API src

Found 128 results.

Versöhnen von fragmentierten und umstrittenen Landschaften

RECONNECT konzentriert sich auf die Entkopplung der Erhaltung der biologischen Vielfalt von anderen Anliegen an Landschaften und Gesellschaften. Fragmentierung, Konflikt und Entkopplung können institutioneller, ökologischer und sozialer Natur sein. Dies äußert sich in unterbrochenen ökologischen Strömen durch Habitatnetzwerke, in isolierter sektoraler Planung und in pluralen Lebensstilen und Werten - was zu Spannungen zwischen Erhaltungs-, Gerechtigkeits- und Produktionszielen führt. Wir werden mit Stakeholdern zusammenarbeiten, um anhand von vier Fallbeispielen fundiertes Wissen über die Möglichkeiten des Umgangs mit institutionellen, ökologischen und sozialen Grenzen zu gewinnen. Untersuchungsgebiete in Frankreich, Deutschland, Südafrika und Schweden erstrecken sich entlang von Stadt-/Land-Gradienten mit kontrastierenden Arten des Managements von Schutzgebieten und umliegenden Landschaften. Der inter- und transdisziplinäre "Wiederverkopplungs"-Ansatz wird erreicht durch 1) die Entwicklung eines kohärenten Satzes von Instrumenten und Prozessen zur systematischen Identifizierung und Bewertung der Verbindungen zwischen Ökosystemen, gemeinschaftlichen Werten und verschiedenen institutionellen Arrangements; und 2) die Entwicklung von Governance-Modellen und -Praktiken zum Offenlegen und zur Bewältigung von Spannungen sowie zur Verbindung von Menschen und Ökosystemen. Sozial-ökologische System- und Governance-Forscher werden im Arbeitspaket (WP) 1 den sozial-ökologischen Kontext für den Schutz der biologischen Vielfalt bewerten und integrierte Governance-Optionen für die Durchführung wirksamer Erhaltungsmaßnahmen identifizieren. Naturschutzbiologen und funktionelle Ökologen nutzen in WP2 ihre Fähigkeiten in der Modellierung von Biodiversität und Ökosystemdienstleistungen, um die verschiedenen Dimensionen der funktionellen Konnektivität zu quantifizieren. In WP3 erforschen Landschaftsökologen und Geographen die Werte der Natur und identifizieren Synergien und Bereiche für die Wiedervernetzung. In WP4 versuchen Experten für institutionelle Analyse und Wissenskooperation, verschiedene Bereiche für Zusammenarbeit und Konfliktmanagement zu bewerten. In WP5 führen Experten für Nachhaltigkeitswissenschaften und transdisziplinäre Deliberation die Synthese der Projektergebnisse durch. Spezialisten für Naturschutzpolitik und Kommunikation werden in WP6 die Ergebnisse über einschlägige Kommunikationsplattformen wie PANORAMA und das EU Knowledge Centre for Biodiversity verbreiten. Gemeinsam werden die Arbeitspakete sektorübergreifende Governance in die Umsetzung des Globalen Biodiversitätsrahmens nach 2020 einbringen.

Vorhersagen und Verständnis der Diversitätsvorteile von Sortenmischungen

Die Landwirtschaft steht vor enormen Herausforderungen: Die Erträge müssen gesteigert werden, während der Einsatz von Düngemitteln und Pestiziden reduziert werden muss, und das in einer Zeit zunehmender klimatischer Unsicherheit. Diversifizierung im landwirtschaftlichen Anbau ist eine der wenigen bekannten Möglichkeiten, alle diese Herausforderungen gleichzeitig zu bewältigen. Traditionell wird die Diversifizierung "zeitlich" in Form von Fruchtfolgen erreicht. Dagegen wird die "räumliche" Diversifizierung auf dem Feld, z. B. in Form von Mischkulturen, seltener angewandt, weil sie selten mit den gängigen mechanisierten Verfahren kompatibel ist. Sortenmischungen stellen einen interessanten Mittelweg zwischen Rein- und Mischkulturen dar, da sie es ermöglichen, die genetische Vielfalt und die Merkmalsvielfalt innerhalb des Feldes zu erhöhen, während sie in Bezug auf die Verarbeitung mit Reinkulturen vergleichbar sind. Derzeit ist jedoch noch nicht genau bekannt, wie Mischungen zusammengesetzt sein müssen, um den Ertrag und die ökologische Funktion zu optimieren. In diesem Projekt wollen wir die positiven Auswirkungen der Sortenvielfalt in Weizenmischungen untersuchen und einfache, aber wirksame Vorhersagemethoden für eine optimale Mischungszusammenstellung entwickeln. Wir werden das Fachwissen, die Ideen und die technologischen Ressourcen von fünf Forschungsteams aus den Bereichen molekulare Züchtung, Ökologie, Computerwissenschaften, Genetik und Phänomik zusammenführen. Im Rahmen einer internationalen Zusammenarbeit werden wir die Mechanismen untersuchen, die den Vorteilen von Sortenmischungen zugrunde liegen - insbesondere Ertrag und Krankheitsunterdrückung -, und zwar auf verschiedenen Ebenen: (1) mit nischenbasierten Ansätzen, die von der Koexistenztheorie inspiriert sind, (2) unter Verwendung von Hochdurchsatz-phänotypisierung und so-genannten "trait-based" methods, (3) mit Schwerpunkt auf der Pflanzenproduktivität durch Mischung von Komponenten mit unterschiedlichen Umweltoptima (d.h. Reaktions-Normen) und (4) auf der Ebene von Genen und Gen-Umwelt-Interaktionen. Die Prüfung von Hypothesen und die Entwicklung von Modellen werden sowohl durch große historische Felddatensätze als auch durch neue, systematisch angelegte Feldexperimente unterstützt. Das Projekt besteht aus mehreren Arbeitspaketen (WP), die sich auf eine gemeinsame Plattform von Daten und Experimenten sowie auf fortschrittliche Methoden zur Phänotypisierung im Feld stützen. Die Kombination von Ressourcen, Analysemethoden und synergetischem Fachwissen wird es uns ermöglichen, die wissenschaftlichen und logistischen Herausforderungen dieses Projekts zu meistern und wichtige ungelöste ökologische und agronomische Fragen anzugehen. Es ist zu hoffen, dass dieses ehrgeizige Projekt den Grundstein für die Förderung leistungsfähiger Sortenmischungen als Schlüsselkomponente des agrarökologischen Anbaus legt.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Merkmale von Samen und Keimlingen und ihre Beziehung zur Diversität und Artenzusammensetzung von Grasländern mit unterschiedlicher Landnutzungsintensität

Die Etablierung aus Samen ist ein wichtiger demographischer Prozess für die Lebensgeschichte von Pflanzen, der die Persistenz und Stabilität von Populationen und die Zusammensetzung von Pflanzengemeinschaften beeinflusst. In den letzten Jahren werden zunehmend Methoden basierend auf funktionellen Merkmalen verwendet, um zu einem mechanistischen Verständnis von Prozessen des 'community assembly' und ihrer Beziehung zu Ökosystemfunktionen zu gelangen. In den meisten Fällen basieren diese Analysen auf Merkmalen, die an adulten Pflanzen gemessen wurden, während funktionelle Merkmale von Samen und Keimlingen wenig Beachtung finden. Dieses Projekt hat daher das Vorhaben, die Merkmale von Samen und Keimlingen für eine Vielzahl von Pflanzenarten der Grasländer der Exploratorien charakterisieren. Die folgenden Ziele werden verfolgt: (1) Für die Pflanzenarten, die in den 150 experimentellen Grasland-Plots der Exploratorien vorkommen, werden morphologische und chemische Merkmale der Samen analysiert, und Merkmale der Keimung und Keimlinge werden in einem 'common garden experiment' unter standardisierten Bedingungen gemessen. (2) Die Auswirkungen von Umweltfaktoren, welche mit der Nutzungsintensität variieren, d.h. Vorkommen einer Streuauflage und Düngung, auf die Keimung und Keimlingsmerkmale werden in einem weiteren 'common garden experiment' mit einer Manipulation dieser Faktoren gemessen. Hier werden die Arten verwendet, die auch im Einsaatexperiment des neuen Grasland-Landnutzungs-Experiment ausgesät werden. (3) Die kurzfristigen Effekte der experimentellen Reduktion der Landnutzungsintensität auf die Diversität und Dichte der Diasporenbank im Oberboden werden für die Standorte des neuen Grasland-Landnutzungs-Experiment quantifiziert, um damit eine Variable des 'demographischen Speichers' beizutragen, welche ein wichtiger Aspekt ist, um Veränderungen in der Diversität und Artenzusammensetzung der Grasländer bei Landnutzungsänderung zu verstehen. (4) Schließlich werden die funktionellen Merkmale der Samen und Keimlinge in Kombination mit anderen Daten aus den Exploratorien genutzt, um zu überprüfen, in welchem Bezug das Vorkommen und die Abundanz von Pflanzenarten in Grasländer unterschiedlicher Landnutzungsintensität zu den Merkmalen der Samen und Keimlinge steht, um zu testen, welche Rolle die funktionellen Merkmale der Samen und Keimlinge bei einer Reduktion der Landnutzungsintensität und zusätzlicher Einsaat spielen, und welche Zusammenhänge zwischen der Diversität der funktionellen Merkmale der Samen und Keimlinge und der Merkmals-Diversität adulter Pflanzen besteht. Damit wird das Projekt dazu beitragen, merkmalsbasierte ökologische Untersuchungen um eine demographische Perspektive zu erweitern, indem funktionelle Merkmale von Lebensstadien berücksichtigt werden, die besonders empfindlich sind und daher wichtig sein können, um Prozesse in der Veränderung von Pflanzengemeinschaften und den Erhalt der Diversität von Grasländern zu verstehen.

Entflechtung der Auswirkungen des Mikroplastikabbaus auf die Bodenfunktionalität und die Pflanzenleistung. Konsequenzen für die Vegetationsdynamik in Grasland-Ökosystemen

Die Verschmutzung durch Kunststoffe hat sich zu einer anerkannten Bedrohung für terrestrische Ökosysteme entwickelt. Sobald Kunststoffe in die Umwelt gelangen, kommt es zu einem Abbau, der die Eigenschaften des Plastikmülls verändert (z. B. Sorptionsfähigkeit, Sprödigkeit, Flexibilität), was Auswirkungen auf Pflanzen-Boden-Systeme haben kann. Die Photodegradation kann als einer der häufigsten Prozesse des Kunststoffabbaus weltweit angesehen werden. Dadurch wird Kunststoff spröde und zersplittert in kleine Stücke (Mikroplastik), erhöht seine Sorptionskapazität für Metalle und organische Verbindungen und kann potenziell das Sickerwasser oder gefährliche Chemikalien in den Boden erhöhen. Der Abbau von Mikroplastik kann nicht nur die Bodenfunktionalität und die Struktur von Lebensgemeinschaften verändern, sondern auch die Leistung von Pflanzen, so dass die jüngsten Forschungen, die scheinbar positive Auswirkungen von Mikroplastik auf die Pflanzenproduktivität und die Bodeneigenschaften beschreiben, möglicherweise nur einen Teil der Wahrheit erfassen, da sie nur die Auswirkungen von unberührtem Mikroplastik (bevor es abgebaut wurde) auf Pflanzen-Boden-Systeme berücksichtigen. Das Ziel dieses Projekts ist es zu verstehen, wie abgebautes Mikroplastik (das echte Mikroplastik, das tatsächlich in die Bodenmatrix gelangt) die Pflanzen-Boden-Funktionalität unter Verwendung von Mikrokosmen beeinflusst. Konkret möchte ich i) die Mechanismen entwirren, durch die sich der Abbau von Mikroplastik (Mikroplastik, Form, Polymertyp, Größe und Sickerwasser) auf Pflanzen-Boden-Systeme auswirkt, und ii) die Auswirkungen auf die Struktur der Pflanzengemeinschaften testen, die sie haben können. Um dies zu wissen, werde ich eine Reihe von Experimenten entwickeln, um dies zu untersuchen. Zunächst möchte ich den Abbau von Mikroplastik in Abhängigkeit von der Form des Mikroplastiks (Fasern, Folien, Schäume) und dem Polymertyp (z.B. Polyethylen, Polypropylen) untersuchen. Dann möchte ich die Mechanismen des Mikroplastikabbaus in Abhängigkeit von der Größe des Mikroplastiks und den chemischen Sickerstoffen entschlüsseln, und schließlich möchte ich verstehen, welche Auswirkungen die Form des Mikroplastiks, der Polymertyp, die Größe und die Sickerstoffe auf wichtige Lebensstadien der Pflanzenentwicklung haben. Das heißt, Samenkeimung, Pflanzenwachstum und Pflanzenfitness. Darüber hinaus möchte ich die potenziellen Auswirkungen verstehen, die all dies auf die Konkurrenzfähigkeit von Pflanzenarten haben kann.

Entkopplung stomatärer CO2- und H2O-Flüsse durch hygroskopischen Feinstaub

Die CO2 - Aufnahme höherer Pflanzen erfolgt diffusiv über kleine Öffnungen der Blattoberfläche, die Stomata. Gleichzeitig geht auf demselben Weg Wasserdampf verloren, angetrieben vom atmosphärischen Sättigungsdefizit (VPD). Die Flüsse beider Gase werden durch die stomatäre Öffnungsweite bestimmt. Seit mehreren Jahrzehnten ist daher die wechselseitige Skalierung der Flüsse von Wasserdampf und CO2 ein zentraler Teil aller wichtigen Gaswechsel-Modelle - erkennbar am Faktor 1.6, dem Verhältnis der Diffusionskonstanten. Allerdings wird die Gültigkeit dieser Annahme in Frage gestellt, wenn sich Feinstaubablagerungen auf den Blättern befinden. Hygroskopische Feinstaubbestandtteile lösen sich in der feuchten Blattgrenzschicht auf, kriechen als dünne Filme in die substomatäre Höhle und verbinden sich dort mit apoplastischem Wasser. Durch diese „hydraulische Aktivierung der Stomata“ (HAS) transportieren die Stomata sowohl flüssiges als auch gasförmiges Wasser vom Blattinneren in die Atmosphäre. Wir konnten zeigen, dass bereits moderate Luftverschmutzung die stomatäre Transpiration bei Tag, die minimale Leitfähigkeit bei Nacht, sowie das Verhältnis zwischen Transpiration und Blattöffnungsweite signifikant beeinflusste. Diese Effekte werden durch den klimawandelbedingten Anstieg von VPD noch verstärkt: Wassernutzungseffizienz und Trockentoleranz nehmen ab und die Modellentwicklung auf Basis der gegenseitigen Skalierung von CO2 und H2O wird unzuverlässiger. In diesem Projekt soll in Labor, Gewächshaus und Freiland der HAS-Einfluss auf den pflanzlichen Gaswechsel und die Hydraulik quantifiziert werden, wobei iso- und anisohydrische Arten unterschiedlich auf Feinstaubablagerungen reagieren. Sowohl experimentelle Erhöhung als auch Verringerung der Feinstaubkonzentration werden als Versuchsansätze genutzt, gemeinsam mit aktuellen Gaswechsel-, optischen und Isotopen-Techniken. Die Ergebnisse sind bedeutsam für das Verständnis der Atmosphäre/Pflanze-Interaktion auf allen Skalen von der Schließzelle bis zum Pflanzenbestand.

Gemischte Baumplantagen für den Klimaschutz und die Klimaanpassung

Die Aufforstung und Restauration von Waldlandschaften haben viel Aufmerksamkeit als wichtige Möglichkeit zur Eindämmung des Klimawandels (KW) erhalten. Daher spielen sie in vielen politischen Initiativen (Grüne Deal der EU; Bonn Challenge) eine wichtige Rolle. Doch die anhaltende Zunahme des durch den KW hervorgerufenen Stresses bedroht die Wälder. Angesichts des KW sind Anpassung und Klimaschutz durch Wälder eng miteinander verknüpft, denn ihre Fähigkeit, Kohlenstoff (C) langfristig zu binden, hängt von der Fähigkeit ab, vielfältigen Belastungen standzuhalten. Es gibt zunehmende Evidenz dafür, dass gemischte Plantagen aus mehreren Baumarten, C effizienter speichern und resilienter sind gegenüber KW-bedingtem Stress. Gemischte Plantagen stellen somit eine wichtige Möglichkeit dar, um auf natürliche Weise Klimaschutz und -anpassung zu betreiben. Weltweit werden jedoch die Baumplantagen von Monokulturen dominiert. Die Gründe für diese Ablehnung von Mischplantagen durch Waldbesitzer und Stakeholder müssen daher ermittelt und in künftigen Forstpolitiken angegangen werden, um eine weite Verbreitung von KW-resistenteren Mischwaldplantagen zu fördern. Ein möglicher Hinderungsfaktor sind unzureichende Kenntnisse der Praktiker und politischen Entscheidungsträger. Mittels eines globalen Netzwerks von Experimenten zur Artenvielfalt in Wäldern (TreeDivNet) werden wir ein mechanistisches Verständnis darüber entwickeln, wie Baumartenvielfalt, Baumarteneigenschaften und Bewirtschaftung (Durchforstung und Düngung) sowohl das Potenzial von gemischten Plantagen zum Klimaschutz (C-Sequestrierung) als auch zur Anpassung (Dürre- und Schädlingsresistenz) in einem Win-Win-Ansatz beeinflussen können. Darüber hinaus wird dieses Wissen in Richtlinien für Praktiker und Entscheidungsträger übersetzt.TreeDivNet umfasst weltweit 26 Experimente mit ca. 1,2 Millionen gepflanzten Bäumen. Diese Experimente basieren auf einem gemeinsamen, statistisch fundierten Design, das es erlaubt, kausale Zusammenhänge zwischen Baumdiversität, Management und Ökosystemfunktionen (inkl. C-Sequestrierung) zu analysieren. Der funktionelle und mechanistische Schwerpunkt von MixForChange und die unterschiedlichen Umweltkontexte der Experimente werden es ermöglichen, unsere Ergebnisse über Fallstudien hinaus zu extrapolieren und evidenzbasierte Richtlinien für die Bewirtschaftung von Mischplantagen zu entwickeln. Darüber hinaus wird MixForChange im Rahmen eines gemeinsamen analytischen Ansatzes Synergien und Zielkonflikte zwischen Klimaschutz- und Anpassungspotenzial von Mischplantagen einerseits und Erfüllung der Ziele der beteiligten Stakeholder andererseits analysieren. Der Einfluss von MixForChange auf die Gesellschaft wird durch einen starken Fokus auf Wissenstransfer und Kapazitätsaufbau auf allen Ebenen von Management und Governance gewährleistet. MixForChange wird einen wichtigen Beitrag zur Förderung von Mischwaldplantagen als natürliche Lösungen zur Bekämpfung des Klimawandels leisten.

Ein neuartiges Werkzeug zur Punktmuster-Rekonstruktion zur vereinfachten Bewertung der natürlichen Verjüngung in Waldbeständen auf der Grundlage kleiner Referenzdatensätze

Auf Grund ihrer Bedeutung für die Anpassung der Wälder an Umweltänderungen und ihrer Widerstandsfähigkeit gegenüber Störungen ist die Naturverjüngung zu einem Schwerpunkt der ökologischen Waldforschung geworden. Trotz der jüngsten technologischen Entwicklungen bleibt dies eine große Herausforderung. Insbesondere sehr kleine Pflanzen mit einer Höhe von weniger als 1,30 m und entsprechend kleinen Durchmessern sind mit photogrammetrischen Methoden schwer zu identifizieren. Manuelle Inventurmethoden, wie z. B. die klassische Vollinventur sind aber arbeitsintensiv und zu teuer, um sie auf großen Flächen anzuwenden. Das Projekt möchte dazu beitragen, dieses Problem zu lösen, in dem es ein Simulationswerkzeug zur Rekonstruktion von Punktmustern vorstellt und seine Qualität systematisch untersucht. Es basiert auf einem Forschungsansatz der drei Arbeitsschritte umfasst (1) die Erfassung der räumlichen Daten aller Bäume einschließlich der Verjüngung auf einer kleinen Teilfläche (= Referenzfläche), (2) die Erfassung des Oberstandes im gesamten Bestand (=Untersuchungsfläche) und (3) die Rekonstruktion der Verjüngung im gesamten Untersuchungsgebiet, wobei davon ausgegangen wird, dass überall die gleichen Beziehungen zwischen den Bäumen des Oberstandes und der Verjüngung wie in der Referenzfläche bestehen. Dieser Ansatz erlaubt es, die heutigen logistischen Möglichkeiten zu kombinieren: (a) die manuelle Erfassung der Verjüngung auf kleiner Fläche ist machbar, und (b) die Inventur des Oberstandes mit modernen Fernerkundungs- oder photogrammetrischen Methoden ist relativ einfach und weniger arbeitsintensiv. Indem das Projekt einen vorhanden und in den Forstwissenschaften bekannten Datensatz nutzt (Trainingsgrundlage wird der Datensatz des saisonalen tropischen Regenwaldes der Insel Barro Colorado (BCI) in Panama sein), kann es sich auf Schritt (3) beschränken. Ziel ist es systematisch zu untersuchen, welchen Einfluss eine höhere Strukturvielfalt und das Größenverhältnis von Referenz- und Prädiktionsflächen (= die gesamte Untersuchungsfläche) auf die Ergebnisse der Punktmuster-Rekonstruktion von Verjüngungspflanzen (=Unterstand) hat und welche räumlichen Statistiken besonders geeignet sind, diesen Einfluss quantitativ oder qualitativ zu bewerten. Die numerischen Methoden werden in einem dokumentierten R-Skript (bzw. R-Package) als zuverlässiges und effizientes Werkzeug für die Waldökologie und die forstliche Praxis zur Verfügung gestellt.

Untersuchung der Stabilität der topografischen Auswirkungen auf die Kohlenstoffverteilung in den borealen Wäldern des Tundra-Taiga-Ökotons in der Klimakrise

Ein erheblicher Teil des Kohlenstoffs im Tundra-Taiga-Ökoton (engl. ‚Tundra Taiga Ecotone‘, TTE) wird als oberirdische Biomasse (engl. ‚Above-Ground Biomass‘, AGB) in Bäumen und Sträuchern durch Photosynthese gespeichert, wobei Kohlenstoffdioxid aus der Atmosphäre während der kurzen Wachstumsperiode in hohen Breiten entzogen wird. Dies führt zu geringer Kohlenstoffspeicherung im TTE. Der Klimawandel könnte die Produktivität beeinflussen und Vegetationsmuster verändern. Die Rolle abiotischer Faktoren in der Kohlenstoffspeicherung borealer Wälder ist ungenügend verstanden. Eine Neubewertung der Vegetationsorganisation muss hinsichtlich statischer Modulatoren erfolgen. Topografie, ein wichtiger Faktor für Wasser- und Nährstoffverfügbarkeit, ist ein statischer abiotischer Faktor, der die lokalen Wachstumsbedingungen beeinflusst. Mit steigenden Temperaturen wird erwartet, dass Niederschlag intensiver und häufiger wird, was zu Wasserstau oder Nährstoffauswaschung an bestimmten topografischen Positionen führen kann und den Rückgang bestimmter Baumarten zur Folge haben könnte. Daher könnte der Klimawandel lokale Reaktionen auf die topografische Position verändern und Wechselwirkungen mit Wetterbedingungen beeinflussen. Die Topografie könnte die Auswirkungen des Klimawandels mildern und anpassungsfähigen Arten zugutekommen, während andere unter veränderten Bedingungen leiden. Das Verständnis der Beziehung zwischen Topografie und Biomasseakkumulation ist entscheidend für die Bewertung der zukünftigen Rolle borealer Wälder im globalen Kohlenstoffhaushalt. Das BToBE-Projekt zielt darauf ab, Wissenslücken hinsichtlich des Einflusses der Topografie auf die Biomasseakkumulation im TTE zu schließen und deren Auswirkungen durch Vorwärtssimulation mit einem prozessbasierten Vegetationsmodell zu bewerten. Die zentrale Hypothese ist, dass sich die Reaktionen der Vegetation auf topografische Bedingungen im TTE aufgrund starker globaler Erwärmung verändert haben. Kürzlich wurden drohnenbasiert 3D-Punktwolken gesammelt, die verarbeitet werden, um Waldbiomasse zu ermitteln. Diese hochauflösenden Referenzdaten erfassen den bioklimatischen Gradienten des TTE, wobei die nördliche Baumgrenze in Niederungen mit Permafrost und im gebirgigen Terrain verläuft. Die drohnenbasierten AGB-Daten werden verwendet, um ein AGB-Modell für das großflächige Ableiten (engl. ‚upscaling‘) mit Landsat- und Sentinel-2-Multispektralsensoren zu entwickeln. Das Ziel ist dreistufig: Erstens sollen die Beziehungen zwischen AGB und Topografie mithilfe von verallgemeinerten additiven Modellen aufgeklärt werden; zweitens soll die Stabilität dieser Abhängigkeiten durch Rekonstruktion langfristiger AGB-Daten aus den vergangenen Jahrzehnten untersucht werden. Dies wird für die Verbesserung und Implementierung des Individuen-basierten und räumlich expliziten borealen Waldvegetationsmodells LAVESI genutzt, zur Ableitung von AGB-Trajektorien im TTE in den kommenden Jahrzehnten.

Schwerpunktprogramm (SPP) 1374: Biodiversitäts-Exploratorien; Exploratories for Long-Term and Large-Scale Biodiversity Research (Biodiversity Exploratories), Teilprojekt: Die Rolle von Nährstoffen für die Variabilität der Auswirkungen von Trockenheit auf die Zusammensetzung und Produktivität von Grassländern entlang von Landnutzungsgradienten - ein Merkmals-basierter Ansatz (BEtol2)

Landnutzung und Niederschlagsbedingungen sind wichtige Faktoren für die Diversität und Ökosystemfunktion von Grassländern weltweit, und sind zwei der wichtigsten Treiber des globalen Wandels. Ökosysteme werden gleichzeitig Änderungen von Bodennährstoffen (z.B. durch Düngung) und im Rahmen des Klimawandels häufigeren und intensiveren Trockenheitereignissen ausgesetzt sein. In Kombination können die beiden Faktoren additiv wirken, oder sich gegenseitig verstärken oder abschwächen. Demzufolge variiert die Gemeinschafts- und Ökosystemreaktion auf Trockenheit je nach den Nährstoffbedingungen. Die Mechanismen von Interaktionen von Nährstoffen und Trockenheit bleiben bisher unverstanden, und wir können daher derzeit nicht vorhersagen, bei welcher Landnutzung Grassländer mehr oder weniger sensitiv auf Trockenheit reagieren.Das Hauptziel des Projektes ist es, unsere Vorhersagen für die Konsequenzen von Globalem Wandel auf Grassländer zu verbessern. Dazu werden die kombinierten Effekte von Nährstoffen und Trockenheit auf der Ebene von einzelnen Pflanzenmerkmalen und von Gesamtpflanzen untersucht, und integriert mit Effekten von Trockenheit auf die Zusammensetzung und Produktivität von Pflanzengemeinschaften entlang von Landnutzungsgradienten in Grassländern.In einem Gewächshausexperiment werden wir für 16 Arten, die in den Exploratorien häufig sind, vergleichend die Plastizität im Hinblick auf Nährstoffe für einen umfassenden Satz von mehr als 20 physiologischen, morphologischen und Gesamtpflanzen-Merkmalen untersuchen, die relevant für den Wasserhaushalt von Pflanzen sind. In einem 'common garden' Experiment werden wir die kombinierten Effekte von Nährstoffen und Trockenheit (und ihre Interaktionen) für Gesamtpflanzen dieser Arten quantifizieren. Zusätzlich werden wir die Effekte von experimenteller und natürlicher Trockenheit entlang von Gradienten der Nährstoffverfügbarkeit und Landnutzung (insbesondere Düngung) in den Exploratorien bestimmen. Die direkte Verknüpfung der Daten auf Ebene von Merkmalen, Gesamtpflanzen, Gemeinschaften und Ökosystemen wird unser mechanistisches Verständnis von kombinierten Effekten von Nährstoffen und Trockenheit auf Grassländer unter derzeitigen und zukünftigen Bedingungen verbessern. Die Ergebnisse werden sowohl in angewandter als auch in wissenschaftlicher Hinsicht wichtige neue Erkenntnisse liefern.

Verknüpfung von Mikroklima, mikrobieller Vielfalt von Totholz, Anpassungsmechanismen und Ökosystemprozessen

Totholzabhängige Pilze und Bakterien gehören zu den artenreichsten Gruppen in Wäldern und tragen aufgrund ihrer Beteiligung am Umsatz organischer Stoffe wesentlich zum Funktionieren unserer Ökosysteme bei. Bisher konzentrierten sich die meisten Studien auf die Beziehung zwischen Pilz- und Bakterienvielfalt und ressourcen- und wirtsbezogenen Faktoren, wie z. B. das Volumen des Totholzes oder die Identität der Baumarten. Unser Verständnis, wie abiotische Faktoren wie z.B. das Mikroklima holzabhängige Artengemeinschaften und damit verbundene Ökosystemprozesse einschließlich der Zersetzung beeinflussen, ist jedoch äußerst rudimentär. Darüber hinaus sind mögliche Anpassungsmechanismen von Arten an eine Änderung der mikroklimatischen Bedingungen nicht gut verstanden. Gegenwärtig sind unsere Wälder in einem beispiellos großen räumlichen Ausmaß durch klimabedingtes Absterben geprägt. Störungen in Wäldern verändern sehr stark die mikroklimatischen Bedingungen. Das Mikroklima in Waldökosystemen wird aber auch durch reguläre forstwirtschaftliche Maßnahmen verändert (z.B. durch Hiebsmaßnahmen). Um Vorhersagen zu verbessern und Klimaschutzkonzepte in Zeiten des Klimawandels bereitzustellen, benötigen wir ein besseres Verständnis der Beziehung zwischen Mikroklima, holzabhängiger biologischer Vielfalt und damit verbundenen Zersetzungsprozessen. Wir planen die Nutzung eines bestehenden großen Langzeit-Totholzexperiment und ein neues Add-On-Experiment, um Hypothesen zu testen, die sich auf den Einfluss des Mikroklimas auf die Bildungsprozesse von Pilz- und Bakteriengemeinschaften und die damit verbundenen Zersetzungsprozesse beziehen. Wir werden insbesondere molekularbiologische Methoden verwenden, um Pilz- und Bakteriengemeinschaften zu charakterisieren und mehr über ihre Anpassungsmechanismen zu erfahren. Unsere Ergebnisse liefern ein tieferes mechanistisches Verständnis der Beziehung zwischen Mikroklima und Totholz und ihren funktionellen Konsequenzen, die die Entwicklung oder Verbesserung von Waldbewirtschaftungskonzepten unterstützen und dazu beitragen, ein Gleichgewicht zwischen Holzproduktion und biologischer Vielfalt in Wäldern zu finden. Dies ist besonders wichtig im Zusammenhang mit dem globalen Wandel, der zunehmenden Häufigkeit und Schwere klimabedingter Störungsereignisse und den laufenden Diskussionen über klimafreundliche Forstpraktiken.

1 2 3 4 511 12 13