primärproduktion, Regulation des Mikroklimas, Zersetzung oder Habitatbereitstellung. Es ist gut belegt, dass diese Taxa stark auf eine Veränderung der Habitatbedingungen reagieren, was wiederum zu einem Wandel in der Artenzusammensetzung und Diversität auf der lokalen Ebene (d.h. der a-Diversität) führt. Es ist daher zu erwarten, dass die Modifikation der biotischen und abiotischen Habitatbedingungen durch eine Erhöhung der strukturellen Komplexität auf der Ebene der Parzelle (sog. ESC-Behandlung) und des Waldbestandes (ESBC-Behandlung) starke Auswirkungen auf diese Lebensgemeinschaften und die damit verbundenen Ökosystemfunktionen hat. Die Richtung und das Ausmaß der ESBC-Behandlungseffekte auf die taxonomische und funktionelle ß-Diversität der Pflanzengemeinschaften in der Kraut- und Bodenschicht sowie der baumbewohnenden Kryptogamen in realen Waldlandschaften ist jedoch unbekannt. Das Hauptziel dieses Teilprojekts ist zu untersuchen, inwieweit eine Erhöhung der räumlichen Heterogenität durch die Anwendung von ESBC-Behandlungen die ß-Diversität von krautigen Gefäßpflanzen sowie epigäischen und baumbewohnenden Moosen und Flechten ansteigen lässt. Bezüglich der krautigen Arten soll zudem analysiert werden, wie sich dies auf die ober- und unterirdische Biomasseproduktion auswirkt. Auf allen Parzellen werden wir Vegetationsaufnahmen durchführen und die epiphytischen Kryptogamen erfassen. Dadurch führen wir unsere Dauerbeobachtungsreihen fort, die wir in den Jahren 2016 bis 2018 auf allen 11 Standorten begonnen haben. Darüber hinaus ermitteln wir funktionale Merkmale von krautigen Gefäßpflanzen (bezogen auf Blätter, Wurzeln und Pflanzengröße), um funktionelle Diversitätsmaße auf der a- und ß-Ebene zu berechnen. Zudem wird die ober- und unterirdische Biomasse der Kraut- und Bodenschicht bestimmt als Maß für die Primärproduktivität. Wir testen die Hypothesen, dass die Erhöhung der räumlichen Heterogenität infolge von ESBC-Behandlungen die taxonomische und funktionelle ß-Diversität der krautigen Gefäßpflanzen sowie epigäischen Moose und Flechten ansteigen lässt (Hypothese 1), und dass die Erhöhung der taxonomischen und funktionellen ß-Diversität die ober- und unterirdische Produktivität der krautigen Gefäßpflanzen auf der Ebene der Waldbestände positiv beeinflusst (Hypothese 2). Für die gesamte Forschungsgruppe stellen wir Biodiversitätsdaten für Gefäßpflanzen, Moose und Flechten bereit. Darüber hinaus liefern wir wichtige funktionale Merkmale krautiger Gefäßpflanzen für die Merkmalsdatenbank. Schließlich wird unser Teilprojekt die ober- und unterirdische Primärproduktivität als eine wichtige Ökosystemfunktion von Wäldern bestimmen, und damit zur Multifunktionalitätsanalyse beitragen.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Der ökonomische Kompromiss zwischen Wurzelhaaren und extraradikalen Mykorrhizahyphen entlang eines Landnutzungsgradienten (HAIRphae)

Die Ökonomie von Pflanzen wird als Kompromiss zwischen Nährstoffaufnahme und -erhalt angesehen. Wurzeln sind in unserem Verständnis der gesamten Pflanze jedoch immer noch unterrepräsentiert. Wurzeltraits scheinen aufgrund ihrer Interaktion mit Bodenbiota multidimensional zu sein. Kompromisse zwischen der Investition in die Oberfläche der Wurzel bzw. der arbuskulären Mykorrhiza Pilze (AMF) wurden bislang anhand der spezifischen Wurzellänge untersucht. Allerdings sind auch Wurzelhaare dafür bekannt die Phosphoraufnahme zu erhöhen. Diese sind bislang in Konzepten der Wurzelökonomie nicht enthalten. In Gewächshausversuchen zeigte sich, dass Wurzelhaarlänge und -häufigkeit negativ mit der AMF-Kolonisation korrelieren. Dieser Gradient zwischen einer Strategie zur Vergrößerung der Wurzelhaaroberfläche und der AMF-Symbiose erwies sich als unabhängig von der spezifischen Wurzellänge, was auf eine bislang unberücksichtigte Varianz in Wurzeltraits hindeutet. Studien zeigen, dass die AMF-Oberfläche - gemessen als extraradikale Hyphenlänge - mit der Landnutzungsintensität zunimmt, wobei die Bodennährstoff-Stöchiometrie einen Einfluss haben könnte. Daher sind zur Untersuchung der Komplexität des Wurzel-Pilz-Oberflächen-Gradienten Daten von Flächen mit unterschiedlichen Böden erforderlich. In diesem Projekt möchte ich das Konzept eines Wurzel-Pilz-Oberflächen-Gradienten unter Beachtung von Wurzelhaaren und extraradikalen Hyphen erstmals testen. Ich werde Individuen der dominantesten Pflanzenarten im Feld (VIP-Ebene) entlang eines Landnutzungsgradienten untersuchen. Dabei gehe ich von einer Verlagerung hin zu AMF Oberfläche mit zunehmender Landnutzungsintensität aus. Aufgrund von Artenüberschneidungen zwischen den Feldern werde ich sowohl inter- als auch intraspezifische Muster testen können. Die AMF-Gemeinschaft in der Rhizosphäre wird analysiert, um zu testen, ob Veränderungen in der Hyphenlänge auf Veränderungen der AMF-Lebensgemeinschaft zurückzuführen sind. In einem mechanistischen Gewächshausexperiment wird die direkte Wirkung der Bodennährstoff-Stöchiometrie untersucht. Die AMF-Gemeinschaft in der Rhizosphäre sowie der Wurzel soll analysiert werden, um Veränderungen der AMF-Lebensgemeinschaft sowie die Plastizität von Pilzarten bei der Biomasseallokation zu testen. Die Daten werden mit morphologischen, anatomischen und chemischen Wurzeltraits aus früheren Projekten der Biodiversitäts-Exploratorien kombiniert, um die Erkenntnisse in bestehende pflanzenökonomische Konzepte zu integrieren. Der Rahmen der Exploratorien ermöglicht es, dieses verbesserte Verständnis von Wurzeltraits mit Ökosystemprozessen wie Pflanzenproduktivität, Nährstoffkreisläufen oder Bodenaggregation zu verbinden. Dieses Projekt wird das mechanistische Verständnis von Wurzelökonomie verbessern und dazu beitragen, deren Bedeutung für die Vorhersage von Veränderungen in Pflanzengemeinschaften und Ökosystemen bei zunehmender Landnutzung und globalem Wandel zu untersuchen.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Untersuchungen zur Varianz von Silizium und Calcium in genutztem Grünland

Grünlandökosysteme sind der Schwerpunkt von Biodiversitätsforschung in den letzten Jahrzehnten, wobei die Biodiversitätsexploratorien einen wichtigen Beitrag geleistet haben. Die unterschiedlichen Pflanzentypen z.B. Leguminosen, Gräser und Krautige und deren Vorkommen in Lebensgemeinschaften haben einen starken Einfluss auf den Nährstoffumsatz und die Biomasseproduktion im Grünland. Viele Forschungsarbeiten konzentrierten sich auf den Einfluss von Mechanismen der Landnutzungsänderung welche die Biodiversität von diesen Ökosystemen erklären. In diesem Zusammenhang wurde die Rolle von Silizium (Si) und Calcium (Ca) diskutiert. Beide Elemente werden von Pflanzen genutzt um Herbivorie abzuwehren. Poaceae sind reich an Si und arm and Ca wohingegen Fabaceae viel Ca und wenig Si akkumulieren. Die Anreicherung von Si und Ca in Pflanzen steht in Zusammenhang mit der Ressourcenaufnahmestrategie und Abbaubarkeit entlang des „fast-slow economic spectrum“. Durch den pflanzenspezifisch unterschiedlichen Bedarf an Si und Ca wirken sich unterschiedliche Verfügbarkeiten dieser Elemente im Boden unterschiedlich auf die Pflanzengemeinschaften aus. Die Si-Verfügbarkeit im Boden hat einen Einfluss auf die Biomasseproduktion von Gräsern und deren Phosphorgehalt. Für Leguminosen ist Ca wichtig für den Stickstoff- und Phosphorgehalt der Pflanzen. Im Rahmen der Biodiversitätsexploratorien wurde gezeigt, dass Landnutzungsart und -intentsität einen starken Einfluss auf Pflanzengemeinschaften hat. Da Si und Ca einen starken Einfluss auf die Ökosystemleistung im Grünland haben und dies bisher nicht umfassend untersucht wurde, möchten wir in unserem Projekt auf diesen Aspekt fokussieren. Wir erwarten direkte und indirekte Zusammenhänge zwischen Landnutzung, Si und Ca in Boden und Pflanzen im Hinblick auf Ökosystemprozesse und Ökosystemdienstleistung im Grünland. Das Ziel des Projekts ist es, die Mechanismen aufzuklären, welche die Verfügbarkeit von Si und Ca im Boden in Bezug zu der Konzentration von Si und Ca in Pflanzen für die verschiedenen Pflanzentypen und Pflanzengemeinschaften unter verschiedenen Nutzungsbedingungen in den Biodiversitätsexploratorien zugrunde liegen. Daher möchten wir aufklären, wie sich Landnutzung auf die Si und Ca- Gehalte in der Biomasse von Pflanzengemeinschaften auswirkt (Ziel 1), wie sich unterschiedliche Verfügbarkeit von Si und Ca in Böden auf die Zusammensetzung von Pflanzengemeinschaften auswirkt (Ziel 2), und wie unterschiedliche Arten und funktionelle Gruppen plastisch auf Si- und Ca-Verfügbarkeit reagieren (Ziel 3). Schlussendlich wollen wir die kausalen Zusammenhänge verstehen, welche zu unterschiedlichen Si- und Ca-Konzentrationen in der oberirdischen Biomasse im genutzten Grünland führen (Ziel 4).

Grundlagen der Phytoremediation von Mikroplastik aus Böden und Sedimenten

Forschungsthema: Die Beschreibung der Anreicherungen von Mikroplastik (MP) an und in Pflanzenwurzeln lässt hoffen, dass das für Umweltschadstoffe etablierte Prinzip der Phytoremediation zur Entfernung von MP aus der Umwelt genutzt werden kann. Jedoch sind die zur Gestaltung der Technologie notwendigen Grundlagen nur ansatzweise untersucht und verstanden. Daher wollen wir als Voraussetzung für die Entwicklung von Phytoremediationsverfahren die Grundlagen der Wirkung von MP auf Bodenqualität und -prozesse an der Schnittstelle von Vegetation und Gewässerdynamik am Beispiel von Flussauen untersuchen. Ziel des Projekts ist ein Verständnis von Prozessen in Böden und Sedimenten, die durch Anreicherung von MP an und in Vegetationsbeständen verändert werden. Dies umfasst am Beispiel ausgewählter Flussauen einer stark anthropogen beeinflussten Bundeswasserstraße (Elbe) im Vergleich zum einzigen erhaltenen Wildflusssystem Europas, der Vjosa, die Einflüsse von MP auf Kohlenstoffumsatz, räumliche und zeitliche Verteilung und Verhaltensdynamik von MP in Flussauen sowie die Bedeutung von Pflanzen für eine Entfernung von MP, einschließlich der dafür notwendigen Adaption, Entwicklung und Optimierung erforderlicher Analysemethoden.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: EXClAvE - Landnutzungseffekte auf Pflanzen- und Bakteriengemeinschaften in einem experimentellen 'common garden' Ansatz

In der nächsten Phase der Biodiversitäts Exploratorien sollen Experimente dabei helfen die Effekte verschiedener Landnutzungskomponenten auf Ökosysteme zu ermitteln. 'Common garden' Experimente werden genutzt, um die Umweltheterogenität zu minimieren, die ansonsten interessante Effekte verschleiert. Wir planen Grasnarben, die von n = 42 Plots der Biodiversitäts Exploratorien entnommen werden, in einem 'common garden' auszubringen wo die Intensität der Mahd und der Düngung manipuliert werden soll. In den nächsten drei bis 15 Jahren werden die Veränderungen in den Pflanzen- und Bakteriengemeinschaften auf den Grasnarben verfolgt. Hierfür wird die Zusammensetzung und Diversität der Pflanzen und Bakterien (next-generation 16S rRNA gene amplicon sequencing) ermittelt. Zusätzlich werden noch 3D-Modelle der Pflanzengemeinschaften, die durch multispektrale Information ergänzt werden, erstellt (PlantEye F500, Phenospex, Heerlen, The Netherlands). Diese Modelle erlauben die Errechnung von Parametern, die ganze Pflanzengemeinschaften charakterisieren. Änderungen in den Pflanzen- und Bakteriengemeinschaften werden mit der Landnutzung der Plots in den vergangenen Jahren ins Verhältnis gesetzt. Wir erwarten, dass Gemeinschaften, die aus verschiedenen Plots stammen, aber die gleiche Landnutzung erfahren in Ihrer Zusammensetzung und Diversität konvergieren; Gemeinschaften aus den gleichen Plots, die aber unterschiedliche Landnutzung erfahren, sollten divergieren. Das Projekt nutzt das Vorwissen zu den einzelnen Plots in Bezug auf Landnutzung und Artenzusammensetzung, liefert neuartige Daten für die Biodiversitäts Exploratorien, und stellt einen unabhängigen und neuartigen Beitrag zu der Frage, wie Landnutzug Ökosysteme beeinflusst, dar.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Der Einfluß von Landnutzungsintensität auf die Biodiversität und funktionelle Rolle biologischer Bodenkrusten unter besonderer Berücksichtigung der biogeochemischen Kreisläufe von Kohlenstoff, Stickstoff und Phosphor - CRUSTFUNCTION III

Biologische Bodenkrusten (Biokrusten) sind Hotspots an mikrobieller Diversität und Aktivität, die als 'Ökosystemingenieure' biogeochemische Kreisläufe (N, P) kontrollieren und die Bodenoberfläche stabilisieren. Biokrusten sind ein komplexes Netzwerk vielfältiger, interagierender Mikroorganismen mit verschiedensten Lebensweisen. In den gemäßigten Breiten ist wenig über die Einflussfaktoren auf Struktur und Funktion der Biokrusten bekannt. Daher wollen wir die Diversität der Mikroorganismen in Biokrusten (Bakterien, Protisten, Pilze und Algen) und ihre biogeochemische Funktion in den Waldflächen der Biodiversitätsexploratorien (BE) entlang von Landnutzungsgradienten untersuchen, um deren Beeinflussung durch Landnutzung und Umweltfaktoren zu verstehen.Das zentral organisierte, neue Störexperiment in den Waldflächen ist eine hervorragende Möglichkeit, um die Entwicklung einer Biokruste unter natürlichen Bedingungen nach einer starken Störung zu verfolgen. Eine Teilfläche simuliert Kahlschlag (die Stämme werden entfernt), die andere Teilfläche einen zukünftig häufiger auftretenden Orkan (Stämme verbleiben auf der Fläche). Wir werden die Entwicklung der Bodenkrusten von einem jungen zu einem reifen Stadium visuell (Flächenbedeckung) und durch Probenahme (Biomasse, Nährstoffe, Bodenorganik, Mikrobiota) mittels Feld-, analytischen und molekularen Methoden regelmäßig über zwei Jahre verfolgen. Außerdem werden wir an der zentralen Bodenbeprobungskampagne in allen 150 Waldflächen teilnehmen und parallel Biokrusten sammeln. Wir werden die mikrobielle Biomasse in der Biokruste quantifizieren, ihre Gemeinschaftsstruktur mittels Hochdurchsatzsequenzierung beschreiben und dies mit dem Umsatz von Stickstoff- und Phosphorverbindungen verschneiden. Um Schlüsselorganismen dieser Prozesse zu identifizieren und in hoher räumlicher Auflösung zu visualisieren, wird zusätzlich ein Laborexperiment unter Anwendung von stable isotope probing und NanoSims durchgeführt. Die Daten zur Biodiversität und funktionellen Genomik werden mit den Nährstoffstatus der Biokrusten (Konzentration und chemische Speziierung von C, N und P) verknüpft. Das Laborexperiment mit stabilen Isotopen wird unser Verständnis von Biokrusten Schlüsselorganismen im N- und P-Nährstoffkreislauf und den Einfluss der räumlichen Heterogenität fundamental verbessern. Diese Daten erlauben zum ersten Mal die quantitative und qualitative Rekonstruktion der wichtigsten Stoffkreisläufe und mikrobiellen Interaktionsmuster in Biokrusten als Reaktion auf Landnutzung und Störung. Abschließend werden die ermittelten Daten in das gemeinsame bodenkundliche Netzwerk der BE integriert und dienen dann als Keimzelle für ein Synthese-Vorschlag mit dem Ziel, die Leistung der Biokruste quantitativ und qualitativ mit anderen Hotspots in Böden, wie Detritus- oder Rhizosphäre, zu vergleichen.

1 2 3 4 511 12 13